Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Nov 20;66(Pt 12):o3236. doi: 10.1107/S1600536810047045

Diethyl [4-(1,3-benzothia­zol-2-yl)benz­yl]phospho­nate

Rong Peng a,*, Huisheng Li a
PMCID: PMC3011668  PMID: 21589525

Abstract

In the title mol­ecule, C18H20NO3PS, the benzene ring and the benzothia­zole mean plane are almost coplanar, forming a dihedral angle of 2.29 (2)°. The two ethyl groups are each disordered over two conformations in ratios that refined to 0.59 (1):0.41 (1) and 0.56 (1):0.44 (1). In the crystal, weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into layers parallel to the bc plane.

Related literature

For the cardiovascular activity of benzothia­zole-substituted benzyl­phospho­nate derivatives, see: Yoshino et al. (1986). For the crystal structure of a related benzothia­zole-substituted derivative, see: Bhatia et al. (1991).graphic file with name e-66-o3236-scheme1.jpg

Experimental

Crystal data

  • C18H20NO3PS

  • M r = 361.38

  • Monoclinic, Inline graphic

  • a = 11.0441 (19) Å

  • b = 8.0927 (14) Å

  • c = 20.933 (4) Å

  • β = 94.943 (3)°

  • V = 1863.9 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.980, T max = 0.986

  • 11571 measured reflections

  • 3641 independent reflections

  • 2005 reflections with I > 2σ(I)

  • R int = 0.104

Refinement

  • R[F 2 > 2σ(F 2)] = 0.064

  • wR(F 2) = 0.150

  • S = 0.96

  • 3641 reflections

  • 259 parameters

  • 8 restraints

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810047045/cv2793sup1.cif

e-66-o3236-sup1.cif (21.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810047045/cv2793Isup2.hkl

e-66-o3236-Isup2.hkl (178.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1i 0.93 2.45 3.261 (5) 146
C13—H13⋯O1ii 0.93 2.53 3.310 (4) 141

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors are grateful to Xiangfan University for financial support.

supplementary crystallographic information

Comment

It was found that benzothiazole-substituted benzylphosphonates derivatives could exhibit excellent cardiovascular activities (Yoshino et al., 1986). We herein report the structure of the diethyl 4-(benzo[d]thiazol-2-yl)benzylphosphonate (I) (Fig. 1).

In (I), the bond lengths and angles are normal and comparable with those observed in the related compound (Bhatia et al., 1991). The benzene ring and the benzothiazole mean plane are almost coplanar forming a dihedral angle of 2.29 (2)°. Weak intermolecular C—H···O hydrogen bonds (Table 1) link the molecules into layers parallel to bc plane.

Experimental

The title compound was synthesized according to the method of Yoshino et al. (1986). Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of the solution in hexane-MeOH (3:1).

Refinement

All H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding, allowing for free rotation of the methyl groups. The constraint Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) (methyl C) was applied. Two ethyl groups (C15/C16 and C17/C18) were found to be disordered over two orientations. The occupancies of the disordered positions C15/C15', C17/C17' refined to 0.59 (1):0.41 (1) and 0.56 (1):0.44 (1), respectively.

Figures

Fig. 1.

Fig. 1.

The title molecule with the atom-numbering scheme. The displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C18H20NO3PS F(000) = 760
Mr = 361.38 Dx = 1.288 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1606 reflections
a = 11.0441 (19) Å θ = 2.6–19.8°
b = 8.0927 (14) Å µ = 0.27 mm1
c = 20.933 (4) Å T = 298 K
β = 94.943 (3)° Block, yellow
V = 1863.9 (6) Å3 0.20 × 0.20 × 0.20 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer 3641 independent reflections
Radiation source: fine-focus sealed tube 2005 reflections with I > 2σ(I)
graphite Rint = 0.104
phi and ω scans θmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −12→13
Tmin = 0.980, Tmax = 0.986 k = −9→9
11571 measured reflections l = −25→23

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150 H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0548P)2] where P = (Fo2 + 2Fc2)/3
3641 reflections (Δ/σ)max = 0.002
259 parameters Δρmax = 0.25 e Å3
8 restraints Δρmin = −0.20 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 1.1588 (3) 0.1221 (4) 0.69500 (17) 0.0623 (10)
C2 1.2308 (3) 0.2279 (4) 0.73429 (17) 0.0595 (9)
C3 1.3327 (4) 0.2969 (5) 0.7108 (2) 0.0774 (11)
H3 1.3822 0.3682 0.7363 0.093*
C4 1.3602 (4) 0.2599 (5) 0.6504 (2) 0.0840 (12)
H4 1.4286 0.3074 0.6350 0.101*
C5 1.2893 (4) 0.1538 (5) 0.6113 (2) 0.0865 (12)
H5 1.3103 0.1307 0.5702 0.104*
C6 1.1881 (4) 0.0827 (5) 0.63310 (19) 0.0811 (12)
H6 1.1401 0.0101 0.6074 0.097*
C7 1.0931 (3) 0.1737 (4) 0.80139 (17) 0.0566 (9)
C8 1.0286 (3) 0.1760 (4) 0.85962 (17) 0.0550 (9)
C9 0.9251 (3) 0.0812 (4) 0.86477 (18) 0.0681 (10)
H9 0.8941 0.0177 0.8301 0.082*
C10 0.8674 (3) 0.0802 (4) 0.9212 (2) 0.0705 (10)
H10 0.7980 0.0162 0.9237 0.085*
C11 0.9113 (3) 0.1726 (4) 0.97371 (18) 0.0609 (9)
C12 1.0131 (3) 0.2685 (4) 0.96797 (18) 0.0639 (10)
H12 1.0432 0.3334 1.0024 0.077*
C13 1.0714 (3) 0.2703 (4) 0.91201 (18) 0.0624 (9)
H13 1.1401 0.3356 0.9096 0.075*
C14 0.8502 (3) 0.1645 (5) 1.03566 (18) 0.0743 (11)
H14A 0.9076 0.2020 1.0703 0.089*
H14B 0.8313 0.0499 1.0441 0.089*
C15 0.5008 (10) 0.2379 (17) 0.9677 (8) 0.080 (4) 0.59 (1)
H15A 0.4858 0.3496 0.9819 0.096* 0.59 (1)
H15B 0.4421 0.1645 0.9848 0.096* 0.59 (1)
C16 0.491 (2) 0.229 (3) 0.8963 (9) 0.127 (7) 0.59 (1)
H16A 0.5536 0.2969 0.8803 0.191* 0.59 (1)
H16B 0.4130 0.2690 0.8795 0.191* 0.59 (1)
H16C 0.5015 0.1171 0.8830 0.191* 0.59 (1)
C17 0.6829 (11) 0.3458 (18) 1.1595 (6) 0.081 (4) 0.56 (1)
H17A 0.6131 0.4165 1.1637 0.098* 0.56 (1)
H17B 0.7550 0.4137 1.1582 0.098* 0.56 (1)
C18 0.698 (2) 0.221 (3) 1.2130 (9) 0.102 (7) 0.56 (1)
H18A 0.6202 0.1731 1.2193 0.152* 0.56 (1)
H18B 0.7292 0.2754 1.2518 0.152* 0.56 (1)
H18C 0.7530 0.1365 1.2022 0.152* 0.56 (1)
C15' 0.5313 (16) 0.286 (3) 0.9542 (13) 0.095 (7) 0.41 (1)
H15C 0.5686 0.3679 0.9281 0.114* 0.41 (1)
H15D 0.4836 0.3439 0.9840 0.114* 0.41 (1)
C16' 0.453 (3) 0.175 (4) 0.9131 (15) 0.114 (9) 0.41 (1)
H16D 0.4893 0.1547 0.8738 0.171* 0.41 (1)
H16E 0.3745 0.2248 0.9037 0.171* 0.41 (1)
H16F 0.4436 0.0718 0.9350 0.171* 0.41 (1)
C17' 0.7377 (13) 0.300 (3) 1.1609 (8) 0.084 (5) 0.44 (1)
H17C 0.7514 0.4181 1.1565 0.101* 0.44 (1)
H17D 0.8162 0.2461 1.1638 0.101* 0.44 (1)
C18' 0.679 (3) 0.271 (4) 1.2219 (12) 0.091 (8) 0.44 (1)
H18D 0.5941 0.2968 1.2155 0.137* 0.44 (1)
H18E 0.7169 0.3392 1.2553 0.137* 0.44 (1)
H18F 0.6886 0.1566 1.2340 0.137* 0.44 (1)
N1 1.1913 (2) 0.2556 (3) 0.79452 (14) 0.0638 (8)
O1 0.7282 (2) 0.4580 (3) 1.02534 (11) 0.0758 (7)
O3 0.6649 (2) 0.2406 (3) 1.10323 (12) 0.0780 (8)
O2 0.6244 (2) 0.1867 (3) 0.98898 (12) 0.0767 (8)
P1 0.71450 (8) 0.28288 (12) 1.03709 (5) 0.0610 (3)
S1 1.03702 (9) 0.05586 (12) 0.73533 (5) 0.0754 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.057 (2) 0.065 (2) 0.062 (2) 0.0036 (18) −0.0136 (18) −0.0071 (19)
C2 0.049 (2) 0.072 (2) 0.056 (2) 0.0097 (18) −0.0021 (18) −0.0063 (19)
C3 0.061 (3) 0.095 (3) 0.075 (3) 0.002 (2) 0.000 (2) −0.020 (2)
C4 0.066 (3) 0.105 (3) 0.082 (3) 0.012 (2) 0.009 (2) −0.012 (3)
C5 0.097 (3) 0.096 (3) 0.066 (3) 0.016 (3) 0.005 (3) −0.009 (2)
C6 0.096 (3) 0.085 (3) 0.058 (3) 0.004 (2) −0.012 (2) −0.015 (2)
C7 0.047 (2) 0.055 (2) 0.066 (2) 0.0101 (17) −0.0098 (18) −0.0057 (17)
C8 0.0395 (19) 0.055 (2) 0.068 (2) 0.0065 (16) −0.0079 (17) −0.0057 (18)
C9 0.058 (2) 0.074 (3) 0.070 (3) −0.0026 (19) −0.008 (2) −0.014 (2)
C10 0.045 (2) 0.077 (3) 0.087 (3) −0.0060 (18) −0.006 (2) 0.000 (2)
C11 0.046 (2) 0.067 (2) 0.069 (3) 0.0102 (18) −0.0033 (19) 0.006 (2)
C12 0.055 (2) 0.069 (2) 0.066 (2) 0.0032 (19) −0.0060 (19) −0.0095 (19)
C13 0.048 (2) 0.060 (2) 0.078 (3) −0.0030 (17) −0.0071 (19) −0.007 (2)
C14 0.060 (2) 0.085 (3) 0.076 (3) 0.010 (2) −0.005 (2) 0.015 (2)
C15 0.038 (6) 0.082 (7) 0.119 (10) −0.003 (5) 0.000 (6) −0.027 (7)
C16 0.136 (18) 0.147 (19) 0.090 (9) 0.005 (9) −0.043 (10) −0.011 (9)
C17 0.089 (10) 0.092 (8) 0.065 (7) −0.006 (7) 0.014 (7) −0.008 (5)
C18 0.111 (11) 0.116 (14) 0.072 (11) 0.034 (8) −0.022 (9) 0.001 (9)
C15' 0.047 (10) 0.119 (16) 0.117 (17) −0.015 (8) −0.010 (10) −0.007 (10)
C16' 0.081 (14) 0.109 (16) 0.14 (2) 0.002 (10) −0.043 (14) −0.013 (14)
C17' 0.067 (11) 0.113 (14) 0.074 (9) −0.014 (9) 0.016 (8) −0.021 (9)
C18' 0.088 (13) 0.110 (18) 0.075 (11) −0.012 (13) 0.005 (8) −0.016 (10)
N1 0.0427 (18) 0.077 (2) 0.070 (2) 0.0028 (15) −0.0056 (15) −0.0137 (16)
O1 0.0827 (18) 0.0666 (16) 0.0759 (17) −0.0010 (13) −0.0063 (14) 0.0039 (13)
O3 0.0760 (18) 0.0861 (18) 0.0732 (17) −0.0192 (13) 0.0138 (14) −0.0070 (15)
O2 0.0601 (16) 0.0811 (17) 0.0856 (18) 0.0031 (13) −0.0133 (14) −0.0165 (14)
P1 0.0519 (6) 0.0678 (7) 0.0622 (6) −0.0007 (5) −0.0016 (5) 0.0004 (5)
S1 0.0690 (7) 0.0816 (7) 0.0724 (7) −0.0100 (5) −0.0119 (5) −0.0187 (5)

Geometric parameters (Å, °)

C1—C2 1.389 (5) C15—C16 1.492 (15)
C1—C6 1.399 (5) C15—H15A 0.9700
C1—S1 1.734 (4) C15—H15B 0.9700
C2—C3 1.384 (5) C16—H16A 0.9600
C2—N1 1.388 (4) C16—H16B 0.9600
C3—C4 1.359 (5) C16—H16C 0.9600
C3—H3 0.9300 C17—O3 1.454 (11)
C4—C5 1.383 (5) C17—C18 1.504 (16)
C4—H4 0.9300 C17—H17A 0.9700
C5—C6 1.370 (5) C17—H17B 0.9700
C5—H5 0.9300 C18—H18A 0.9600
C6—H6 0.9300 C18—H18B 0.9600
C7—N1 1.289 (4) C18—H18C 0.9600
C7—C8 1.464 (5) C15'—O2 1.452 (16)
C7—S1 1.749 (3) C15'—C16' 1.477 (18)
C8—C13 1.385 (4) C15'—H15C 0.9700
C8—C9 1.389 (5) C15'—H15D 0.9700
C9—C10 1.390 (5) C16'—H16D 0.9600
C9—H9 0.9300 C16'—H16E 0.9600
C10—C11 1.382 (5) C16'—H16F 0.9600
C10—H10 0.9300 C17'—O3 1.474 (14)
C11—C12 1.380 (5) C17'—C18' 1.501 (17)
C11—C14 1.514 (5) C17'—H17C 0.9700
C12—C13 1.385 (5) C17'—H17D 0.9700
C12—H12 0.9300 C18'—H18D 0.9600
C13—H13 0.9300 C18'—H18E 0.9600
C14—P1 1.781 (3) C18'—H18F 0.9600
C14—H14A 0.9700 O1—P1 1.448 (2)
C14—H14B 0.9700 O3—P1 1.570 (3)
C15—O2 1.459 (11) O2—P1 1.561 (2)
C2—C1—C6 121.5 (4) O2—C15—H15B 110.5
C2—C1—S1 109.3 (3) C16—C15—H15B 110.5
C6—C1—S1 129.2 (3) H15A—C15—H15B 108.7
C3—C2—N1 125.9 (3) O3—C17—C18 102.1 (13)
C3—C2—C1 118.7 (4) O3—C17—H17A 111.3
N1—C2—C1 115.4 (3) C18—C17—H17A 111.3
C4—C3—C2 119.7 (4) O3—C17—H17B 111.3
C4—C3—H3 120.2 C18—C17—H17B 111.3
C2—C3—H3 120.2 H17A—C17—H17B 109.2
C3—C4—C5 121.8 (4) O2—C15'—C16' 107.9 (19)
C3—C4—H4 119.1 O2—C15'—H15C 110.1
C5—C4—H4 119.1 C16'—C15'—H15C 110.1
C6—C5—C4 120.0 (4) O2—C15'—H15D 110.1
C6—C5—H5 120.0 C16'—C15'—H15D 110.1
C4—C5—H5 120.0 H15C—C15'—H15D 108.4
C5—C6—C1 118.2 (4) C15'—C16'—H16D 109.5
C5—C6—H6 120.9 C15'—C16'—H16E 109.5
C1—C6—H6 120.9 H16D—C16'—H16E 109.5
N1—C7—C8 124.1 (3) C15'—C16'—H16F 109.5
N1—C7—S1 115.8 (3) H16D—C16'—H16F 109.5
C8—C7—S1 120.0 (3) H16E—C16'—H16F 109.5
C13—C8—C9 118.0 (4) O3—C17'—C18' 113.6 (17)
C13—C8—C7 120.6 (3) O3—C17'—H17C 108.8
C9—C8—C7 121.4 (3) C18'—C17'—H17C 108.8
C8—C9—C10 120.7 (3) O3—C17'—H17D 108.8
C8—C9—H9 119.7 C18'—C17'—H17D 108.9
C10—C9—H9 119.7 H17C—C17'—H17D 107.7
C11—C10—C9 121.2 (3) C17'—C18'—H18D 109.5
C11—C10—H10 119.4 C17'—C18'—H18E 109.5
C9—C10—H10 119.4 H18D—C18'—H18E 109.5
C12—C11—C10 117.9 (4) C17'—C18'—H18F 109.5
C12—C11—C14 121.7 (3) H18D—C18'—H18F 109.5
C10—C11—C14 120.4 (3) H18E—C18'—H18F 109.5
C11—C12—C13 121.4 (3) C7—N1—C2 110.6 (3)
C11—C12—H12 119.3 C17—O3—C17' 27.9 (6)
C13—C12—H12 119.3 C17—O3—P1 123.6 (7)
C12—C13—C8 120.8 (3) C17'—O3—P1 116.4 (8)
C12—C13—H13 119.6 C15'—O2—C15 23.9 (10)
C8—C13—H13 119.6 C15'—O2—P1 115.5 (10)
C11—C14—P1 115.4 (2) C15—O2—P1 125.6 (7)
C11—C14—H14A 108.4 O1—P1—O2 116.64 (14)
P1—C14—H14A 108.4 O1—P1—O3 114.38 (15)
C11—C14—H14B 108.4 O2—P1—O3 102.06 (14)
P1—C14—H14B 108.4 O1—P1—C14 115.01 (17)
H14A—C14—H14B 107.5 O2—P1—C14 102.21 (16)
O2—C15—C16 106.0 (13) O3—P1—C14 104.79 (16)
O2—C15—H15A 110.5 C1—S1—C7 88.84 (18)
C16—C15—H15A 110.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C5—H5···O1i 0.93 2.45 3.261 (5) 146
C13—H13···O1ii 0.93 2.53 3.310 (4) 141

Symmetry codes: (i) −x+2, y−1/2, −z+3/2; (ii) −x+2, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2793).

References

  1. Bhatia, S. C., Kumar, A., Gautam, P. & Jain, P. C. (1991). Acta Cryst. C47, 1908–1911.
  2. Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2001). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Yoshino, K., Kohno, T., Uno, T., Morita, T. & Tsukamoto, G. (1986). J. Med. Chem.29, 820–825. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810047045/cv2793sup1.cif

e-66-o3236-sup1.cif (21.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810047045/cv2793Isup2.hkl

e-66-o3236-Isup2.hkl (178.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES