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Abstract
Abundant abnormal aggregates of cytoskeletal proteins are neuropathological signatures of many
neurodegenerative diseases that are broadly classified by filamentous aggregates of neuronal
intermediate filament (IF) proteins, or by inclusions containing the microtubule-associated protein
(MAP) tau. The discovery of mutations in neuronal IF and tau genes firmly establishes the
importance of neuronal IF proteins and tau in the pathogenesis of neurodegenerative diseases.
Multiple IF gene mutations are pathogenic for Charcot–Marie–Tooth (CMT) disease and
amyotrophic lateral sclerosis (ALS) — in addition to those in the copper/zinc superoxide
dismutase-1 (SOD1) gene. Tau gene mutations are pathogenic for frontotemporal dementia with
parkinsonism linked to chromosome 17 (FTDP-17), and tau polymorphisms are genetic risk
factors for sporadic progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD).
Thus, IF and tau abnormalities are linked directly to the aetiology and pathogenesis of
neurodegenerative diseases. In vitro and transgenic animal models are being used to demonstrate
that different mutations impair protein function, promote tau fibrilization, or perturb tau gene
splicing, leading to aberrant and distinct tau aggregates. For recognition of these disorders at
neuropathological examination, immunohistochemistry is needed, and this may be combined with
biochemistry and molecular genetics to properly determine the nosology of a particular case. As
reviewed here, the identification of molecular genetic defects and biochemical alterations in
cytoskeletal proteins of human neurodegenerative diseases has facilitated experimental studies and
will promote the development of assays of molecules which inhibit abnormal neuronal IF and tau
protein inclusions.
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Introduction
Many chronic progressive neurodegenerative disorders are characterized by the presence of
abnormal protein aggregates in neurons and glia of the central nervous system (CNS) [1–6].
The identification of disease-specific abnormal protein inclusions has illuminated
mechanisms of pathogenesis as well as facilitating the molecular classification of the
neurodegenerative diseases. Several sporadic and familial neurodegenerative diseases are
characterized by the formation of filamentous deposits of abnormal brain proteins. Thus, a
heterogeneous group of movement disorders and dementias is linked by the presence of
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pathological intra-cellular inclusions of neuronal intermediate filament (IF) proteins or the
microtubule-associated protein (MAP) tau; each appears to share common mechanisms of
disease [6]. These disorders are called, respectively, neuronal intermediate filamentopathies
and tauopathies (Table 1). Despite the diverse phenotypic expression, brain dysfunction and
neurodegeneration in both classes of disease are linked to the progressive accumulation of
abnormal filamentous protein; and this, together with the absence of other disease-specific
neuropathological abnormalities, provides evidence implicating neuronal IF and tau in
disease onset and progression. The discovery of multiple mutations in neuronal IF genes in
the hereditary neuropathy Charcot–Marie–Tooth disease (CMT) and amyotrophic lateral
sclerosis (ALS) (Table 2) [7–17] and in the tau gene in frontotemporal dementia with
parkinsonism linked to chromosome 17 (FTDP-17) (Table 3) [18–47] has led to the
unequivocal evidence that neuronal IF and tau abnormalities alone are sufficient to cause
neurodegenerative disease. These discoveries have opened up new avenues of research into
the roles of neuronal IF proteins and tau in mechanisms of brain dysfunction and
neurodegeneration.

This review is designed to integrate and interpret the remarkable recent advances that have
led to new insights into the nosology and mechanisms of action of neuronal IF proteins and
tau in neurodegenerative diseases. It starts with brief summaries of the human neuronal IF
and tau genes; the functions of neuronal IFs and the six alternatively spliced tau isoforms are
reviewed; the role of neuronal IF proteins and tau abnormalities in neurodegenerative
diseases is discussed; and data from transgenic (TG) models of neuronal intermediate
filamentopathies and tauopathies are considered.

Structure, function, and molecular genetics of neuronal intermediate
filaments

There are six types of IF proteins classified by gene structure and sequence homology. The
name ‘intermediate’ derives from their diameter (10–12 nm), being intermediate between
microtubules (25 nm) and microfilaments (7–10 nm). Five major neuronal IF proteins are
expressed in the adult human CNS: three neurofilament (NF) proteins: light (NF-L), medium
(NF-M), and heavy (NF-H) subunits of approximately 68, 145, and 200 kD, respectively;
peripherin of 57 kD; and α-internexin of 66 kD (Figure 1). NFs and α-internexin genes have
homologous intron–exon organization and are type IV, while peripherin encodes a type III
IF protein resembling vimentin [6,48]. The IF proteins have a tripartite structure: a central
rod domain of about 300 amino acids formed from a highly conserved α-helix, and amino-
and carboxy-terminal regions called head and tail domains, respectively, which are less
conserved [6].

The assembly and transport of neuronal IF proteins are probably regulated by post-
translational modification of the head region by phosphorylation and O-glycosylation [5].
All subunits are constitutively phosphorylated and most of the phosphorylation sites
containing lysine–serine–proline (KSP) motifs are located in the tail domains of NF-M and
NF-H [5,6,49]. Most of the serines in these motifs may be phosphorylated, which makes
NF-M and NF-H highly phosphorylated proteins. The phosphorylation state of these
proteins relates to their function, ie phosphorylation of the tail domain modifies the axonal
diameter, which is important for controlling axonal conductivity, an important function of
motor neurons. After synthesis in the perikaryon, neuronal IFs are rapidly assembled into
filaments and actively transported along microtubules (MTs) in axons by motors like kinesin
and dynein, where they move at a net slow velocity of 0.2–1 mm/day [6].

Assemblies of IFs form 10 nm filaments. NFs copolymerize requiring NF-L with either NF-
M or NF-H for proper filament formation [5,6]. Peripherin and α-internexin, in contrast, can
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self-assemble and co-assemble with NFs [6,50]. α-Internexin is widely expressed during
development and throughout the adult CNS, but at lower levels than NFs. Peripherin is
found predominantly in the peripheral nervous system (PNS), although it is also expressed
in specific populations of neurons including spinal motor neurons, cranial nerve nuclei of
sensory origin, and small interneurons.

Neuronal IFs and disease
The use of phosphorylation-dependent and -independent antibodies to NF epitopes has
enabled the immunohistochemical dissection of these proteins and has revealed that NFs
within the perikaryon and proximal segments of axons and dendrites are normally
hypophosphorylated, while NFs in axons are heavily phosphorylated [51,52]. In
neurodegenerative diseases including Alzheimer’s disease (AD), neuronal IF proteins are
present either as innocent bystanders or as chaperone-like proteins together with tau in
neurofibrillary tangles (NFTs), dystrophic neurites of neuritic plaques (NPs), and neuropil
threads. In Parkinson’s disease (PD) and dementia with Lewy bodies (DLB), α-internexin
and NF triplet proteins are found in a subset of α-synuclein-positive Lewy bodies, although
their role in lesion formation or neurodegeneration is uncertain [53,54]. In ALS, abnormal
accumulations of phosphorylated NF proteins are present in the perikaryon of affected
neurons, swollen axons, and spheroids, although the significance of the phosphorylation of
NF proteins within the cytoplasm is unclear [49,55,56]. However, abnormal phosphorylation
may impede axonal transport and contribute to neuronal dysfunction, while constitutive
phosphorylation of NFs may protect them against proteolysis [57].

α-Internexin is expressed by most, if not all, neurons as they commence differentiation and
precedes the expression of the NF triplet proteins. In the adult brain, α-internexin is
expressed at relatively low levels in comparison to the NF proteins and there is selective
anatomical expression with greater immunoreactivity being seen in the cerebellar granule
cells, the source of thin-calibre parallel fibres, and in the neuron cell bodies and processes of
cortical layer II neurons [58]. α-Internexin has recently been identified as a major
component of the pathological inclusions of the frontotemporal dementia, neuronal
intermediate filament inclusion disease (NIFID) (Figure 2). The signature lesion of this
disease is the neuronal cytoplasmic inclusion, which is tau- and α-synuclein negative,
variably ubiquitinated, and contains epitopes of all type IV IF proteins [59–61]. In addition
to NFs in swollen axons and spheroids in ALS, peripherin has also been demonstrated by
immunohistochemistry (IHC) in the ubiquitinated inclusions of ALS [62]. However, protein
chemistry has not revealed any change in mobility on western blots of NFs, α-internexin or
peripherin in ALS, PD, DLB, or NIFID when compared with normal controls [59,63]. Thus,
other factors may play a role in the formation of abnormal neuronal IF aggregates including
dysregulation of protein synthesis, failure of axonal transport, abnormal phosphorylation,
and proteolysis.

Strong evidence for the role of neuronal IFs in pathogenesis has come from the discovery of
mutations in IF genes in ALS and CMT in particular (Table 2). For example, both the
Q333P mutation in the rod domain and to a lesser degree the P8R mutation in the head
domain of NF-L disrupt the self-assembly of NF-L and the formation of NF-L/NF-M
heteropolymers in a transient transfection system [64]. Codon deletions and insertions in the
phosphorylation domain (KSP) of the tail region of NF-H have been reported in sporadic
cases of ALS, and mutations in the NF-L gene located on chromosome 8 have been reported
in several cases of CMT with neuroaxonal degeneration [7–17]. Thus, mutations in neuronal
IF genes can directly cause selective motor neuron degeneration, axonal disorganization,
and death.
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Experimental animal models of neuronal intermediate filamentopathies
Although no gross developmental abnormalities have been reported in mouse knock-out
experiments, the differential expression of neuronal IF proteins during development
indicates a role for these proteins in axon formation and maintenance [4–6]. The absence of
IFs in these TG models is, however, associated with measurable functional deficits in
axogenesis. Models over-expressing single or multiple neuronal IF genes have replicated
some of the features of human diseases. For example, overexpression of NF-M and NF-H
has been shown to produce perykaryal inclusions of IFs resembling those seen in human
disease [65], and a TG mouse model with overexpression of rat α-internexin has been shown
to cause abnormal neurofilamentous accumulations and motor co-ordination deficits [66]. A
model of CMT, type 2 (CMT-2) has been associated with NF assembly disruption and
transport, mechanisms probably underlying neurodegeneration in this disease [5]. In a
mouse model with a leucine to proline mutation at residue 394, selective motor neuron
degeneration developed probably as a result of NF assembly disruption [67]. Ribonucleic
acid (RNA) processing has also been implicated in the pathogenesis of neurodegenerative
diseases: the expression of an NF-L transgene with a mutant messenger RNA (mRNA)
stability determinant disrupts enteric and motor neurons in a TG mouse, indicating that
motor neuron degeneration may be attributable to expression of mutant mRNA rather than
mutant protein by the NF-L transgene [68]. The expression of neurotoxic splice variants of
peripherin may also contribute to the neurodegenerative mechanism in ALS [69]. In a TG
model, mice overexpressing peripherin developed a late-onset, and progressive, motor
neuron disease with neuronal IF inclusions comparable to the spheroids seen in ALS [70].
However, these mice also developed motor neuron death during ageing. The mechanism
leading to peripherin-induced neurodegeneration is unclear. Although familial PD has been
linked to mutations in α-synuclein and parkin genes, a point mutation has been reported in
the NF-M gene causing a substitution of serine for glycine at residue 336 in an affected
woman at age 16 years [14]. Thus, mutations in NF genes can generate heterogeneous
clinical and neuropathological phenotypes and although TG models recapitulate features of
these human diseases, additional models are required to elucidate the mechanisms of action
of each genetic defect.

Structure, function, and molecular genetics of tau
Several sporadic and familial neurodegenerative disorders that are characterized clinically
by dementia and/or motor dysfunction are characterized pathologically by abnormal
intracellular accumulations of the MAP tau, collectively called tauopathies (Table 1). The
progressive accumulation of filamentous tau inclusions in the absence of other disease-
specific neuropathological abnormalities provides evidence implicating tau dysfunction in
disease onset and progression. However, the discovery of pathogenic tau gene mutations in
the heterogeneous group of disorders known as FTDP-17 provided confirmation of the
central role of tau abnormalities in the aetiology of neurodegenerative disorders
[24,43,71,72]. These findings have opened novel areas of investigation into the mechanisms
of tau dysfunction and the relationship of tau abnormalities to brain degeneration.

Tau proteins are low-molecular-weight MAPs that are abundant in the CNS, where they are
expressed predominantly in axons [73,74], and at low levels in astrocytes and
oligodendrocytes [75,76]. They are also expressed in axons of PNS neurons [77]. Human tau
proteins are encoded by a single copy gene on chromosome 17q21 of 16 exons, with CNS
isoforms generated by alternative mRNA splicing of 11 of these exons (Figure 3) [78–80].
In adult human brain, alternative splicing of exons 2, 3, and 10 generates six tau isoforms
ranging from 352 to 441 amino acids in length which differ by the presence of either three or
four MT binding repeats (3R tau or 4R tau, respectively) consisting of carboxy-terminal
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tandem repeat sequences of 31 or 32 amino acids each that are encoded by exons 9–12
[81,82]. Additionally, alternative splicing of exons 2 and 3 leads to the absence (0N) or
presence of inserted sequences of 29 (1N) or 58 (2N) amino acids in the amino-terminal
third of the molecule. In the adult human brain, the ratio of 3R : 4R tau isoforms is
approximately 1 : 1, while the 0N, 1N, and 2N tau isoforms comprise about 37%, 54%, and
9%, respectively, of total tau [83,84].

Tau binds to and stabilizes MTs and promotes MT polymerization [73,85]. The MT binding
domains of tau are localized within the four MT binding motifs (Figures 3 and 4). These
motifs are composed of highly conserved binding elements [85–87]. The function of tau as
an MT binding protein is regulated by phosphorylation [87–92]. Phosphorylation at
approximately 30 of these sites has been reported in normal tau proteins [93–95]. Several
Ser/Thr protein kinases and Ser/Thr protein phosphatases have been implicated in regulating
the phosphorylation state and thus the function of tau. The phosphorylation sites are
clustered in regions flanking the MT binding repeats, and increasing tau phosphorylation at
multiple sites negatively regulates MT binding [89–92]. However, in both sporadic and
familial tauopathies including AD and FTDP-17, tau is hyperphosphorylated and it is this
‘abnormal’ tau that is the principal component of the filamentous aggregates in neurons and
glia that are the pathological hallmarks of these disorders [96–98].

Although there is clinical and neuropathological overlap between the neurodegenerative
tauopathies, each can be distinguished with variable probability by the distribution, severity,
and morphology of tau-positive inclusions. In cases with a tau gene mutation, in addition to
extensive neuronal loss and astrocytosis, tau-positive neuronal and glial inclusions may
resemble those seen in AD, PSP, CBD, and Pick’s disease. This neuropathological
heterogeneity is a striking feature of FTDP-17 and it is complemented by biochemical
heterogeneity where there is variation in the proportions of tau isoforms, not only with
different mutations, but also within the same brain. Nevertheless, cases with tau gene
mutations may be broadly grouped according to the pattern of tau immunostaining and tau
isoform ratios as demonstrated by western blotting (Figure 5).

Tau gene mutations cause tau dysfunction by several distinct mechanisms. Intronic and
some exonic mutations affect the alternative splicing of exon 10 and consequently alter the
relative proportions of 3R and 4R tau. Other exonic mutations impair the ability of tau to
bind MTs and to promote MT assembly. Some mutations also promote the assembly of tau
into pathological amyloid filaments. Moreover, additional mechanisms may play a role in
the case of some coding region mutations [1]. The intronic mutations clustered around the 5′
splice site of exon 10, as well as several mutations within exon 10 (Figure 4), increase the
ratio of 4R : 3R tau by altering exon splicing [24,27,99–105]. As a result of these mutations,
there is a relative increase in mRNA containing exon 10. Biochemical analysis of insoluble
tau extracted from FTDP-17 brain tissue reveals predominantly 4R tau isoforms (Figure 5)
[72,106–108]. Furthermore, 4R tau protein levels are increased in both affected and
unaffected regions of FTDP-17 brains [72,84,107].

Mutations in the tau gene may alter exon 10 splicing by affecting several of the regulatory
elements described above. For example, the intronic mutations as well as the exonic
mutations at codon 305 (S305N and S305S) may destabilize the inhibitory stem-loop
structure and alter the ratio of 3R : 4R tau [24,27,102]. The mechanisms by which changes
in the ratio of 3R : 4R tau lead to neuronal and glial dysfunction and cell death remain
unclear. However, 3R and 4R tau may bind to distinct sites on MTs [109] and it is possible
that a specific ratio of tau isoforms is necessary for normal MT function [110]. Thus, the
altered ratio of 3R : 4R tau may directly affect MT function. In addition, overproduction of
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4R tau isoforms may lead to an excess of free tau in the cytoplasm that is prone to aggregate
and polymerize into filaments over time.

Another subset of the tau mutations has no effect on tau splicing, but instead alters the
ability of tau to interact with MTs: missense mutations K257T, G272V, ΔK280, ΔN296,
P301L, P301S, V337M, G389R, and R406W reduce the binding of tau to MTs and decrease
its ability to promote MT stability and assembly in vitro [20,25,31,83,111,112]. In contrast
to mutations that affect the splicing of tau, these mutations do not alter the expression
pattern of 3R and 4R tau [84]. The P301L mutation causes a moderate (25%) decrease in
soluble 4R tau due to the selective aggregation of mutant 4R tau isoforms [84,113,114].
Biochemical analysis of insoluble tau extracted from brain tissue of patients with these
mutations reveals a variety of patterns.

A subset of missense tau gene mutations may cause FTDP-17, at least in part, by promoting
tau aggregation. In vitro studies demonstrated that mutations, including K257T, G272V,
ΔK280, ΔN296, P301L, P301S, V337M, and R406W, promote heparin- or arachidonic acid-
induced tau filament formation relative to wild type tau [114–118]. The missense tau gene
mutations may also affect tau function by altering its phosphorylation state, and several
mutations decrease the binding affinity of tau for protein phosphatase 2A, a major
phosphatase implicated in the regulation of the MT-binding activity of tau [119].

Experimental animal models of tauopathies
Several TG models of tau pathology have been generated by overexpressing human tau
proteins in mice [120,121]. However, these mice either were asymptomatic or developed
pathology that was localized to the spinal cord and/or lacked many of the key features of
tau-based disorders. In contrast, the introduction of the P301L mutation led to the
development of TG mice that develop age- and gene dose-dependent accumulation of tau
tangles in the brain and spinal cord with associated nerve cell loss and gliosis, as well as
behavioural abnormalities [120,122]. Similar to human disease, the tau aggregates were
composed of only mutant human tau, further implicating the P301L change in promoting the
selective aggregation of mutant tau. Other systems were also developed to model various
aspects of human tauopathies including a transgenic mouse overexpressing the shortest
human tau isoform which acquired age-dependent tau pathology similar to that seen in
FTDP-17 and ALS/PDC [123]. Overexpression of either wild-type or mutant tau (R406W
and V337M) in Drosophila melanogaster demonstrated features of tauopathy including
adult-onset progressive neurodegeneration with accumulation of abnormal tau [124].
However, the neurodegeneration occurred in the absence of NFT formation. More recent
studies demonstrated NFT-like pathology when tau was co-expressed with shaggy, a
homologue of glycogen synthase 3-kinase, an enzyme implicated in tau phosphorylation
[125]. Neurodegeneration and defective neurotransmission have also been demonstrated in a
tau TG Caenorhabditis elegans. In this model, pan-neuronal expression of normal and
mutant tau resulted in altered behaviour, accumulation of insoluble phosphorylated tau, age-
dependent loss of axons and neurons, and structural damage to axonal tracts [126]. Clearly,
these models recapitulate various features of the tauopathies that will facilitate
understanding of the molecular mechanisms underlying tau neurodegeneration.

Conclusions
The accumulation of filamentous neuronal IF and tau proteins are common features of a
wide variety of sporadic and familial neurodegenerative disorders. These diseases are
distinguished by the distinct topographic and cell type-specific distribution of inclusions.
The biochemical and ultrastructural characteristics of the inclusions also reveal a significant
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phenotypic overlap. The discovery that multiple mutations in neuronal IF and tau genes lead
to the abnormal protein aggregation demonstrates that neuronal IF and tau dysfunction are
sufficient to produce neurodegenerative disease. Experimental evidence indicates that
mutations lead to specific alterations in expression, function, and biochemistry of neuronal
IF and tau proteins. The identification of additional gene mutations or polymorphisms at
distinct genetic loci that either cause or are risk factors for disease will provide additional
insights into disease pathogenesis. Taken together, these new insights will lead to the
development of novel strategies for treatment and prevention.
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Figure 1.
Structure of neuronal IF proteins. All proteins share a conserved structure of a head, rod
with coils forming an α-helix, and tail domains containing glutamic acid-rich sequences and
repeat phosphorylation motifs of lysine–serine–proline (KSP). Figures refer to the initial and
terminal amino acids of each protein

Cairns et al. Page 14

J Pathol. Author manuscript; available in PMC 2010 December 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
All type IV neuronal IF proteins are present in the pathological inclusions of NIFID. (a)
Neuronal inclusions in the subiculum of a case of NIFID contain α-internexin. α-Internexin
immunohistochemistry. Neuronal inclusions in NIFID are pleomorphic. (b) Pick body-like
inclusions are the most common morphological type. (c) A flame-shaped, NFT-like
inclusion. (d) A filamentous serpiginous inclusion. (e) A globose NFT-like inclusion. α-
Internexin immunohistochemistry. Epitopes of NF triplet proteins are present in inclusions
of NIFID and are recognized by (f) phosphorylation-dependent NF-H; (g) non-
phosphorylation-dependent NF-H; (h) phosphorylation-independent NF-M; and (i)
phosphorylation-independent NF-L antibodies. NF immunohistochemistry. Scale bars = 10
μm
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Figure 3.
Schematic representation of the human tau gene and six human CNS tau isoforms generated
by alternative splicing. The human tau gene contains 16 exons, including exon 0 that is part
of the promoter. Exons 1, 4, 5, 7, 9, and 11–13 are constitutively expressed. Alternative
splicing of exons 2 (E2), 3 (E3), and 10 produces the six alternative tau isoforms. Exons 6
and 8 are not transcribed in the human CNS. Exon 4a, which is also not transcribed in the
human CNS, is expressed in the PNS leading to the larger tau isoforms, termed ‘big tau’.
The black bars depict the 18 amino acid MT binding repeats and are designated R1 to R4.
The relative sizes of the exons and introns are not drawn to scale
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Figure 4.
Schematic representation of mutations in the tau gene in FTDP-17. The structure of the
largest tau isoform is shown, with known coding region mutations indicated above. The grey
boxes near the amino terminus represent the alternatively spliced inserts encoded for by
exons 2 and 3, while the black boxes represent each of the four MT binding repeats (not
drawn to scale). The second MT binding repeat is encoded by exon 10. Part of the mRNA
sequence encoding exon 10 and the intron following exon 10 is enlarged to visualize the 5′
splice site as well as the mutations both in exon 10 and within the 5′ splice site. Nucleotides
that are part of intron 10 are shown in lower case
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Figure 5.
Schematic representation of western blot banding patterns of soluble and insoluble tau from
different tauopathies. The drawing depicts the typical banding pattern of soluble tau (top
panels) and insoluble/filamentous tau (bottom panels) from the brains of patients with
FTDP-17 as well as sporadic tauopathies following resolution with SDS-PAGE and
immunoblotting with anti-tau antibodies. The FTDP-17 mutations show several different
western blot banding patterns of soluble and insoluble tau protein that are depicted as groups
A to D. The soluble fraction from the brains of unaffected (normal) individuals, sporadic
tauopathies, and FTDP-17 with mutations that do not affect tau splicing (groups A, B, and
C) shows expression of all six tau isoforms. Insoluble tau from the brains of patients with
FTDP-17, group A (S320F, V337M, K369I, G389R, and R406W), resolves as three major
proteins of 68, 64 and 60 kD; and a minor band of 72 kD similar to that observed in AD.
When dephosphorylated, they resolve into six proteins that correspond to all six tau isoforms
similar to the soluble fraction. In FTDP-17 group B (R5H, P301L, and G342V), two
prominent 68- and 64-kD protein bands are detected (the 72 kD minor band is variably
detected) that align with 4R tau following dephosphorylation similar to that observed in PSP
and CBD, indicating the selective aggregation of 4R tau. In FTDP-17 group C (K257T) and
Pick’s disease, the 64 and 60 kD insoluble tau protein isoforms predominate and align with
3R tau isoforms following dephosphorylation, indicating selective aggregation of 3R tau. In
contrast, in FTDP-17 mutations that affect mRNA splicing (group D: N279K, L284L,
N296N, N296H, S305S, S305N, and intron 10 mutations), there is expression of
predominantly 4R tau throughout the entire brain, which is reflected in the insoluble tau
aggregates
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Table 1

Neurodegenerative diseases with neuronal intermediate filament- and tau-positive filamentous inclusions

Neuronal intermediate filaments Tau

Alzheimer’s disease* Amyotrophic lateral sclerosis
Charcot–Marie–Tooth disease
Diabetic neuropathy
Dementia with Lewy bodies*
Giant axonal neuropathy
Neuronal intermediate filament
Inclusion disease
Parkinson’s disease*

Alzheimer’s disease
Amyotrophic lateral
sclerosis/parkinsonism–dementia
complex of Guam (ALS/PDC)†

Argyrophilic grain disease†

Corticobasal degeneration†

Dementia pugilistica†

Diffuse neurofibrillary tangles with calcification†
Down’s syndrome
Frontotemporal dementia with parkinsonism linked to chromosome 17†
Gerstmann–Sträussler–Scheinker disease
Myotonic dystrophy
Niemann–Pick disease, type C
Non-Guamanian motor neuron disease with neurofibrillary tangles
Pick’s disease†
Post-encephalitic parkinsonism
Prion disease with neurofibrillary tangles
Progressive supranuclear palsy†
Subacute sclerosing panencephalitis
Tangle only dementia†

*
Neuronal intermediate filaments are chaperone proteins and a minor component of inclusions.

†
Diseases in which neurofibrillary pathology is the most predominant neuropathological feature.
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Table 2

Neuronal intermediate filament mutations in human diseases

IF Mutation Domain Phenotype Reference

Peripherin ND — — —

α-Internexin ND — — —

NF-L E7L + P8R Head CMT-unspecified 7

NF-L P8R Head CMT-2 8

NF-L P8Q Head CMT-1 7

NF-L P8A Head CMT-1 7

NF-L P8L Head CMT-1 7

NF-L P22T Head CMT-1 9

NF-L P22S Head CMT-2 10,11

NF-L E89K Head CMT-1 7

NF-L N97S Rod CMT-1 9

NF-L N148V Rod CMT-unspecified 9

NF-L Q333P Rod CMT-2 12

NF-L E393K Rod CMT-2 13

NF-L ΔE528 Tail CMT-unspecified 7

NF-M G336S Rod PD 14

NF-H Δ34 aa 528–561 KSP ALS 15

NF-H Δ8 aa 655–662 KSP ALS 16

NF-H Δ6 aa 663–668 KSP ALS 16

NF-H Δ14 aa 663–677 KSP ALS 16

NF-H 28 aa insert 708 KSP ALS 17

NF-H Δ6 aa 743–748 KSP ALS 16

NF-H ΔK790 KSP ALS 15

ND = none detected; PD = Parkinson’s disease; CMT-1 = Charcot–Marie–Tooth disease, type 1; ALS = amyotrophic lateral sclerosis; Δaa = amino
acid deletion.
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