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Abstract

Current methods to detect intraclade HIV dual infection are poorly suited for determining its prevalence in large
cohorts. To investigate the potential of ultra-deep sequencing to screen for dual infection, we compared it to bulk
sequence-based synonymous mixture index and the current standard of single genome sequencing. The syn-
onymous mixture index identified samples likely to harbor dual infection, while ultra-deep sequencing captured
more intra-host viral diversity than single genome sequencing at approximately 40% of the cost and 20% of the
laboratory and analysis time. The synonymous mixture index and ultra-deep sequencing are promising methods
for rapid and cost-effective systematic identification of HIV dual infection.

Introduction

In a small but measurable minority of HIV-infected
individuals, concurrent (co-infection) or subsequent (su-

perinfection) infections with different HIV strains establish
productively replicating viral populations.1 These instances of
dual infection (DI) are characterized by molecular evidence of
two or more viral subpopulations that are too divergent to be
explained by typical within-host HIV-1 evolution from a
single founder strain. The majority of DI screening methods
described in the literature involve sequence analyses of one or
a few HIV-1 coding regions to determine if phylogenetically
distinct viral populations are present. Coding regions have
been sampled using population-based sequencing of HIV
RNA2 or DNA3 populations, or clonal and single genome
sequencing of HIV RNA4 or DNA5 populations. Clearly, in-
terclade DI (i.e., viral variants from different viral subtypes/
clades) is easier to detect than intraclade DI (i.e., variants from
the same clade), because of the large genetic differences (up to
30% in the envelope (env) gene6) between viral clades. The
large number of circulating recombinant forms (48 in the es-
tablished nomenclature [http://www.hiv.lanl.gov/, accessed
September 22, 2010]) provides strong circumstantial evidence
that interclade DI is not rare. DI with strains of the same
subtype (i.e., intraclade) is likely more frequent than with
strains of different subtypes (i.e., interclade) DI, because of the
usual predominance of a single viral subtype in a population
or geographic area. The greater genetic similarity between
infecting strains renders intraclade DI more difficult to detect
than interclade DI.1 Other challenges to identifying DIs arise

when one strain composes a small minority of the total cir-
culating viral population,1,7 or when the two infecting strains
recombine, making it impossible to detect DI on the basis of a
single genomic fragment that has been homogenized by re-
combination.7,8 This notion is supported by studies from
Piantadosi et al.,8 who detected additional cases of DI using a
second coding region of HIV.

Because clonal and single genome sequencing of viral
populations from a single host are expensive, labor intensive,
and subject to possible sampling bias, new lower-cost and
higher-throughput methods are needed to screen large co-
horts for DI. For example, a high proportion of ambiguous
base calls or mixtures [e.g., ‘‘R’’ (A or G) and ‘‘Y’’ (C or T) in a
population-based sequence] can be used as a marker for DI.9

However, because non-synonymous mixtures are often a
hallmark of selection by the immune response or HAART in
a mono-infected HIV host,10 we evaluated a version of
the method focusing on synonymous (silent) mixtures. To
that end, we have developed a simple descriptive measure—
synonymous mixture index or ‘‘SM-Index’’—and demon-
strated how it can be applied to discriminate between dually
and singly infected participants.

The advent of next-generation or ultra-deep sequencing
(UDS) technologies has made it feasible to generate a high-
resolution snapshot of viral diversity in a biological sample
rapidly and relatively inexpensively by direct sequencing.
This approach appears particularly promising for studying
rapidly mutating RNA viruses such as HIV-1.11,12 A number
of recent studies have successfully used UDS to detect
HIV minority variants with drug-resistant mutations,13–16
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different chemokine co-receptor usage,17 various integration
sites,18 and distinctive novel variants.19 Given UDS’s ability to
identify HIV minority variants as low as 1% in controlled
sample experiments,13,16 we hypothesized that UDS would be
similarly adept at screening for DI. To test this hypothesis, we
analyzed three HIV-1 genomic coding regions with UDS and
wrote a custom bioinformatics pipeline to filter, align, and
analyze sequence reads for evidence of DI. The performances
of SM-Index and UDS were then compared for DI screening,
using single genome sequencing (SGS) as the gold standard
reference method.

Materials and Methods

Study participants

All participants in the San Diego Acute Infection and Early
Disease Research Program2 who had deferred antiretroviral
therapy (ART) for at least the first 6 months after infection and
had at least two blood samples available were included for DI
screening. We screened male participants who were infected
with HIV-1 subtype B and reported sex with men as an HIV
risk behavior. To evaluate whether UDS could distinguish DI
from the natural history of viral evolution in a host, we
evaluated five samples (D1, D2, E, F, and H) collected from
four individuals with an estimated infection duration of 30
months or more. To evaluate the utility of screening methods
for individuals who had received ART, we also chose samples
from two participants (F and H) who were initially ART-naı̈ve
for at least 1 year and then underwent ART but had detect-
able, amplifiable HIV RNA. In one of the ART-experienced
participants (F), the virus had a large number of drug resis-
tance associated mutations. The last criterion for inclusion in
the UDS screening and comparison study was to select sam-
ples that represented low, medium, and high SM-Index scores
(see below).

Screening methods

Synonymous mixture index (SM-Index). HIV RNA ex-
traction and population-based pol (HXB2 coordinates 2253-
3554) sequencing (Viroseq version 2.0, Celera Diagnostics,
Foster City, CA) were performed for at least two time points
�6 months apart for each of the study participants as previ-
ously described.2 The SM-Index descriptive measure was then
calculated as the number of synonymous base pair mixtures
in a pol sequence divided by the number of synonymous sites
in it. The sequences were ranked for likelihood of DI accord-
ing to the SM-Index (i.e., higher SM-Index indicated greater
synonymous population heterogeneity, and hence a greater
probability of DI).

Ultra-deep sequencing (UDS). HIV RNA was extracted
from the blood plasma samples (QIAamp Viral RNA Mini Kit,
Qiagen, Hilden, Germany) and cDNA produced (RETRO-
script� Kit, Applied Biosystems/Ambion, Austin, TX). Three
coding regions—gag p24 (HXB2 coordinates 1366–1619), pol
RT (HXB2 coordinates 2708–3242), and env C2-V3 (HXB2
coordinates 6928–7344)—were amplified by PCR with region-
specific primers. The RT protocol was identical to the nested
C2-V3 PCR protocol previously described,20 including the
thermal cycler settings, with the following primer substitu-
tions:

First round
CI-POL1 5’-GGAAGAAATCTGTTGACTCAGATTGG-3’
3RT 5’-ACCCATCCAAAGGAATGGAGGTTCTTTC-3’
Second round
5RT 5’-AAATCCATACAATACTCCAGTATTTGC-3’
3RT 5’-ACCCATCCAAAGGAATGGAGGTTCTTTC-3’
The gag p24 PCR methodology was as follows: Nested

polymerase chain reactions were performed using 2.5ml of
diluted cDNA template added to 47.5ml of reaction mixture for
the first round. The reaction mixture consisted of 5.0ml of 10X
PCR Buffer containing magnesium chloride and 1.0ml of
10 mM dNTP Mix (GeneAmp, Applied Biosystems, Foster
City, CA), 0.25ml of Taq DNA Polymerase (Roche Diagnostics,
Indianapolis, IN), 39.25ml of molecular grade water, and 1ml of
each of two 20mM primers, CI-p24gag1312_Fout (5’-TATCA
GAAGGAGCCACCC-3’) and CI-p24gag1846_Bout (5’-CT
CCCTGACATGCTGTCATCA-3’). The 50ml samples were
heated to 948C for 2 min, then subjected to 35 cycles of 30 sec at
948C, followed by 30 sec at 588C, followed by 60 sec at 728C.
After this, the samples were heated to 728C for 10 min, and
then held at 48C until used. The second round PCR utilized
2.5ml of the first round product as template added to 47.5ml of
reaction mixture for a total volume of 50ml. This reaction
mixture consisted of the same reagents in the same volumes.
For this round, the primers used were CI-p24gag1366_Fin
(5’-GGACATCAAGCAGCCATGCAAATG-3’) and CI-
p24gag1619_Bin2 (5’-TACATTCTTACTATTTTATT-3’). The
50 ml samples were heated to 948C for 2 min and then sub-
jected to 35 cycles of 30 sec at 948C, followed by 30 sec
at 428C, followed by 60 sec at 728C. After this, the samples
were heated to 728C for 10 min and then held at 48C until
used.

Rubber gaskets were used to physically separate 16 con-
currently sequenced samples on a single 454 GS FLX Titanium
picoliter plate (454 Life Sciences, a Roche company, Branford,
CT). A custom bioinformatics pipeline was designed, as de-
scribed below, to select high-quality UDS reads, generate
consensus sequences, align reads to the consensus, and per-
form phylogenetic analysis of specific coding regions used to
identify DI.

UDS bioinformatics platform

Initial read files filtering. UDS generates both the set of
called bases (reads) in FASTA file format and a quality
score for each base. The quality scores are industry stan-
dard PHRED values that provide a confidence level that a
given base call is correct. For this study, we used a PHRED
cutoff value of 20 (i.e., 1 expected error in 100 bases). We
designed a filtering program (following the procedure de-
scribed in Kosakovsky Pond et al.21) that examines each
read and its accompanying base-by-base PHRED score to
select fragments with runs of good quality bases. Filtering
employs the following algorithm: i) Each retained fragment
must have a continuous run of PHRED scores of 20 or
greater for 50 or more bases; ii) The only exception to the
above rule is made for homopolymers, a known source of
error for the Roche 454 pyrosequencing platform. In this
case, if a base with a poor score follows the same base with
a good score, the run is extended; iii) If the original read
contains multiple discontinuous high-quality fragments,
then each output is delivered as a separate (shorter) read.
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Read alignment and filtering. An iterative HIV-1 gene-
specific alignment and filtering procedure was implemented
as a collection of scripts for the HyPhy software package22

(available from the HyPhy subversion system code re-
pository) to construct a high quality region consensus se-
quence and map individual reads. The procedure works in
three steps:

1. A starting reference sequence was used to protein align
each of the six possible translations of each read (using
the 5% divergence HIV scoring matrix from Nickle et
al.23) and select the frame with the highest alignment
score for each read. The best score per position for each
read was compared against the expected value for a
random sequence with an HIV-like residue composi-
tion, and only the reads exceeding the threshold by a
factor of 5 or greater by high protein-alignment scoring
(HPAS) were included in building the codon sample
reference sequence (SRS).

2. To recover sequences with frameshifts (e.g., due to a
homopolymer length error), we computed the median
of the distribution of nucleotide alignment scores (per
position) of each read from Step 1 to the SRS. This
median defines a lower threshold for filtering sequences
initially excluded in Step 1 (M). The reads excluded in
Step 1 were nucleotide aligned to the SRS and included
in the analysis if their nucleotide scores/position ex-
ceeded M. Note that Steps 1 and 2 automatically sepa-
rate mixed genomic regions, because only the reads that
align well with the reference gene of interest are re-
tained.

3. A final consensus sequence was generated from HPAS
reads and reads retained in Step 2. This consensus was
used as a coordinate system to tabulate the position of
each residue in high-scoring sequence reads.

The result of each filtering run was an SQL database with a
variety of metrics, consensus sequences, and high-scoring
sequence reads aligned to and mapped onto the consensus.
Each participant read set was run through the pipeline using
HXB2 gag, pol, and env sequences as initial (Step 1) references,
resulting in region-specific alignments.

Individual sample analyses. Databases of curated and
mapped reads for each genomic region from individual pa-
tient samples were examined for molecular evidence of DI.
We analyzed sliding sequence windows of length L �125 bp
(L determined based on the median read length in the data-
base) with stride 25, which were covered by at least 400 reads.
Individual reads were required to cover the window com-
pletely to be included in the analysis. We did not perform
contig assembly, partly because sufficient signal was obtained
directly from shorter reads, and partly because HIV-1 is
known to have very high rates of recombination, complicating
the assembly. We condensed reads identical within a single
window to unique variants and the corresponding copy
numbers. Only the variants with at least five copies or 0.5% of
the reads (whichever was greater) were used for further an-
alyses, in order to further reduce the influence of sequencing
errors. Maximum likelihood pairwise nucleotide distances
(Tamura–Nei 93) were computed for the variants, and 95%
confidence intervals of each distance estimate were obtained
via nonparametric bootstrap. If the distance estimate between

a pair of variants exceeded a preset threshold D (see below),
and the lower bound of the corresponding confidence interval
was greater than D, then the sample was classified as puta-
tively dually infected. When more than three variants were
present, putative dually infected windows were further ex-
amined using standard phylogenetic analyses (bootstrap) to
confirm the presence of two or more genetically divergent
populations. Genetic distance cutoffs for potential dual in-
fection were chosen to exceed typical within-sample diver-
gence produced by chronic monoinfection—1.7% in gag and
3.1% in env.24,25 Divergence thresholds were set at 2% for RT
and p24 and 5% for C2-V3. A sample was further evaluated
for dual infection if the divergence of at least one of its coding
regions exceeded the threshold and if the phylogenetic
structure of at least one sliding window in that region indi-
cated dual infection (i.e., two viral subpopulations separated
by a branch with high bootstrap support).

Confirmation method

Single genome sequencing (SGS). Using the same viral
cDNA produced for UDS, we generated SGS of env V3 (HXB2
coordinates 6928–7344) and pol RT (HXB2 coordinates 2708–
3242), as previously described.20 The RT and C2–V3 regions
amplified were identical to the RT and C2–V3 regions am-
plified for UDS. Briefly, we 1) quantitated the cDNA using the
qRT-PCR, 2) diluted the cDNA to a point at which replicate
PCR reactions generate product that has a high probability of
being amplified from a single genome copy, according to the
Poisson distribution, 3) selected the dilution of cDNA that
produced <30% PCR positivity for use in 95 PCR reactions,
with an expected <30 positive PCR reactions, and 4) chose
wells positive for PCR product after nested reactions to gen-
erate sequences.20,26,27 Fifteen to thirty single genome se-
quences per coding region were generated for each of the
selected blood plasma samples. Sequences were subjected to
the same phylogenetic analyses and genetic distance cutoffs
for DI as UDS reads. All UDS and SGS reads were checked for
inter-sample and lab strain contamination by performing
MEGABLAST28 homology searches against public HIV da-
tabases and each other.

Cost and time analyses

We calculated the cost of reagents, disposable materials,
kits, sequencing runs, and labor for obtaining SM-Index, UDS,
and SGS. Time per sample was calculated as the labor time
plus instrument time required to perform each experimental
step of the methods.

Results

Screening and confirmation methods

SM-Index. To select specimens for analysis, the SM-
Index was calculated for all participants in the cohort
(n¼ 116) who had population based pol sequences available
from multiple time points (n¼ 405 sequences). The majority
of the sequence SM-Indices had values near zero (Fig. 1:
median 0.0078, range 0–0.2298). We then chose ten samples
from nine participants with a range of SM-Index values
for further comparison with UDS screening methods, as
described below.
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UDS and SGS. Ten blood plasma samples were selected
based on their SM-Index values: low (0–0.0039, Samples A–C),
medium (0.0505–0.0811, Samples D1–H), and high (0.2298,
Sample I). To assess the utility of proposed methods in clinical
cohorts, samples were also selected to span a range of viral
loads (3.05–6.36 log10 HIV RNA copies/ml). Demographics of
the participants and clinical data associated with the 10 sam-
ples are shown in Table 1, with two of the samples, D1 and D2,
obtained from the same participant at different time points. In
order to evaluate the efficacy of the SM-Index for participants
who had undergone at least some ART, we chose one sample
(H) from a participant who was ART-naı̈ve for the first 15
months, and then was placed on a Nelfinavir, Zidovudine, and
Lamivudine regimen for 4.6 years. As would be expected for an
individual receiving ART and having ongoing viral replication
(i.e., detectable viral load), we identified a mutation associated
with resistance to the ART he was taking—protease inhibitor
major resistance mutation M46LM.

Another participant (F) was chosen to evaluate if pre-
existing HIV drug resistance and continued antiretroviral
pressure with resistance influenced molecular methods of

detecting DI. Specifically, participant F had three-drug-class
resistance mutations at baseline, identifying transmitted drug
resistance (protease inhibitor major resistance mutations:
I54V, I84V, L90M, and minor resistance mutations: L10I,
A71V; nucleoside reverse transcriptase inhibitor resistance
mutations: M41L, D67N, T215Y; and non-nucleoside reverse
transcriptase inhibitor resistance mutations: K101P, K103N).
He then underwent a variety of dual (Tenofovir and Em-
tricitabine) and quadruple (Didanosine, Ritonavir, Atazana-
vir, Tenofovir) therapy regimens that never completely
suppressed his viral load, and at the time of study evaluation
his population-based pol sequence contained all of his baseline
drug resistance mutations, with the addition of two nucleo-
side reverse transcriptase inhibitor resistance mutations:
K70E and M184V.

UDS was performed in duplicate for the seven samples
with enough cDNA to run parallel reactions (all samples ex-
cept E, F, and G). UDS produced an average of 4650 high-
quality UDS reads per sample region, while SGS averaged 25
reads. One UDS sample region (RT of sample C) had too few
high-quality reads to infer DI status. Both SGS and UDS

Table 1. Participant Characteristics and Clinical Data

Participant Date Age
Race/

ethnicity
Estimated duration

of infection (months)
CD4 count

(cells/ml)
Viral load

(log copies/ml)
Anti-retroviral

naı̈ve? SM-Index

A 7/19/00 21 White 3.1 535 5.05 Yes 0.0000
B 11/30/01 30 White 7.3 527 4.54 Yes 0.0000
C 12/21/05 26 White 1.5 746 6.36 Yes 0.0039
D1 10/18/05 24 Hispanic 31 366 4.26 Yes 0.0505
E 4/13/06 49 Hispanic 39.9 796 4.26 Yes 0.0523
F 9/15/06 40 White 49.6 298 4.36 No 0.0538
D2 1/10/06 24 Hispanic 33.8 468 5.00 Yes 0.0613
G 8/17/04 35 White 2.8 321 4.58 Yes 0.0790
H 7/24/03 40 Black 70.6 733 3.05 No 0.0811
I 9/2/05 19 White 1.5 744 5.42 Yes 0.2298

CD4 count and viral load refer to the dates shown.

SM Index Distribution
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FIG. 1. SM-Index distribu-
tion for 405 population-based
pol sequences. Letters A–I
represent samples chosen for
ultra-deep sequencing evalua-
tion.
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identified samples A, B, C, E, F, and G as singly infected
(Supplementary Figs. 1–6 and 11–13; Supplementary Data are
available online at www.liebertonline.com/aid) and samples
D1, D2, H, and I as dually infected (Fig. 2 and Supplementary
Figs. 7–10 and 14–16). DI results specific to the coding regions
of each sample are shown in Table 2.

For nearly all the samples, the high read coverage of UDS
identified greater maximum divergence than SGS (Table 2).
Duplicate UDS runs performed on the same sample cDNA for
the same coding regions agreed in DI status for all 20 cases.
Combined phylogenies of UDS and SGS for each sample are
shown in Figure 2 and the supplemental figures. The one
sample (H) in which the divergence found by SGS in both C2–
V3 and RT exceeded that of UDS was the sample with the
lowest viral load tested, 1113 HIV RNA copies/ml, in which
the calculated input copy number that was interrogated by
UDS was only 52.3. UDS of the gag p24 region identified DI
only for sample I, which had the highest SM-Index of the
cohort and was also the only sample whose UDS and SGS of
the C2–V3 and RT coding regions both identified DI (Fig. 2).

Cost and time analyses

We estimated cost and time per sample for SM-Index, SGS,
and UDS based on a batch of 16 samples (corresponding to a
single UDS run). The cost per sample for population-based pol

sequence was $278.18, for SGS of two coding regions
$2,646.39, and for UDS of three coding regions $1,075.10.
Costs of each sequencing type are summarized in Table 3. It
took 3 hours to produce one sample’s population-based pol
sequence, 42 hours for one sample’s SGS, and 9.5 hours for
one sample’s UDS. Cost and time estimates for parallel steps
like RNA extraction are highly throughput-dependent. UDS
can be customized to produce fewer reads per sample at a
lower cost. As previously noted,11 many factors (such as price
reductions related to quantity) influence cost estimates and
may cause large price differences for experiments using the
same technologies.

Discussion

Systematic identification of HIV DI in large cohorts has
previously relied on a variety of screening methods, including
population-based sequencing analysis from different time
points,2 counting sequencing ambiguities,9 heteroduplex
mobility assays,29 and molecular analysis of a single coding
region.2 Single genome sequencing is the current standard to
identify distinct strains in a viral population; however, SGS is
too slow, expensive, and labor-intensive to be used as a
screening method for the presence of DI in hundreds or
thousands of biological samples. In this study, two alternative
methods to detect DI were assessed. The SM-Index identified

FIG. 2. Sample I, UDS duplicate 1. First year of infection. DI in env, pol, and gag. UDS are represented as red circles and SGS
as blue squares. Variant abundances per node and branches with >90% bootstrap support are labeled.
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samples likely to harbor DI, although the SM-Index alone is
not sufficiently powerful or accurate to confirm the presence
of two strains. Population pol sequencing is comparatively
cheap and frequently performed for routine drug resistance
testing, so SM-Index scoring based on pol genotypes remains a
useful initial DI screening method. However, it alone cannot
confirm DI, in part because it examines only one coding re-
gion. In our study set, the three samples in the low SM-Index
group were singly infected, and the one sample in the high
SM-Index group was dually infected. However, the SM-
Indices of the six samples in the medium SM-Index group
were not ordered by DI status, suggesting that the SM-Index
may be most useful for values on the extremes of its distri-
bution.

Previous HIV DI studies have usually discerned DI via
phylogenetic analysis when sequences from the same sample
are no more closely related to one another than to epidemio-
logically unlinked (background) sequences. This approach
allows inference of clade support for subpopulations, which
provides additional information about the plausibility of the
variants having come from a single infection event. However,
it has the disadvantage of dependence on the diversity of the
unlinked background sequences to show clade separation
within the study sample. In the current study, we use a
bootstrap estimate of the simple metric of population diver-
sity (the length of the longest path in the sample tree), which is
easy to automate and interpret, and hence more appropriate
for a high-throughput screen.

Table 2. Dual Infection Per-Region Analysis

Sample
Estimated duration

of infection (months)
Genetic
region

SGS: dual
infection?

UDS first duplicate:
dual infection?

UDS second duplicate:
dual infection?

A 3.1 env C2-V3 N (1.0%) N (2.6%) N (2.1%)
pol RT N (1.0%) N (1.7%) N (1.6%)
gag p24 N/A N (0.8%) N (0.8%)

B 7.3 env C2-V3 N (0%) N (1.7%) N (0.8%)
pol RT N (0%) N (1.6%) N (0.8%)
gag p24 N/A N (0.8%) N (1.6%)

C 1.5 env C2-V3 N (0.3%) N (0%) N (0.8%)
pol RT N (0.8%) N/A (poor quality reads) N/A (poor quality reads)
gag p24 N/A N (0%) N (0.8%)

D1 31 env C2-V3 Y (12.5%) Y (18%) Y (18.4%)
pol RT Y (2.4%) Y (4.1%) Y (4.9%)
gag p24 N/A N (3.2%) N (2.0%)

E 39.9 env C2-V3 N (3.4%) N (5.9%) N/A
pol RT N (2.0%) N (4.1%) N/A
gag p24 N/A N (1.6%) N/A

F 49.6 env C2-V3 N (3.9%) N (7.0%) N/A
pol RT N (1.8%) N (3.2%) N/A
gag p24 N/A N (3.2%) N/A

D2 33.8 env C2-V3 Y (11%) Y (20.2%) Y (20.4%)
pol RT Y (5.2%) Y (3.3%) Y (5.5%)
gag p24 N/A N (3.2%) N (3.2%)

G 2.8 env C2-V3 N (0%) N (0.9%) N/A
pol RT N (0.4%) N (0.8%) N/A
gag p24 N/A N (0.8%) N/A

H 70.6 env C2-V3 N (1.2%) N (0%) N (0%)
pol RT Y (4.4%) Y (2.4%) Y (4.0%)
gag p24 N/A N (0.8%) N (0%)

I 1.5 env C2-V3 Y (16.4%) Y (27%) Y (27%)
pol RT Y (5.7%) Y (5.8%) Y (8.2%)
gag p24 N/A Y (8.2%) Y (7.4%)

N/A: Not applicable, since gag SGS was not performed. Samples E, F, and G lacked sufficient cDNA to run UDS duplicates. Divergence
values are shown in parentheses as the bootstrapped bottom 5% quantile of the divergence distribution.

Table 3. Cost of Sequencing Per Sample

Population-based pol SGS C2-V3, RT UDS C2-V3, RT, p24

Kits and miscellaneous reagents $187.05 $550.10 $263.82
Disposable materials $32.63 $313.54 $62.57
Sequencing run $21.75 $1,305.00 $593.83
Labor $36.75 $477.75 $154.88
Total $278.18 $2,646.39 $1,075.10

All costs were calculated in US dollars. C2–V3: C2–V3 portion of env; p24: p24 portion of gag; RT: reverse transcriptase portion of pol; SGS:
single genome sequencing; UDS: ultra-deep sequencing.

1296 PACOLD ET AL.



UDS is a massively parallel analog of SGS, and it has not yet
been evaluated as a potential approach to the detection of DI.
Because UDS can efficiently generate many more sequences
than SGS, in this study it matched or exceeded the perfor-
mance of SGS. For most samples, UDS also identified addi-
tional minority variants not present in the SGS results, which
may be useful for inferring the evolutionary and population
history of HIV populations. This degree of resolution was
obtained because UDS produced over 500 reads for each of the
sequences obtained by SGS in this study. Further, a single
UDS run of 16 samples with three coding regions sequenced
can also be performed in approximately a fifth of the time
required to generate SGS for the same number of samples and
only two coding regions. In our analyses, the SM-Index was
9.5 times cheaper than SGS, and UDS was 2.5 times cheaper
than SGS per sample investigated (Table 3).

Shortcomings of the current study include limited sample
size, a large number of reads lost to gasketing, and a large
number of low-quality reads that had to be excluded from the
analysis. Furthermore, there was one sample whose SGS di-
vergence exceeded its UDS divergence, despite the higher
number of reads obtained by UDS. Sample H’s anomalous
results indicate that any DI screening technique must inter-
rogate a sufficient number of input molecules to discern mi-
nority species in a representative manner. Samples with low
viral loads may, therefore, require multiple replicates to
compensate for initial template amplification bias, but a reli-
able viral load cut-off was not determined by this study.
Samples C and I also had poorer coverage than the other
samples, with about 50% fewer raw reads when compared to
the others. This is somewhat unexpected, as all gasket-delin-
eated regions should have the same read density, but perhaps
demonstrates imperfections of the current UDS platform. One
sample (C) also had a region with insufficient quality to infer
DI. Nevertheless, this UDS run produced over 500 times more
high-quality reads than the SGS procedures.

The higher sequencing volume and less time required for
UDS might have other benefits in clarifying unresolved
issues concerning HIV DI. For example, if UDS can identify
superinfections sooner after the second transmission, when
the new viral variant’s population is still low, then it may
facilitate a more accurate determination of the incidence of
superinfection. Taken together, these results demonstrate
great promise in the use of UDS to confirm samples for
DI, optionally preceded by a SM-Index screen. Especially
because the per-base costs of existing and new UDS plat-
forms are expected to continue decreasing and their accuracy
and read lengths to continue increasing, we anticipate that
UDS will eventually supplant SGS as the method of choice
for dual infection screening.

Sequence Accession Numbers

GenBank accession numbers for the UDS are SRP002483
and for the SGS are HM347960-HM348454.

Acknowledgments

This work was supported by Grants AI69432 (ACTG),
MH62512 (HNRC), MH083552 (Clade), AI077304 (Dual In-
fection), AI36214 (UCSD Center for AIDS Research), AI047745
(Dynamics), AI074621 (Transmission), AI07384 (AIDS Train-
ing Grant), AI080193 (ARRA) from the National Institutes of

Health, DMS0714991 (NSF), International AIDS Vaccine In-
itiative, and the California HIV/AIDS Research Program
RN07-SD-702 and D08-SD-316.

Author Disclosure Statement

No competing financial interests exist.

References

1. Smith DM, Richman DD, and Little SJ: HIV superinfection. J
Infect Dis 2005;192:438–444.

2. Smith DM, Wong JK, Hightower GK, et al.: Incidence of HIV
superinfection following primary infection. JAMA
2004;292:1177–1178.

3. Grant R, McConnell J, Marcus J, et al.: High frequency of
apparent HIV-1 superinfection in a seroconverter cohort.
Conference on Retroviruses and Opportunistic Infections, 2005,
Boston, MA.

4. Salazar–Gonzalez JF, Bailes E, Pham KT, et al.: Deciphering
human immunodeficiency virus type 1 transmission and
early envelope diversification by single-genome amplifica-
tion and sequencing. J Virol 2008;82:3952–3970.

5. Blish CA, Dogan OC, Derby NR, et al.: HIV-1 Superinfection
occurs despite relatively robust neutralizing antibody re-
sponses. J Virol 2008;82:12094–12103.

6. Kosakovsky Pond SL and Smith DM: Are all subtypes cre-
ated equal? The effectiveness of antiretroviral therapy
against non-subtype B HIV-1. Clin Infect Dis 2009;48:1306–
1309.

7. Herbinger KH, Gerhardt M, Piyasirisilp S, et al.: Frequency
of HIV type 1 dual infection and HIV diversity: Analysis of
low- and high-risk populations in Mbeya Region, Tanzania.
AIDS Res Hum Retroviruses 2006;22:599–606.

8. Piantadosi A, Ngayo MO, Chohan B, and Overbaugh J:
Examination of a second region of the HIV type 1 genome
reveals additional cases of superinfection. AIDS Res Hum
Retroviruses 2008;24:1221.

9. Cornelissen M, Jurriaans S, Kozaczynska K, et al.: Routine
HIV-1 genotyping as a tool to identify dual infections. AIDS
2007;21:807–811.

10. Poon AFY, Pond SLK, Bennett P, Richman DD, Brown AJL,
and Frost SDW: Adaptation to human populations is re-
vealed by within-host polymorphisms in HIV-1 and Hepa-
titis C virus. PLoS Pathog 2007;3:e45.

11. Bushman FD, Hoffmann C, Ronen K, et al.: Massively parallel
pyrosequencing in HIV research. AIDS 2008;22:1411–1415.

12. Eriksson N, Pachter L, Mitsuya Y, et al.: Viral population
estimation using pyrosequencing. PLoS Comput Biol
2008;4:e1000074.

13. Hoffmann C, Minkah N, Leipzig J, et al.: DNA bar coding
and pyrosequencing to identify rare HIV drug resistance
mutations. Nucleic Acids Res 2007;35:e91.

14. Wang C, Mitsuya Y, Gharizadeh B, Ronaghi M, and Shafer
RW: Characterization of mutation spectra with ultra-deep
pyrosequencing: Application to HIV-1 drug resistance.
Genome Res 2007;17:1195–1201.

15. Le T, Chiarella J, Simen BB, et al.: Low-abundance HIV drug-
resistant viral variants in treatment-experienced persons
correlate with historical antiretroviral use. PLoS One
2009;4:e6079.

16. Tsibris AM, Korber B, Arnaout R, et al.: Quantitative deep
sequencing reveals dynamic HIV-1 escape and large popu-
lation shifts during CCR5 antagonist therapy in vivo. PLoS
One 2009;4:e5683.

DETECTION OF HIV DUAL INFECTION 1297



17. Archer J, Braverman MS, Taillon BE, et al.: Detection of low-
frequency pretherapy chemokine (CXC motif ) receptor 4
(CXCR4)-using HIV-1 with ultra-deep pyrosequencing.
AIDS 2009;23:1209–1218.

18. Wang GP, Ciuffi A, Leipzig J, Berry CC, and Bushman FD:
HIV integration site selection: Analysis by massively parallel
pyrosequencing reveals association with epigenetic modifi-
cations. Genome Res 2007;17:1186–1194.

19. Bruselles A, Rozera G, Bartolini B, et al.: Use of massive parallel
pyrosequencing for near full-length characterization of a un-
ique HIV Type 1 BF recombinant associated with a fatal pri-
mary infection. AIDS Res Hum Retroviruses 2009;25:937–942.

20. Butler DM, Pacold ME, Jordan PS, Richman DD, and Smith
DM: The efficiency of single genome amplification and se-
quencing is improved by quantitation and use of a bioin-
formatics tool. J Virol Methods 2009;162:280–283.

21. Kosakovsky Pond S, Wadhawan S, Chiaromonte F, et al.:
Windshield splatter analysis with the Galaxy metagenomic
pipeline. Genome Res 2009;19:2144–2153.

22. Pond SL, Frost SD, and Muse SV. HyPhy: Hypothesis testing
using phylogenies. Bioinformatics 2005;21:676–679.

23. Nickle DC, Heath L, Jensen MA, Gilbert PB, Mullins JI, and
Kosakovsky Pond SL: HIV-specific probabilistic models of
protein evolution. PLoS One 2007;2:e503.

24. Piantados A, Chohan B, Panteleeff D, et al.: HIV-1 evolution
in gag and env is highly correlated but exhibits different
relationships with viral load and the immune response.
AIDS Mar 13 2009;23:579–587.

25. Shankarappa R, Margolick JB, Gang SJ, et al.: Consistent
viral evolutionary changes associated with the progression
of human immunodeficiency virus type 1 infection. J Virol
Dec 1999;73:10489–10502.

26. Palmer S, Kearney M, Maldarelli F, et al.: Multiple, linked
human immunodeficiency virus type 1 drug resistance
mutations in treatment-experienced patients are missed by
standard genotype analysis. J Clin Microbiol 2005;43:406–
413.

27. Zuniga R, Lucchetti A, Galvan P, et al.: Relative dominance of
Gag p24-specific cytotoxic T lymphocytes is associated with
human immunodeficiency virus control. J Virol 2006;80:
3122–3125.

28. Zhang Z, Schwartz S, Wagner L, and Miller W: A greedy
algorithm for aligning DNA sequences. J Comput Biol
2000;7:203–214.

29. Grobler J, Gray CM, Rademeyer C, et al.: Incidence of HIV-1
dual infection and its association with increased viral load
set point in a cohort of HIV-1 subtype C-infected female sex
workers. J Infect Dis 2004;190:1355–1359.

Address correspondence to:
Mary Pacold

University of California, San Diego
9500 Gilman Drive MC 0679

La Jolla, CA 92093-0679

E-mail: mpacold@ucsd.edu

1298 PACOLD ET AL.


