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Abstract

Recently, an exact binomial test called SGoF (Sequential Goodness-of-Fit) has been introduced as a new method for
handling high dimensional testing problems. SGoF looks for statistical significance when comparing the amount of null
hypotheses individually rejected at level c= 0.05 with the expected amount under the intersection null, and then proceeds
to declare a number of effects accordingly. SGoF detects an increasing proportion of true effects with the number of tests,
unlike other methods for which the opposite is true. It is worth mentioning that the choice c= 0.05 is not essential to the
SGoF procedure, and more power may be reached at other values of c depending on the situation. In this paper we
enhance the possibilities of SGoF by letting the c vary on the whole interval (0,1). In this way, we introduce the ‘SGoFicance
Trace’ (from SGoF’s significance trace), a graphical complement to SGoF which can help to make decisions in multiple-
testing problems. A script has been written for the computation in R of the SGoFicance Trace. This script is available from
the web site http://webs.uvigo.es/acraaj/SGoFicance.htm.
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Introduction

Multiple-testing problems have received much attention since

the advent of the ‘-omic’ technologies: genomics, transcriptomics,

proteomics, etc. They usually involve the simultaneous testing of

thousands of hypotheses, or nulls, producing as a result a number

of significant p-values or effects (that is, an increase in gene

expression, or RNA/protein levels). An important issue here is the

control of type-I errors (false positives). In this regard, there are

several multiple-testing algorithms that focus on controlling the

family-wise error rate (FWER), defined as the probability of

committing at least one type-I error through the several

hypotheses tested. Some of these methods control the FWER in

a strong sense (i.e. under all configurations of the true and false

hypotheses), while others only require a weak control of the type-I

error. Weak control means that the FWER is maintained below a

given error level under the intersection (or complete) null

hypothesis. Unfortunately, past research showed that methods

controlling the FWER have a remarkable lack of power, that is,

the proportion of false negatives is too large. To overcome this

drawback, the false discovery rate (FDR) has been introduced as a

less stringent criterion leading to more powerful procedures. The

FDR is defined as the expected proportion of rejected hypotheses

that are false positives. Traditional FWER- and FDR- based

methods are nicely reviewed by Nichols and Hayasaka [1] as well

as by Dudoit and Laan [2]. However, the power (i.e. the

proportion of true positives among the rejected hypotheses) of the

FDR-based methods decreases with the number of tests, being

unable to detect even one effect in particular situations [3]. The q-

value, introduced by Storey and Tibshirani [4] as an extension of

the FDR criterion, is a possible solution to this problem. The q-

value reports the FDR associated to each rejection threshold for

the sequence of p-values. In this way, after a preliminary analysis,

the researcher may choose the FDR level depending on the

number of effects he/she wants to find, or the maximum

acceptable threshold for the p-values. Still, this approach does

not provide an objective answer to two important questions:

(1) How many effects should be declared?

(2) Which FDR is reasonable to assume for the discoveries in a

given experimental setup?

Recently, Carvajal-Rodrı́guez et al. [3] introduced a new

method (SGoF) for handling the simultaneous testing of S

hypotheses. The basic idea under SGoF is to compare the number

of hypotheses individually rejected at level c= 0.05 with the

number expected under the intersection null, S*c, looking for

statistical significance in that comparison. The alternative

hypothesis is that the expected number of rejected nulls at c level

is above S*c, so a one-sided test is performed. More explicitly, let

p1,p2,…,pS to be the sorted p-values associated to the S nulls.

Then, the observed number of individual rejections at c level is

K(c) = #{pi#c }. Under the intersection null, K(c) follows a

Binomial distribution with parameters S and c; the p-value of K(c)

is computed from such distribution, and the decision of

‘accepting/rejecting the intersection null’ is taken accordingly.
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More explicitly, if a= 0.05 is the significance level for such a test,

the intersection null is rejected whenever K(c)$ba(c), where ba(c) is

the 100(1-a)% percentile of the Binomial(S, c) distribution. This

guarantees that the FWER is controlled at level a in the weak

sense [3]. In case of rejection, SGoF declares as true effects the

K(c)2ba(c)+1 smallest p-values. This is intuitive because the

associated tests are responsible for the decision of rejecting the

intersection null of no effect.

The SGoF can be interpreted/described as a sequential

algorithm that in a step-wise mode decides if a candidate p-value

corresponds or not to a true effect. In the first step, the algorithm

compares K(c) to S*c, as discussed above; if the intersection null is

rejected, the value of K(c) is updated to be K(c) - 1, and the process

is repeated until significance is lost. In this way, SGoF performs a

systematic test for proportions, which provides the significance

associated to each p-value. The SGoF method (Sequential

Goodness-of-Fit) takes its name from this iterative algorithm,

which is described in complete detail in Carvajal-Rodrı́guez et al.

[3].

One of the main advantages of SGoF is that it exhibits an

increasing power with the number of tests. As mentioned, this is

not true for other multiple-testing corrections (including those

controlling the FDR rather than the FWER), which, under some

settings, can hardly find even one true effect in high dimensions

[3]. The key for this desirable property of SGoF is that the method

concentrates on the discrepancy between the observed and

expected numbers of p-values below a given threshold, without

regard to any a priori proportion of false discoveries. Since the

number of true effects declared by SGoF (K(c)2ba(c)+1) leads to an

estimated FDR, the new method informs in an indirect way about

‘which FDR is reasonable to assume’ for a given data set,

answering the former questions (1) and (2) at the same time. As

stated before, this information is not provided by other existing

methods, for which the choice of the FDR parameter must be

subjective.

The original implementation of SGoF concentrates in the case

c= a ( = 0.05). Obviously, the choice c=a, while being intuitive, is

not essential for the SGoF procedure. Therefore, it could be

interesting to look at SGoF results when c moves away from a.

The only caution that should be taken is that p-values above a can

be declared as true effects if c?a (see the Real Data Illustration

section). Interestingly, we have confirmed through simulations (see

Simulations section) and real data analysis (see Real Data

Illustration section) that, as expected, the SGoF power may be

increased if different choices for c are taken into account. This

idea leads us to consider a significance trace of SGoF, which is

basically the level of significance of SGoF (and some associated

measures of performance and summary results) when the c
parameter varies on the interval (0,1) in a continuous way. This

‘SGoFicance Trace’ (from SGoF’s significance trace) is introduced

in the corresponding section. Alternatively, there is the possibility

of choosing a single c value for SGoF, based on some optimality

criterion. This line is explored in an independent paper (Carvajal-

Rodrı́guez and Uña-Alvarez, in preparation).

Results and Discussion

Simulations
We have simulated the simultaneous testing of S = 1,000 null

hypotheses among which 100 are false (an effect of 10%). The p-

values corresponding to the true nulls were simulated from a

uniform distribution. The p-value of each effect was randomly

drawn as p = 12W(Z+w), where Z is a standard normal deviate, W
is the cumulative distribution function of the standard normal, and

w is a real number representing the effect level. If we think about a

one-sided normal test for the mean, w can be identified as the

distance between the null and the alternative mean values,

normalized by the sample standard error of the mean. In the

simulations we took w = 2.

In Figure 1 we give the power of SGoF (defined as the

proportion of effects detected among the 100 existing ones) as well

as the FDR for a grid of c values ranging from 0.01 to 0.99. Weak

control of FWER (a) was taken as 0.05. The results correspond to

averages through 1,000 Monte Carlo trials. For comparison

purposes, the power (12.01%) and the FDR (5.16%) attained

through the simulations by the Benjamini-Hochberg (BH) method

Figure 1. Power (left) and FDR (right) of SGoF depending of c. The dashed lines correspond to the BH method at nominal FDR of 0.05. The
number of hypotheses is 1,000 and there is an effect of 10%. Averages were computed through 1,000 Monte Carlo trials.
doi:10.1371/journal.pone.0015930.g001
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[5] (with nominal FDR of 0.05) are also provided (dashed line).

These results illustrate that (a) SGoF was able to detect many more

effects than BH (in accordance with [3]); and (b) the power of

SGoF was greatly influenced by the c parameter, being maximized

around c= 0.09. Moreover, the trace of the SGoF power indicate

that a ‘reasonable FDR to pay’ in this setup would be no more

than 22%, a conclusion that cannot be reached neither from the

BH method nor from other usual multiple-testing corrections.

Hence, there is a clear motivation for this type of plots in real data

applications, not focusing on any a priori choice of c. This is what

the SGoFicance Trace provides.

Other choices of w and of the percentage of true effects provide

similar evidences. As a summary, in Table 1 we provide the power

and FDR attained by SGoF(c) for c= 0.01, 0.05, 0.09, 0.13 and

0.17 for several percentages of effects among the 1,000 hypotheses

being tested (10% and 30%), with different degree of departure

from the null hypothesis (w = 1, 1.5 and 2). The numbers reported

are averages along 1,000 Monte Carlo simulations from the

model. Again, results corresponding to the BH method (at nominal

FDR of 5%) are provided for comparison. From Table 1 it is seen

how the power of SGoF’s method can be increased by changing

the value of the c parameter. It is also seen that the FDR control of

the BH method may be too strict in the sense of power; for

example, for a 30% of true effects with a weak deviation from the

null (w = 1), BH is only able to detect a 0.7% of the non-true nulls

(the power of SGoF is one order of magnitude greater in this case).

This agrees with previous results on the possible lack of power of

BH [3].

The SGoFicance Trace
The SGoFicance Trace is a graphical device constructed from

the SGoF multitest. Let SGoF(c) denote the SGoF algorithm

described in the Introduction when using a given threshold c. The

basic idea is to let c vary on the whole interval (0,1). The

SGoFicance Trace displays up to four different plots: (A) log-

significance (p-value) of SGoF(c) vs. c; (B) number of effects

detected by SGoF(c) vs. c; (C) estimated FDR of SGoF(c) vs. c; (D)

threshold of the pi’s vs. c. Figure 2 reports the SGoFicance Trace

pertaining to one of the Monte Carlo trials in the previous section

(see below). The definition of each plot and the information it

provides is discussed below.

SGoF’s log-significance plot. The first plot (Figure 2A)

displays the p-value (in log-scale) of SGoF(c) for each value of c.

Namely, the displayed values were computed as the probability tail

of the Binomial(S, c) distribution to the right of K(c), that is

p(c) = P(Binomial(S, c)$K(c) ). The log-scale is used because the p-

values are expected to be small along most of the c-grid, with an

exponential increment as c approaches to one. This plot reveals

the amount of significance contained in SGoF(c) against the

intersection null, for each c value. Since the pi’s pertaining to the

non-true nulls would tend to be located close to zero, a monotone

increasing shape is expected in this plot. An horizontal dashed line

at point log(a) was incorporated to the plot for completeness. Here,

a represents the FWER that is controlled by SGoF(c) in a weak

sense. The default value for a was set at 0.05.

SGoF’s number of effects. For each c, the number of effects

declared by SGoF(c) at FWER a is Na(c) = K(c)2ba(c)+1. Unlike

p(c), this number depends on both a and c. The second plot

(Figure 2B) in the SGoFicance Trace displays the Na(c) values

against c, for the particular choice a= 0.05. In a typical multiple-

testing problem, an inverted U-shape will be found in this plot,

meaning that the largest number of effects corresponds to

intermediate values of the c parameter. Notice that, while K(c) is

an increasing function of c, ba(c) also increases as c gets larger.

SGoF’s FDR. A commonly used measure of performance in

multiple-testing problems is the FDR. Hence, it is interesting to

evaluate the FDR of SGoF(c) for each value of c. In practice, the

FDR is unknown, but some estimation methods can be used to

find it. The FDR estimation procedure starts from some

preliminary assessment of the proportion of true nulls, p0.

Different methods have been proposed in the literature to do so.

We have implemented the method proposed by Dalmasso et al.

Table 1. Average power and FDR of SGoF (a= 0.05) depending on c.

SGoF(0.01) SGoF(0.05) SGoF(0.09) SGoF(0.13) SGoF(0.17) BH

10%
w = 2

Power 0.2786 0.3815 0.4004 0.3984 0.3857 0.1202

FDR 0.1327 0.2004 0.2164 0.2145 0.2086 0.0516

10%
w = 1.5

Power 0.1202 0.1958 0.2198 0.2237 0.2242 0.0211

FDR 0.2160 0.2963 0.3203 0.3224 0.3228 0.0503

10%
w = 1

Power 0.0259 0.0529 0.0691 0.0757 0.0801 0.0028

FDR 0.2932 0.3779 0.4087 0.4140 0.4222 0.0472

30%
w = 2

Power 0.3314 0.4998 0.5402 0.5499 0.5481 0.3340

FDR 0.0504 0.0977 0.1117 0.1157 0.1152 0.0507

30%
w = 1.5

Power 0.1642 0.3042 0.3556 0.3767 0.3871 0.0824

FDR 0.0878 0.1444 0.1682 0.1785 0.1830 0.0496

30%
w = 1

Power 0.0568 0.1312 0.1688 0.1887 0.2019 0.0067

FDR 0.1683 0.2323 0.2583 0.2713 0.2795 0.0505

The number of hypotheses is 1,000 and the proportion of non-true nulls is 10% or 30%. Strong (w = 2), intermediate (w = 1.5) and weak (w = 1) effects are considered. BH
method at FDR of 5% is included. Averages were computed through 1,000 Monte Carlo trials.
doi:10.1371/journal.pone.0015930.t001
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[6] with n = 1 (see equation (6) in [6]) because of its simplicity and

reasonable behavior. However, other estimation methods are

possible [7,8]. Explicitly, we estimate p0 by the average of the -

log(1 - pi)’s. Denoting this quantity by ep0, the estimated FDR of

SGoF(c) was just eFDRa(c) = S*qa(c)*ep0/Na(c), where qa(c) stands

for the threshold of the pi’s needed to reach Na(c) effects, that is,

qa(c) is such that Na(c) = #{pi#qa(c)}.

As for the plot of the SGoF’s number of effects, the FDR plot

(Figure 2C) will typically show a concave form, with a maximum

around the point at which Na(c) attains its largest value. Recall

that, unlike the FDR-based methods, SGoF is not constructed to

respect a given fixed proportion of false discoveries. For this

reason, this plot is informative about the ‘reasonable amount of

FDR’ that could be faced in a given situation. Again, the nominal

FWER a was set to 0.05.

SGoF’s threshold for p-values. Finally, the SGoFicance

Trace provides a plot showing the threshold values qa(c) versus c, in

the case a= 0.05. Interestingly, in this way the significance level

that results after the application of SGoF(c) for each individual null

hypothesis can be investigated.

To resume the above explanations, the SGoFicance Trace at a

FWER of 5% corresponding to the randomly chosen Monte Carlo

trial #101 (from the simulation study described in the first section)

is shown in Figure 2. In this case, we see that SGoF was able to

detect an effect, i.e. p,0.05, independently of the c value

(Figure 2A). In addition, the highest number of effects (70) was

detected by SGoF based on c= 0.13 (Figure 2B). The SGoF’s

FDR plot (Figure 2C) indicated that this maximum detection led

to a false discovery proportion of about 35%. Moreover, it also

tells us that the researcher should never assume more than that

rate for that particular situation. In other words, under SGoF’s

view there are no more than 70 p-values that could be declared as

true effects in a ‘reasonable way’. The threshold qa(c= 0.13) such

as that 70 = #{pi#qa(c)} (Figure 2D) was 0.0267, but according to

the Figure it will be different if the c parameter of SGoF changes.

Real data illustration
As an illustrative example, we took the microarray study of

hereditary breast cancer by Hedenfalk et al. [9]. One of the goals

of this study was to find genes differentially expressed between

BRCA1- and BRCA2-mutation positive tumors. Thus, for each of

the 3,226 genes of interest, a p-value was assigned based on a

suitable statisticical test for the comparison. Following previous

analysis of these data [4], 56 genes were eliminated because they

had one or more measurements exceeding 20. This left S = 3,170

genes. According to the method proposed by Dalmasso et al. [6]

with n = 1, there is a proportion of true nulls of 71.77%, i.e. about

895 true effects. On the basis of the q-value method, Storey and

Tibshirani [4] found 160 genes with significant differential

expression at 5% of FDR (that is, about 8 genes are expected to

be false positives). The amount of significant effects may be

increased up to above 300 by letting the FDR rise up to 10% [4].

Figure 2. SGoFicance Trace at FWER 5% for the Monte Carlo trial #101 in the simulation study. (A): SGoF’s log-significance plot; (B):
SGoF’s number of effects; (C): SGoF’s FDR; (D): SGoF’s threshold for p-values. The number of hypotheses is 1,000 and there is an effect of 10%. The
proportion of true nulls was taken as its true value (0.9) for the computation of FDR’s.
doi:10.1371/journal.pone.0015930.g002
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However, what the q-value method does not tell us is which FDR

should be reasonably assumed for the Hedenfalk et al. [9] data.

We have computed the SGoFicance Trace at a FWER of 5%

for this data set and the result is displayed in Figure 3. The first

relevant finding is that SGoF was able to detect up to 613 effects

by committing an FDR of 20%, so, there is no reason to assume a

higher FDR. These results correspond to the application of

SGoF(c) with c= 0.26, meaning that, among the 1473 p-values

below 0.26, there is statistical evidence that at least 613 correspond

to non-true nulls. One could argue that the q-value method would

also be able to declare the same amount of effects just by raising

the FDR up to 20%. This is true, but it is only possible as a

posteriori analysis. In addition with the q-value method there is no

hint to choose a specific FDR value. For example the researcher

could decide to assume 15, 20 or still 25% FDR. However SGoF

automatically tells that (under its view) there is no statistical

significance beyond the detected 613 effects and therefore gives

the corresponding FDR. So, at the end, one reaches the

conclusion that 613 effects can be declared at maximum and

that, in this case, about 123 of them will correspond to false

positives. There is no reason to assume a higher FDR since this

will not increase the number of effects detected by SGoF. A second

relevant finding is that by using the SGoFincance Trace, one may

immediately move to a smaller amount of effects (and FDR) by

inspecting other values for the c parameter. For example, the

choice c= 0.1 reveals 524 true effects. By declaring as true effects

the smallest 524 p-values one commits a FDR of about 16%.

In the case of choosing the initially suggested c value of 0.26, the

threshold p-value is 0.0516 (0.0393 for the less liberal c= 0.1). This

fact could be taken as surprising at first sight since SGoF is (weakly)

controlling the FWER at level 0.05 for each c value, and the

threshold corresponding to c= 0.26 is above that level. The

explanation for this is in the definition of SGoF: for each c,

performs a test at the a level for the null H0: E[K(c)] = S*c, thus

controlling the FWER at the given level. In this way, SGoF uses

the information contained in the distribution of the whole set of p-

values (not only in that below 0.05) to reach a conclusion about

which ones should be considered as potential true effects. If one is

not willing to declare as an effect any p-value above a, the obvious

modification of SGoF(c) is simply given by Na(c) = min(K(c)2-

ba(c)+1, K(a) ). Clearly, FWER control at the a level remains true

when this correction is applied.

The SGoFicance Trace is also useful when the aim is to keep up a

given proportion of false positives. In this regard, Figure 3C shows

that an FDR of 5% is obtained with SGoF(c) in the case of c= 0.83

(threshold p-value of 0.003), with 140 genes detected as significant.

The difference between this amount and the 160 genes provided by

the q-value method for the same FDR comes from our more

conservative estimation of the proportion of true nulls ([4] worked

under the less conservative ep0 = 0.67 rather than our 0.72).

Figure 3. SGoFicance Trace at FWER 5% for the 3,170 genes of Hedenfalk et al. (2001). (A): SGoF’s log-significance plot; (B): SGoF’s number
of effects; (C): SGoF’s FDR; (D): SGoF’s threshold for p-values. The proportion of true nulls for the computation of the FDRs was estimated according to
Dalmasso et al. [6], case n = 1.
doi:10.1371/journal.pone.0015930.g003
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It could be asked what happens to Hedenfalk data’s SGoFicance

Trace when applied at a different FWER level, more or less

conservative than 5%, as for instance 0.01% and 15% respectively.

An interesting finding is that the maximum FDR in these two

quite extreme cases was never above the maximum FDR of 20%

revealed by Figure 3C; namely, a maximum FDR of 17.6% and

19.7% is respectively obtained when the FWER is fixed to be the

corresponding a= 0.0001 and a= 0.15. The SGoFicance Trace’s

maximum FDR showed a similar lack of sensitivity for the FWER

in the simulated data above (results not shown). As a conclusion,

the default value a= 0.05 could be taken as a good initial choice,

with a small impact in the plots of significance. The fact that the

SGoF method controls the FWER only in a weak sense is

responsible for this robustness.

Decision guidelines
Some general guidelines can be given for the use of the

SGoFicance tool. We can distinguish between two extreme cases.

First, the researcher is specially interested in the detection of effects

while having information on the corresponding FDR. This can be

the case of any exploratory study at the genome or proteome-wide

level comparing for example two species. In this case the panel B

of the SGoFicance should guide the decision. This panel will

immediately tell the researcher the maximum number of true

effects that can be detected under SGoF and the FDR that should

be assumed in doing so. Moreover, it will inform the researcher

about the maximum FDR that should be assumed because a

higher one will not translate in more power since SGoF will be

unable to find statistical significance for a larger number of true

effects. On the other hand, we can think in a second general case

where the researcher is interested in minimizing the FDR, as in an

association study from which, with limited economic resources, we

are going to isolate the detected genes or proteins. In this case the

panel C should be the first to be consulted to set the desired FDR

and afterwards exploring the corresponding statistically significant

number of effects and p-value threshold.

As a conclusion, the SGoFicance tool aims to provide solution

to the extreme situations above mentioned besides the whole range

of intermediate cases where equilibrium between FDR control and

power is desired.

Methods

Design and Implementation
The algorithms necessary for the computation of the SGoFi-

cance Trace were implemented in a script programmed in the R

language [10]. The program asks for an input file that should have

an integer number indicating the total number of tests, followed by

two columns with pairs of identifiers and p-values. The identifier

can be a number or a character string. The list of p-values does not

need to be sorted. This format is the same as for the SGoF

program [3]. Next, the program lets the researcher choose the

desired a level to control the FWER, and the calculations are

performed.

Availability and Future Directions
The R script for the computation of the SGoFicance is available

from the site http://webs.uvigo.es/acraaj/SGoFicance.htm.
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