Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Nov 6;66(Pt 12):m1522–m1523. doi: 10.1107/S1600536810042340

catena-Poly[[[aqua­(pyrazino­[2,3-f][1,10]phenanthroline-κ2 N 8,N 9)zinc(II)]-μ-penta­nedioato] monohydrate]

Wei Fang a,*
PMCID: PMC3011601  PMID: 21589224

Abstract

In the title compound, {[Zn(C5H6O4)(C14H8N4)(H2O)]·H2O}n, the Zn2+ ion is coordinated by an N,N′-bidentate pyrazino­[2,3-f][1,10]phenanthroline (pyphen) ligand, a water molecule and a monodentate glutarate (glu) dianion. A symmetry-generated O:O′-bidentate glu dianion completes a distorted cis-ZnN2O4 octa­hedral coordination geometry for the metal ion. The bridging glu species generates [110] polymeric chains in the crystal. O—H⋯O hydrogen bonds involving both the coordinated and uncoordinated water mol­ecules help to consolidate the structure and neighbouring pyphen units inter­act through numerous aromatic π–π inter­actions [minimum centroid–centroid separation = 3.654 (3) Å], resulting in a two-dimensional network.

Related literature

For the synthesis of the ligand, see: Dickeson & Summers (1970). For related structures, see: Fang-Wei & Mei (2007); Li et al. (2006).graphic file with name e-66-m1522-scheme1.jpg

Experimental

Crystal data

  • [Zn(C5H6O4)(C14H8N4)(H2O)]·H2O

  • M r = 463.74

  • Triclinic, Inline graphic

  • a = 6.397 (3) Å

  • b = 9.384 (5) Å

  • c = 16.409 (8) Å

  • α = 98.067 (5)°

  • β = 100.859 (5)°

  • γ = 101.274 (5)°

  • V = 932.5 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.37 mm−1

  • T = 292 K

  • 0.78 × 0.52 × 0.36 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002) T min = 0.432, T max = 0.611

  • 8019 measured reflections

  • 3702 independent reflections

  • 2929 reflections with I > 2σ(I)

  • R int = 0.062

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.100

  • S = 0.98

  • 3702 reflections

  • 283 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.59 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810042340/hb5645sup1.cif

e-66-m1522-sup1.cif (23.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810042340/hb5645Isup2.hkl

e-66-m1522-Isup2.hkl (179.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Zn1—O2 1.987 (2)
Zn1—N1 2.120 (3)
Zn1—O5 2.137 (2)
Zn1—O4i 2.154 (2)
Zn1—N2 2.188 (2)
Zn1—O3i 2.347 (2)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯OW1ii 0.82 1.89 2.702 (3) 173
O5—H5B⋯O4iii 1.00 (4) 1.91 (4) 2.856 (3) 157 (3)
OW1—HWA1⋯O4iv 0.85 (4) 2.03 (4) 2.840 (4) 161 (3)
OW1—HWBA⋯O2 0.79 (4) 1.95 (4) 2.733 (4) 170 (4)

Symmetry codes: (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The author thanks Baicheng Normal University for supporting this work.

supplementary crystallographic information

Comment

The 1,10-phenanthroline (phen) ligand and its derivatives are important ligands with numerous uses in the construction of metal-organic complexes.Supramolecular architectures baswd on the phen derivative pyrazino[2,3-f][1,10]phenanthroline(PyPhen) molecule have considerably less attention (Li et al.,2006) A s part of our ongoing studies in this area (Fang-Wei & Mei, 2007). We selected glutaric acid (C5H6O42-) to act as a metal-metal linker in its deprotonated form and L as a secondary ligand, generating the title compound, [Zn(C14H8N4)(C5H6O4)(H2O).H2O], a new coordinationg polymer, which is reported here. In compound (I), the ZnII atom of unit is surrounded by two N atoms derived from the bidentate PyPhen ligand, three O atoms from two glutaric acid dianions (one monodentate, one bidentate) and one water molecule (Figure 1, Table 1) a distorted octahedral cis-ZnN2O4arrangement is formed. Neighboring ZnII atoms are bridged by the centrosymmetric glutaric acid ligands forming a one-dimensional chain structure (Fig.2). In the crystal structure, adjacent chains are connected through π-π interactions between PyPhen and PyPhen ligands with a minimum centroid -centroid stacking distance of 3.372 Å. O—H···O hydrogen bonds involving the water molecules and carboxylate O atom acceptors (Table 2) complete the structure.

Experimental

The pyphen ligand was synthesized according to the literature method of Dickeson & Summers (1970). A mixture of ZnCl2 (0.3 mmol), pyphen (0.1 mmol) and glutaric acid (0.3 mmol) in distilled water (30 ml) was stirred thoroughly for 1 h at ambient temperature. The pH was adjusted to 7.5 with aqueous NaOH solution. The suspension was then sealed in a Teflon-lined stainless steel reaction vessel (40 ml). The reaction was performed under autogeneous pressure and static conditions in an oven at 443 K for 4.5 d. The vessel was then cooled slowly inside the oven to 298 K at a rate of 5 K h-1 before opening: amaranth (red) blocks of (I) were collected.

Refinement

All H atoms on C atoms were generated geometrically and refined as riding atoms with C—H= 0.93Å and Uiso(H)= 1.2 times Ueq(C).

Figures

Fig. 1.

Fig. 1.

view of the local coordination of Zn(II) with displacement ellipsoids drawn at the 30% probability level.

Fig. 2.

Fig. 2.

A view of the two-dimensional supramolecular structure of (I) generated by π-π interactions and hydrogen-bonding.

Crystal data

[Zn(C5H6O4)(C14H8N4)(H2O)]·H2O V = 932.5 (8) Å3
Mr = 463.74 Z = 2
Triclinic, P1 F(000) = 476
Hall symbol: -P 1 Dx = 1.652 Mg m3
a = 6.397 (3) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.384 (5) Å θ = 2.0–26.3°
c = 16.409 (8) Å µ = 1.37 mm1
α = 98.067 (5)° T = 292 K
β = 100.859 (5)° Block, amaranth
γ = 101.274 (5)° 0.78 × 0.52 × 0.36 mm

Data collection

Bruker SMART CCD diffractometer 3702 independent reflections
Radiation source: fine-focus sealed tube 2929 reflections with I > 2σ(I)
graphite Rint = 0.062
Detector resolution: 0 pixels mm-1 θmax = 26.1°, θmin = 2.3°
ω scans h = −7→7
Absorption correction: multi-scan (SADABS; Bruker, 2002) k = −11→11
Tmin = 0.432, Tmax = 0.611 l = −20→20
8019 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: constr
wR(F2) = 0.100 H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0464P)2] where P = (Fo2 + 2Fc2)/3
3702 reflections (Δ/σ)max = 0.001
283 parameters Δρmax = 0.86 e Å3
0 restraints Δρmin = −0.59 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.71632 (5) 0.09770 (4) 0.66833 (2) 0.02738 (13)
O5 0.4196 (3) 0.1252 (2) 0.59395 (14) 0.0354 (5)
H5A 0.3260 0.0479 0.5847 0.053*
O3 1.5203 (3) 0.8764 (2) 0.69454 (14) 0.0384 (5)
O4 1.6651 (3) 0.8894 (2) 0.58459 (13) 0.0367 (5)
OW1 0.9119 (4) 0.1180 (3) 0.44343 (17) 0.0424 (6)
N2 0.9708 (4) 0.0659 (3) 0.76912 (15) 0.0270 (5)
N1 0.6579 (4) 0.2190 (3) 0.77760 (15) 0.0271 (5)
N3 0.9142 (5) 0.3624 (3) 1.07957 (17) 0.0425 (7)
C4 1.1058 (5) 0.1251 (3) 0.92035 (18) 0.0290 (7)
N4 1.2336 (5) 0.1937 (3) 1.07170 (17) 0.0410 (7)
C14 0.9630 (4) 0.1335 (3) 0.84604 (18) 0.0249 (6)
C8 0.9326 (5) 0.2869 (3) 1.00470 (19) 0.0325 (7)
C13 0.7948 (5) 0.2178 (3) 0.85096 (18) 0.0259 (6)
C12 0.5054 (5) 0.2965 (3) 0.7799 (2) 0.0340 (7)
H12A 0.4108 0.2974 0.7295 0.041*
C9 0.7811 (5) 0.2942 (3) 0.92828 (19) 0.0303 (7)
C5 1.0920 (5) 0.2042 (3) 1.00158 (18) 0.0327 (7)
C16 1.1651 (5) 0.4264 (3) 0.59565 (19) 0.0343 (7)
H16A 1.0786 0.4284 0.5407 0.041*
H16B 1.2742 0.3709 0.5865 0.041*
C19 1.5487 (5) 0.8164 (3) 0.6267 (2) 0.0323 (7)
C15 1.0173 (5) 0.3451 (3) 0.6441 (2) 0.0352 (7)
C10 0.6172 (5) 0.3738 (3) 0.9281 (2) 0.0383 (8)
H10A 0.6016 0.4249 0.9786 0.046*
C2 1.2673 (5) −0.0301 (4) 0.8352 (2) 0.0376 (8)
H2A 1.3682 −0.0879 0.8294 0.045*
C17 1.2817 (6) 0.5833 (3) 0.6374 (2) 0.0400 (8)
H17A 1.3581 0.5832 0.6944 0.048*
H17B 1.1738 0.6422 0.6414 0.048*
C3 1.2606 (5) 0.0399 (3) 0.9126 (2) 0.0350 (7)
H3B 1.3586 0.0314 0.9604 0.042*
C11 0.4807 (5) 0.3765 (4) 0.8541 (2) 0.0408 (8)
H11A 0.3733 0.4306 0.8532 0.049*
C18 1.4442 (5) 0.6551 (3) 0.5904 (2) 0.0391 (8)
H18A 1.5587 0.6008 0.5907 0.047*
H18B 1.3701 0.6468 0.5321 0.047*
C1 1.1200 (5) −0.0139 (3) 0.7642 (2) 0.0331 (7)
H1A 1.1268 −0.0610 0.7113 0.040*
C7 1.0537 (6) 0.3505 (4) 1.1468 (2) 0.0487 (9)
H7A 1.0475 0.3999 1.1992 0.058*
C6 1.2114 (6) 0.2665 (4) 1.1429 (2) 0.0490 (10)
H6A 1.3045 0.2621 1.1929 0.059*
O2 0.8998 (3) 0.2189 (2) 0.60661 (13) 0.0366 (5)
O1 1.0269 (5) 0.3952 (3) 0.71797 (17) 0.0684 (9)
HWBA 0.923 (6) 0.152 (4) 0.492 (2) 0.044 (12)*
H5B 0.432 (6) 0.129 (4) 0.534 (2) 0.068 (12)*
HWA1 1.048 (6) 0.128 (4) 0.446 (2) 0.047 (11)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.0268 (2) 0.0244 (2) 0.0289 (2) 0.00223 (14) 0.00547 (14) 0.00410 (14)
O5 0.0308 (12) 0.0365 (13) 0.0356 (13) 0.0039 (10) 0.0020 (10) 0.0083 (10)
O3 0.0386 (13) 0.0318 (12) 0.0401 (13) 0.0035 (10) 0.0087 (11) −0.0027 (10)
O4 0.0349 (12) 0.0303 (12) 0.0446 (13) −0.0004 (10) 0.0136 (11) 0.0108 (10)
OW1 0.0350 (15) 0.0536 (16) 0.0338 (15) 0.0065 (12) 0.0050 (12) 0.0011 (12)
N2 0.0261 (13) 0.0256 (13) 0.0289 (14) 0.0040 (11) 0.0091 (11) 0.0031 (11)
N1 0.0236 (13) 0.0245 (13) 0.0328 (14) 0.0042 (10) 0.0061 (11) 0.0065 (11)
N3 0.0527 (18) 0.0371 (16) 0.0354 (16) 0.0053 (14) 0.0122 (14) 0.0025 (13)
C4 0.0263 (16) 0.0296 (16) 0.0292 (16) 0.0021 (13) 0.0052 (13) 0.0058 (13)
N4 0.0421 (17) 0.0427 (17) 0.0339 (16) 0.0041 (13) 0.0016 (13) 0.0101 (13)
C14 0.0228 (15) 0.0236 (15) 0.0274 (15) 0.0014 (12) 0.0060 (12) 0.0059 (12)
C8 0.0378 (18) 0.0279 (16) 0.0291 (17) 0.0018 (14) 0.0090 (14) 0.0025 (14)
C13 0.0260 (15) 0.0217 (15) 0.0292 (16) 0.0019 (12) 0.0072 (13) 0.0053 (13)
C12 0.0324 (17) 0.0325 (17) 0.0392 (18) 0.0091 (14) 0.0075 (14) 0.0119 (15)
C9 0.0323 (17) 0.0264 (16) 0.0324 (17) 0.0042 (13) 0.0108 (14) 0.0044 (13)
C5 0.0352 (18) 0.0326 (17) 0.0276 (16) 0.0006 (14) 0.0060 (14) 0.0078 (14)
C16 0.0361 (18) 0.0279 (16) 0.0365 (18) 0.0015 (14) 0.0083 (14) 0.0057 (14)
C19 0.0267 (16) 0.0268 (16) 0.0419 (19) 0.0029 (13) 0.0059 (14) 0.0084 (15)
C15 0.0403 (19) 0.0304 (18) 0.0350 (19) 0.0052 (15) 0.0127 (15) 0.0048 (15)
C10 0.0413 (19) 0.0342 (18) 0.0414 (19) 0.0124 (15) 0.0142 (16) 0.0013 (15)
C2 0.0313 (17) 0.0433 (19) 0.046 (2) 0.0154 (15) 0.0149 (15) 0.0145 (16)
C17 0.049 (2) 0.0263 (17) 0.0423 (19) −0.0011 (15) 0.0166 (17) 0.0046 (15)
C3 0.0296 (17) 0.0410 (19) 0.0364 (18) 0.0103 (15) 0.0042 (14) 0.0142 (15)
C11 0.0358 (19) 0.0358 (19) 0.054 (2) 0.0137 (16) 0.0122 (17) 0.0087 (17)
C18 0.0419 (19) 0.0254 (17) 0.047 (2) −0.0010 (15) 0.0146 (16) 0.0032 (15)
C1 0.0315 (17) 0.0321 (17) 0.0377 (18) 0.0086 (14) 0.0129 (14) 0.0045 (14)
C7 0.066 (3) 0.044 (2) 0.0270 (18) 0.0023 (19) 0.0057 (18) −0.0015 (16)
C6 0.060 (2) 0.047 (2) 0.0292 (19) −0.0039 (19) −0.0007 (17) 0.0064 (17)
O2 0.0386 (13) 0.0284 (12) 0.0351 (12) −0.0076 (10) 0.0089 (10) 0.0017 (10)
O1 0.087 (2) 0.0472 (16) 0.0611 (18) −0.0163 (15) 0.0381 (17) −0.0080 (14)

Geometric parameters (Å, °)

Zn1—O2 1.987 (2) C13—C9 1.394 (4)
Zn1—N1 2.120 (3) C12—C11 1.390 (4)
Zn1—O5 2.137 (2) C12—H12A 0.9300
Zn1—O4i 2.154 (2) C9—C10 1.401 (4)
Zn1—N2 2.188 (2) C16—C15 1.510 (4)
Zn1—O3i 2.347 (2) C16—C17 1.513 (4)
Zn1—C19i 2.588 (3) C16—H16A 0.9700
O5—H5A 0.8200 C16—H16B 0.9700
O5—H5B 1.00 (4) C19—C18 1.514 (4)
O3—C19 1.237 (4) C19—Zn1ii 2.588 (3)
O3—Zn1ii 2.347 (2) C15—O1 1.223 (4)
O4—C19 1.276 (4) C15—O2 1.272 (4)
O4—Zn1ii 2.154 (2) C10—C11 1.363 (4)
OW1—HWBA 0.79 (4) C10—H10A 0.9300
OW1—HWA1 0.85 (4) C2—C3 1.358 (4)
N2—C1 1.330 (4) C2—C1 1.400 (4)
N2—C14 1.345 (4) C2—H2A 0.9300
N1—C12 1.329 (4) C17—C18 1.518 (4)
N1—C13 1.351 (4) C17—H17A 0.9700
N3—C7 1.314 (4) C17—H17B 0.9700
N3—C8 1.367 (4) C3—H3B 0.9300
C4—C14 1.401 (4) C11—H11A 0.9300
C4—C3 1.401 (4) C18—H18A 0.9700
C4—C5 1.459 (4) C18—H18B 0.9700
N4—C6 1.314 (4) C1—H1A 0.9300
N4—C5 1.352 (4) C7—C6 1.401 (5)
C14—C13 1.463 (4) C7—H7A 0.9300
C8—C5 1.401 (4) C6—H6A 0.9300
C8—C9 1.452 (4)
O2—Zn1—N1 114.24 (9) C15—C16—C17 115.5 (3)
O2—Zn1—O5 92.64 (9) C15—C16—H16A 108.4
N1—Zn1—O5 90.76 (9) C17—C16—H16A 108.4
O2—Zn1—O4i 96.87 (9) C15—C16—H16B 108.4
N1—Zn1—O4i 148.89 (9) C17—C16—H16B 108.4
O5—Zn1—O4i 87.08 (8) H16A—C16—H16B 107.5
O2—Zn1—N2 100.06 (10) O3—C19—O4 120.8 (3)
N1—Zn1—N2 77.41 (9) O3—C19—C18 121.2 (3)
O5—Zn1—N2 165.34 (9) O4—C19—C18 118.0 (3)
O4i—Zn1—N2 98.53 (9) O3—C19—Zn1ii 64.86 (16)
O2—Zn1—O3i 154.65 (8) O4—C19—Zn1ii 56.11 (15)
N1—Zn1—O3i 91.04 (9) C18—C19—Zn1ii 172.5 (2)
O5—Zn1—O3i 88.79 (9) O1—C15—O2 122.9 (3)
O4i—Zn1—O3i 57.90 (8) O1—C15—C16 120.1 (3)
N2—Zn1—O3i 82.87 (9) O2—C15—C16 116.8 (3)
Zn1—O5—H5A 109.5 C11—C10—C9 120.1 (3)
Zn1—O5—H5B 111 (2) C11—C10—H10A 120.0
H5A—O5—H5B 98.4 C9—C10—H10A 120.0
C19—O3—Zn1ii 86.64 (18) C3—C2—C1 119.0 (3)
C19—O4—Zn1ii 94.44 (19) C3—C2—H2A 120.5
HWBA—OW1—HWA1 96 (3) C1—C2—H2A 120.5
C1—N2—C14 117.9 (3) C16—C17—C18 113.3 (3)
C1—N2—Zn1 129.1 (2) C16—C17—H17A 108.9
C14—N2—Zn1 112.93 (18) C18—C17—H17A 108.9
C12—N1—C13 118.3 (3) C16—C17—H17B 108.9
C12—N1—Zn1 126.4 (2) C18—C17—H17B 108.9
C13—N1—Zn1 115.27 (18) H17A—C17—H17B 107.7
C7—N3—C8 115.4 (3) C2—C3—C4 119.8 (3)
C14—C4—C3 117.3 (3) C2—C3—H3B 120.1
C14—C4—C5 120.3 (3) C4—C3—H3B 120.1
C3—C4—C5 122.4 (3) C10—C11—C12 118.6 (3)
C6—N4—C5 115.4 (3) C10—C11—H11A 120.7
N2—C14—C4 123.1 (3) C12—C11—H11A 120.7
N2—C14—C13 117.5 (2) C19—C18—C17 114.4 (3)
C4—C14—C13 119.4 (3) C19—C18—H18A 108.7
N3—C8—C5 121.1 (3) C17—C18—H18A 108.7
N3—C8—C9 118.0 (3) C19—C18—H18B 108.7
C5—C8—C9 120.8 (3) C17—C18—H18B 108.7
N1—C13—C9 122.5 (3) H18A—C18—H18B 107.6
N1—C13—C14 116.9 (2) N2—C1—C2 122.9 (3)
C9—C13—C14 120.6 (3) N2—C1—H1A 118.6
N1—C12—C11 123.0 (3) C2—C1—H1A 118.6
N1—C12—H12A 118.5 N3—C7—C6 122.9 (3)
C11—C12—H12A 118.5 N3—C7—H7A 118.6
C13—C9—C10 117.5 (3) C6—C7—H7A 118.6
C13—C9—C8 119.4 (3) N4—C6—C7 122.9 (3)
C10—C9—C8 123.1 (3) N4—C6—H6A 118.5
N4—C5—C8 122.2 (3) C7—C6—H6A 118.5
N4—C5—C4 118.4 (3) C15—O2—Zn1 119.5 (2)
C8—C5—C4 119.4 (3)
O2—Zn1—N2—C1 −69.5 (3) C14—C13—C9—C8 −1.3 (4)
N1—Zn1—N2—C1 177.7 (3) N3—C8—C9—C13 −179.6 (3)
O5—Zn1—N2—C1 140.8 (3) C5—C8—C9—C13 0.0 (4)
O4i—Zn1—N2—C1 29.1 (3) N3—C8—C9—C10 −0.4 (5)
O3i—Zn1—N2—C1 85.0 (3) C5—C8—C9—C10 179.2 (3)
C19i—Zn1—N2—C1 57.9 (3) C6—N4—C5—C8 0.0 (5)
O2—Zn1—N2—C14 113.54 (19) C6—N4—C5—C4 −179.4 (3)
N1—Zn1—N2—C14 0.73 (18) N3—C8—C5—N4 0.5 (5)
O5—Zn1—N2—C14 −36.1 (4) C9—C8—C5—N4 −179.1 (3)
O4i—Zn1—N2—C14 −147.87 (19) N3—C8—C5—C4 179.9 (3)
O3i—Zn1—N2—C14 −91.94 (19) C9—C8—C5—C4 0.2 (4)
C19i—Zn1—N2—C14 −119.0 (2) C14—C4—C5—N4 −179.7 (3)
O2—Zn1—N1—C12 82.8 (3) C3—C4—C5—N4 −0.4 (5)
O5—Zn1—N1—C12 −10.4 (2) C14—C4—C5—C8 0.9 (4)
O4i—Zn1—N1—C12 −96.0 (3) C3—C4—C5—C8 −179.8 (3)
N2—Zn1—N1—C12 178.3 (3) Zn1ii—O3—C19—O4 4.3 (3)
O3i—Zn1—N1—C12 −99.2 (2) Zn1ii—O3—C19—C18 −174.8 (3)
C19i—Zn1—N1—C12 −96.7 (3) Zn1ii—O4—C19—O3 −4.7 (3)
O2—Zn1—N1—C13 −95.7 (2) Zn1ii—O4—C19—C18 174.5 (2)
O5—Zn1—N1—C13 171.1 (2) C17—C16—C15—O1 −13.0 (5)
O4i—Zn1—N1—C13 85.5 (3) C17—C16—C15—O2 172.8 (3)
N2—Zn1—N1—C13 −0.17 (19) C13—C9—C10—C11 −1.0 (5)
O3i—Zn1—N1—C13 82.3 (2) C8—C9—C10—C11 179.8 (3)
C19i—Zn1—N1—C13 84.8 (2) C15—C16—C17—C18 174.5 (3)
C1—N2—C14—C4 0.8 (4) C1—C2—C3—C4 0.8 (5)
Zn1—N2—C14—C4 178.2 (2) C14—C4—C3—C2 0.0 (5)
C1—N2—C14—C13 −178.5 (2) C5—C4—C3—C2 −179.3 (3)
Zn1—N2—C14—C13 −1.2 (3) C9—C10—C11—C12 1.3 (5)
C3—C4—C14—N2 −0.9 (4) N1—C12—C11—C10 −0.8 (5)
C5—C4—C14—N2 178.4 (3) O3—C19—C18—C17 8.1 (4)
C3—C4—C14—C13 178.4 (3) O4—C19—C18—C17 −171.1 (3)
C5—C4—C14—C13 −2.2 (4) Zn1ii—C19—C18—C17 −133.6 (16)
C7—N3—C8—C5 −0.4 (5) C16—C17—C18—C19 175.0 (3)
C7—N3—C8—C9 179.2 (3) C14—N2—C1—C2 0.1 (4)
C12—N1—C13—C9 0.2 (4) Zn1—N2—C1—C2 −176.8 (2)
Zn1—N1—C13—C9 178.8 (2) C3—C2—C1—N2 −0.9 (5)
C12—N1—C13—C14 −179.0 (2) C8—N3—C7—C6 0.0 (5)
Zn1—N1—C13—C14 −0.4 (3) C5—N4—C6—C7 −0.4 (5)
N2—C14—C13—N1 1.1 (4) N3—C7—C6—N4 0.5 (6)
C4—C14—C13—N1 −178.3 (3) O1—C15—O2—Zn1 1.6 (5)
N2—C14—C13—C9 −178.1 (3) C16—C15—O2—Zn1 175.6 (2)
C4—C14—C13—C9 2.5 (4) N1—Zn1—O2—C15 18.7 (3)
C13—N1—C12—C11 0.1 (4) O5—Zn1—O2—C15 110.7 (2)
Zn1—N1—C12—C11 −178.3 (2) O4i—Zn1—O2—C15 −161.9 (2)
N1—C13—C9—C10 0.2 (4) N2—Zn1—O2—C15 −61.9 (2)
C14—C13—C9—C10 179.4 (3) O3i—Zn1—O2—C15 −156.5 (2)
N1—C13—C9—C8 179.5 (3) C19i—Zn1—O2—C15 −161.8 (2)

Symmetry codes: (i) x−1, y−1, z; (ii) x+1, y+1, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O5—H5A···OW1iii 0.82 1.89 2.702 (3) 173
O5—H5B···O4iv 1.00 (4) 1.91 (4) 2.856 (3) 157 (3)
OW1—HWA1···O4v 0.85 (4) 2.03 (4) 2.840 (4) 161 (3)
OW1—HWBA···O2 0.79 (4) 1.95 (4) 2.733 (4) 170 (4)

Symmetry codes: (iii) −x+1, −y, −z+1; (iv) −x+2, −y+1, −z+1; (v) −x+3, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5645).

References

  1. Bruker (2002). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Dickeson, J. E. & Summers, L. A. (1970). Aust. J. Chem.23, 1023–1027.
  3. Fang-Wei & Mei, Z.-M. (2007). Acta Cryst. E63, m3098–m3099.
  4. Li, C.-B., Fang, W., Gao, G.-G. & Liu, B. (2006). Acta Cryst. E62, m1312–m1314.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810042340/hb5645sup1.cif

e-66-m1522-sup1.cif (23.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810042340/hb5645Isup2.hkl

e-66-m1522-Isup2.hkl (179.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES