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Abstract
The 12/15-lipoxygenase enzymes react with fatty acids producing active lipid metabolites that are
involved in a number of significant disease states. The latter include type 1 and type 2 diabetes
(and associated complications), cardiovascular disease, hypertension, renal disease, and the
neurological conditions Alzheimer’s disease and Parkinson’s disease. A number of elegant studies
over the last thirty years have contributed to unraveling the role that lipoxygenases play in chronic
inflammation. The development of animal models with targeted gene deletions has led to a better
understanding of the role that lipoxygenases play in various conditions. Selective inhibitors of the
different lipoxygenase isoforms are an active area of investigation, and will be both an important
research tool and a promising therapeutic target for treating a wide spectrum of human diseases.
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1. INTRODUCTION
Twenty carbon fatty acids serve a variety of important physiological functions in humans,
from providing cellular membrane structure to serving as substrates from which a number of
important cell signaling molecules and secondary messengers are derived [1]. In particular,
arachidonic acid serves as one major precursor for a number of molecules termed
eicosanoids that have significant roles in human diseases, including type 1 and type 2
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diabetes and atherosclerosis, as well as the neurological diseases Parkinson’s disease (PD)
and Alzheimer’s disease (AD) [2-4]. The following review will focus on the 12- and 15-
lipoxygenase enzymes (12-LOX, 15-LOX), their products, and the varied effects of those
products in human metabolic, vascular, and neurological diseases.

Arachidonic acid (AA) is released from the cell membrane by phospholipases, such as
phospholipase A1, in response to various cytokines, peptides, and growth factors that
become active under inflammatory conditions [5,6]. There are three families of enzymes
involved in the oxidative metabolism of AA. These include the lipoxygenases, which
produce leukotrienes (LT), hydroperoxyeicosatetraenoic acids (HPETEs),
hydroxyeicosatetraenoic acids (HETEs), and hydroxyoctadecadienoic acids (HODEs); the
cyclooxygenases (COX-1 and COX-2) which produce prostaglandins including G2 and H2
as well as thromboxanes ; and cytochrome P-450 monooxygenases which produce epoxides
and HETEs [6,7]. Of note, prostaglandin H2 is further metabolized to prostaglandins D2,
F2α, and I2 (prostacyclin), as well as to thromboxane (TxA2) [8].

Lipoxygenases (LOXs) are found in both plants and in animals. The mouse has seven
different ALOX genes (note that the LOX genes are termed by convention “ALOX”, for
arachidonic acid lipoxygenase), while humans have five known genes [7]. The different
LOX enzymes are named for the numbered carbon where they oxygenate their
polyunsaturated fatty acid (PUFA) substrates, with the use of stereoisomer nomenclature (S
and R) as appropriate (e.g., 12S-LOX and 12R-LOX) [7]. As shown in Table 1, the human
LOX enzymes include 5-LOX (which produces LTs), 12-LOX (with platelet-type and
leukocyte-type forms), and 15-LOX (which is further separated into the reticulocyte or
leukocyte-type, 15-LOX-1, and the epidermis-type, 15-LOX-2) [9,10]. The human
leukocyte-type 12-LOX and the human reticulocyte-type 15-LOX-1 can form similar
products from common substrates and are often referred to in the literature as 12/15-LOXs
[6,10]. Furthermore, there is significant species-specific variation in the products formed by
the different 12- and 15-LOX isoforms. Mice do not express 15-LOX and only express the
leukocyte-derived 12-LOX [11]. Rabbits express both reticulocyte-derived 15-LOX and
leukocyte-derived 12-LOX [12]. These differences often make it difficult to translate data
obtained in different animal models of disease to their human counterparts. This may, for
instance, explain conflicting data on the effects of different 12- and 15-LOX isoforms on
vascular function and on atherosclerosis [13].

In humans, 12/15-LOXs act upon AA to create a number of important lipid mediators
(Figure 1). These include 12- and 15HPETEs and 12- and 15HETEs [7]. The 15-LOX-1
enzyme also produces 13-S-hydroxyoctadecadienoic acid (HODE) from linoleic acid [14].
These lipid products have a variety of functions in human tissues. For example, 12(S)-HETE
and 15(S)-HPETE are involved in monocyte binding in the vasculature, by stimulating
protein kinase C (PKC) and various cellular adhesion molecules (CAMs) [6,15]. Some
products, including 13HPODE, are proinflammatory and act via various transcription factors
including NF-κB [16]. HETEs are also involved in cell growth, acting through various
mitogen-activated protein kinases (MAPKs) [17].

A number of interesting anti-inflammatory molecules have also been identified that are
derived from AA or ω-3 fatty acids, including the lipoxins (for “lipoxygenase interaction
products”), resolvins, and protectins [18,19] (Figure 1). The lipoxins are synthesized from
AA by 5-, 12-, and 15-LOX, as well as by COX-2 in the presence of aspirin [18]. These
molecules are involved in actively limiting and resolving the inflammatory response. In
particular, lipoxins derived from the 15-LOX product 15HETE (termed lipoxin A4 and B4)
have been shown to stimulate vasodilation and inhibit neutrophil function [20]. The
resolvins are derived from the omega-3 PUFAs docosahexanoic acid (the D-series resolvins)
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and eicosapentaenoic acid (the E-series resolvins), and their synthesis can involve aspirin
and COX-2 (resolvin E1), as well as 5-LOX (resolvin E1) and 15-LOX (D-series resolvins)
[19]. E-series resolvins are involved in granulocyte function and clearance, and reduce the
release of various proinflammatory cytokines [19]. Synthesis of the protectins also involves
the action of 15-LOX [19]. These agents appear to be involved in airway/mucosal injury in
human asthma, and may also be protective after ischemic renal injury [21,22].

An interesting class of 12- and 15-LOX-derived lipid products is the esterified eicosanoids
formed by direct enzymatic oxidation of membrane phospholipids. First evidence for
formation of these products was documented in eosinophils by Brinckman et al. [23].
Although the 12- and 15-lipoxygenases are regarded as cytosolic enzymes, upon an increase
in intracellular calcium they can bind to membrane phospholipids in a reversible fashion
[23,24]. In hematopoietic cells and platelets, 15- and 12-LOX, respectively, have the ability
to translocate to cellular membranes in the presence of agonists such as calcium ionophore,
thrombin or collagen which increases the fatty acid oxygenase activity of the enzyme [25].
The esterified 15-HETEs are predominant in human peripheral monocytes, while 12-HETEs
are predominant in human platelets [25,26]. The esterified eicosanoids (either
phosphatidylethanolamine (PE)- or phosphatidylcoline (PC) –HETEs), are retained in the
cells and more recent evidence shows they play important roles as LOX-dependent signaling
lipid mediators in the immune cells in inflammation as well as novel pro-thrombotic lipids
promoting coagulation [24,26]. Also, a Th2-dependent production of 12- HETE-PEs in mice
and 15-HETE-PEs in humans was recently reported and interesting future studies will help
determine the potential anti-inflammtory role of these HETEs in some forms of
inflammatory disease in humans [27].

The complex array of metabolites formed as a result of 12- and 15-LOX catalytic activity
are tissue and species-specific, and can have both pro- and anti-inflammatory effects.
Targeted deletion studies in mouse models have helped identify the potential roles of these
pathways. To further clarify the particular role of these products in disease, specific
pharmacologic inhibitors for each of the LOX isoforms are needed. The development of
highly specific pharmacological tools acting as isotype-specific LOX inhibitors is an
imperative goal that is currently under intensive investigation [28]. In addition, adequate
detection methods for LOX-derived lipid metabolites are crucial to obtaining accurate
information on formation and tissue distribution in physiologic and pathologic states. The
gold standard methods are liquid chromatography (LC)/electrospray ionization (ESI)/
tandom mass spectrometry (MS/MS) and gas chromatography-mass spectrometry (GC/MS),
but they represent a significant time and cost investment [29]. Antibody-based methods,
such as enzyme-linked immunosorbent assay (ELISA), while much more accessible and
cost-effective, should be carefully validated for the particular sample being analyzed. Also,
the results should be interpreted with caution, due to the generally low specificity of
immunodetection in differentiating structurally close lipid metabolites. An alternative to
limit false positive results generated by antibody cross-reactivity would be to use an HPLC
separation prior to immunochemical detection. For an excellent review on eicosanoid
detection methodology and limitations please see O’Donnell, et al. [29].

Accumulating evidence indicates that 12-LOX and 15-LOX, and their products, play
important roles in many tissues and organs, including the vasculature, kidney, adipose
tissue, brain, and the pancreatic islet. To mechanistically dissociate the effects of the 12- and
15-LOX pathways and their respective metabolites is crucial to understanding how these
pathways function in human disease. These areas will be further discussed in greater detail
in the review.
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2. THE 12/15-LIPOXYGENASE PATHWAY IN THE PANCREATIC ISLET AND
IN DIABETES MELLITUS

Homeostasis of blood glucose is maintained by hormone secretion from the pancreatic islets
of Langerhans. More specifically, insulin produced by the β cells of the islet plays a major
role in proper maintenance of blood glucose. Normal levels of insulin are required to
promote glucose uptake in muscle and in adipose tissue, and to suppress gluconeogenesis
and promote glycogenesis in the liver. Therefore, either a loss of production of insulin or a
defect in the release of insulin from the β cell creates dysregulation of overall glucose
homeostasis in the body. Recent evidence indicates that both forms of diabetes (type 1 and
type 2) are associated with a significant loss of β cells. A primary underlying cause of β cell
loss arises as a consequence of inflammatory mechanisms. Expression and/or activity of 12-
LOX in human islets is upregulated by hyperglycemia and by inflammatory cytokines.
These observations indicate a role for 12-LOX in mediating the loss of functional insulin
secretion and in the insulin resistance commonly associated with inflammation [30-34].

Early studies of the role of 12-LOX in islet function were guided by experiments using
enzymatic inhibition. Initial studies led to incorrect conclusions due to the lack of specificity
in the chemical inhibitors used. This has underscored the need to generate specific isotype-
selective inhibitors. Gene-based knockout studies and targeted protein knockdown
approaches have provided clarity in more recent studies of the important role of 12-LOX in
islet function. Insulin resistance and impairment in islet function that develops on a high-fat
diet were prevented in leukocyte- 12-LOX (12/15-LOX) knockout mice, suggesting that
12/15-LOX activity is relevant to type 2 diabetes, and to β cell dysfunction in obese states
[35,36]. Additionally, diabetic Zucker fatty rats that have a defect in insulin secretion have
elevated 12-LOX, further supporting a role for 12-LOX in the pathogenesis of type 2
diabetes [34].

Bleich et al. reported on a mouse model deficient in the leukocyte-derived 12/15-LOX. In
contrast to control C57BL/6J mice, the 12/15-LOX knockout mice (on the same genetic
background) were resistant to the induction of diabetes by low-dose streptozotocin [37].
This streptozotocin protocol induced immune-mediated islet destruction similar to type 1
diabetes. The 12/15-LOX knockout mice lacked the cytokine-induced conversion of AA to
12HETE, implying that 12HETE generation was cytotoxic to β cells [37]. The role of 12-
LOX as a key mediator in the development of autoimmune diabetes is further supported by
the work of McDuffie et al., who developed a congenic 12/15-LOX knockout in non-obese
diabetic (NOD) mice. The phenotype of the female NOD mouse includes the spontaneous
development of autoimmune type 1 diabetes. 12/15-LOX knockout mice resulted in a
significant reduction (2.5% vs > 60% in control animals) in the development of diabetes
[38]. The mechanisms for how the deletion of 12-LOX protects against type 1 diabetes
development are an active area of current investigation. Interestingly, 12-LOX activity
mediates the expression of interleukin-12 (IL-12) [39-42]. IL-12 is a key cytokine driving
the Th1 autoimmune response via STAT4 second-messenger signaling and the induction of
interferon gamma (IFNγ).

A direct role of pro-inflamatory cytokines in stimulating 12-LOX activity is further
supported by observations of cytokine-induced production of 12HETE in both islets and β
cell lines [31,43]. Moreover, the addition of 12-LOX products (12HETE and 12HPETE) to
human islets resulted in a decrease in glucose-stimulated insulin secretion associated with a
decrease in islet viability [30]. These studies also reported a partial restoration in glucose-
stimulated insulin secretion if 12HETE was combined with lisofylline, an inhibitor of IL-12
signaling. Collectively these data support a predicted role of IL-12 in mediating the immune
damage caused by the 12-LOX pathway.
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Some of the mechanisms that involve 12-LOX as a potential pathogenic enzyme are
illustrated in Figure 2. Direct β cell effects associated with the stimulation of 12-LOX
activity include the activation of second messengers c-Jun N-terminal kinase and p38
MAPK, both of which show increased phosphorylation in response to 12-LOX activation
[31,44,45]. Transient knockdown of 12/15-LOX expression in mice by in vivo siRNA
resulted in reduced p38 MAPK activity and resistance to pro-inflammatory cytokine-
induction [30]. Additionally, 12HETE may contribute to mitochondrial and oxidative stress,
conditions to which β cells are highly sensitive, by increasing mitochondrial nitric oxide and
intramitochondrial calcium [46]. Mitochondrial dysfunction reduces the ATP/ADP ratio, and
thereby directly affects insulin secretion from the islet.

Other pathways, including ER stress, are current areas of investigation. Interestingly, 5-LOX
has recently been shown to improve islet function in rodents [47]. The role of 5-LOX has
not been extensively investigated to date, and there have been conflicting reports regarding
the expression of 5-LOX in rodent islets. However, data from our lab (unpublished)
indicates clear levels of ALOX 5 expression in human islets. Thus, unlike 12-LOX, the role
of 5-LOX is not clear but could serve a beneficial role in preserving islet function in
humans. This area is worthy of follow up investigation.

The activity of 12-LOX in the pancreatic islet is multifaceted. AA stimulates insulin
secretion from pancreatic β cells, which is inhibited by 12-LOX activity, likely due to
reduction in available AA via substrate metabolism by 12-LOX [48]. This may be further
compounded by 12-LOX induction of COX-2, which converts AA to PGE2 [49].
Additionally, 12-LOX activity may trigger the activation of Toll-like receptor 4 (TLR4) in
resident dendritic cells in islets, and thereby promote a pro-inflammatory/autoimmune
environment through the upregulation of IL-12 [50,51]. Cytokine-induction of 12-LOX
activity and its lipid mediators in the β cell results in cell dysfunction mediated by second
messenger activation. Targeting selective inhibitors of 12-LOX activity is a promising
pharmacological strategy for the treatment of diabetes and has been validated in proof-of-
concept studies using islet-specific 12/15-LOX knockout mice. It is important to note that
the source of rodent 12/15-LOX expression in the islet is not completely clear. While β cells
express the enzyme, resident macrophages or dendritic cells may play an important role in
12/15-LOX expression and activity or downstream effects on IL-12.

The predominant LOX enzyme identified in the non-diabetic human islet is the platelet-
derived 12-LOX isoform (ALOX12), while leukocyte 12-LOX has been identified in rodent
islets [37]. A dominant lipid product of 12-LOX activity, 12HETE, has been identified in rat
and human islets, and in rodent β cell lines [30,31,43,45,50,52-56]. The contribution of other
LOX enzymes in the pancreatic islet is less clear. Turk and Shannon were unable to detect 5-
LOX protein or enzymatic activity in rat islets [54,55]. In contrast, mRNA for 5-LOX but
not for LOX 15-1 has been reported in normal human islets [50]. Considering the four
predominant endocrine cell types that are present in the islet (α, β, δ, and F cells), the
insulin-producing β cell is reported to be the preferential site for 12-LOX expression
[11,31,55]. However, immunohistochemical analysis of 12-LOX expression co-localized 12-
LOX with glucagon-expressing α cells in the rat islet [56]. Kawajiri et al. reported that
overexpression of 12-LOX in an α cell line doubled glucagon secretion.

It would be of interest to clarify the LOX isoforms expressed in islets from subjects with
type 1 or type 2 diabetes mellitus. Studies evaluating the forms of LOX in islets from
subjects with diabetes are ongoing. The results from these studies will be important in
determining the therapeutic potential of targeting certain enzymes in the treatment of human
diabetes. Table 2 summarizes the current evidence linking 12-LOX with pancreatic β cell
function and diabetes.
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3. THE 12/15-LIPOXYGENASE PATHWAY AND MICROVASCULAR
COMPLICATIONS OF DIABETES
3.1. Diabetic peripheral neuropathy

The study of 12/15-LOX and the peripheral nervous system is actively being investigated. A
later section will cover additional aspects related to the nervous system. Obrosova et al.
described elevated 12/15-LOX expression in the peripheral nerves and dorsal root ganglia of
mice fed a high-fat diet for 16 weeks [57]. The animals became obese and developed
impaired glucose tolerance, and had both motor and sensory peripheral nerve deficits. In an
interesting follow up study, they showed that PMI-5011, an extract of the herb Artemisia
dranunculus, reduced 12/15-LOX expression, normalized blood sugar, and improved
peripheral neuropathy in their animal model [58]. Most recently this group has shown that
12/15-LOX is involved in the nitrosative stress seen in the diabetic peripheral nerves [59].
Increased 12/15-LOX expression was seen in mice made diabetic with streptozocin or
through a high-fat diet. Human Schwann cells cultured in medium containing high
concentrations of glucose also had increased 12/15-LOX expression. When 12/15-LOX was
inhibited with cinnamyl-3,4-dihydroxy-alpha-cyanocinnamate, the nitrosative stress in the
spinal cord and sciatic nerve was reduced. Conduction deficits in small and large nerves
were also improved (though intraepidermal nerve fiber loss was still seen). 12/15-LOX
knockout mice fed a high-fat diet also had improvements in nitrosative stress and in
conduction dysfunction. The authors concluded that 12/15-LOX might play a role in the
nitrosative stress seen in human diabetic peripheral neuropathy [59]. It would be important
to validate the expression of 12- or 15-LOX enzymes in human diabetic neuropathic
samples.

3.2. Diabetic retinopathy
Augustin et al. demonstrated that 15HETE was expressed in the epiretinal membranes of
patients with proliferative diabetic retinopathy, and suggested that it might play a role in the
membrane growth seen in this diabetic complication [60]. In a later study of the lipid profile
of non-diabetic and diabetic ocular vitreous, Schwartzman et al. found that the 5-LOX
product 5HETE was significantly elevated in diabetic versus non-diabetic vitreous,
especially in individuals with non-proliferative diabetic retinopathy [61]. However, there
were no significant differences in concentrations of 15HETE. Gubitosi-Klug et al. found
that the retinas of 5-LOX deficient diabetic mice had less superoxide production,
leukostasis, and NF-κB expression compared with wild-type diabetic animals, and that the
12/15-LOX deficient diabetic mice had less leukostasis, but no changes in NF-κB expression
or production of superoxide. They concluded that the 5-LOX pathway might be an
appropriate pathway for inhibition in treating diabetic retinopathy [62]. Overall, the results
to date indicate that the 5-LOX pathway likely plays a more significant role in the evolution
of diabetic retinal disease than does the 12/15-LOX pathway.

4. THE 12/15-LIPOXYGENASE PATHWAY IN ADIPOSE TISSUE
Only recently has adipose tissue been recognized as a highly metabolically active endocrine
organ imparting profound local and systemic inflammatory effects. Adipose tissue, either
found as white or brown fat, is a complex organ comprised of fat cells (adipocytes) and the
stromal vascular compartment containing a mixed population of pre-adipocytes, leukocytes,
macrophages, fibroblasts, and endothelial cells. This organ is responsible for the secretion of
inflammatory cytokines and numerous adipose-specific hormone-like proteins, called
adipokines, that not only affect local adipocyte function, but also systemic bodily functions.
There is emerging evidence that the LOX enzymes, expressed in both white and brown fat,

Dobrian et al. Page 6

Prog Lipid Res. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



are important for proper adipogenesis and ensuing adipocyte function in regulating whole-
body energy homeostasis [63].

Study of adipogenesis is possible through the in vitro characterization of the 3T3-L1
fibroblastic pre-adipocyte cell line [64]. The addition of a differentiation cocktail media to
these cells promotes full differentiation into a pure population of adipocytes characteristic of
accumulated triacylglycerol content in lipid-droplets within eight days [65]. This
adipogenesis is dependent on an exogenous supply of free fatty acids to facilitate activation
of peroxisome proliferator-activated receptors (PPARs; nuclear receptor proteins that
function as transcription factors). PPARγ is a strict requirement for early adipocyte
differentiation, and several fatty acid metabolites of lipoxygenases appear to be necessary
for PPARγ activation [63,66-68]. Treatment of 3T3-L1 pre-adipocytes with either NDGA
(nordihydroguaiaretic acid; a non-specific lipoxygenase inhibitor) or baicalein (a 12-LOX
inhibitor) prevents adipogenesis. This phenotype is rescued upon treatment with
rosiglitazone (a selective agonist of PPARγ in adipoctyes), consistent with the rise in PPARγ
agonists during early adipocyte differentiation (marked by extensive mitotic clonal
expansion) and observations that certain lipoxygenase metabolites activate PPARs [69-73].
In addition, during this period of differentiation, arachidonic acid is necessary for proper
glucose uptake and is dependent on LOX activity [74]. These results demonstrate that
certain LOXs are responsible for generating the endogenous PPARγ ligands necessary for
adipogenesis. This role appears to be specific to the epidermal-derived 12-LOX, as the
platelet- and leukocyte-derived 12-LOXs are expressed at very low levels in the pre-
adipocytes and early differentiated adipocytes and adipogenic defects were not reported in
leukocyte-12-LOX or platelet-12-LOX deficient mice [35,63,75-77]. Additionally,
Hallenborg and colleagues recently demonstrated that overexpression of epidermal-12-LOX
and its hepoxilin lipid products in 3T3-L1 preadipocytes stimulate adipogenesis, whereby
epidermal-12-LOX knockdown prevents this differentiation [78]. The hepoxilins also
accumulate during early 3T3-L1 differentiation and appear to directly activate PPARγ to
promote adipogenesis [78]. It is possible that leukocyte-12-LOX may participate in
lipogenesis during late stage adipogenesis since epidermal- and platelet-12-LOX expression
are absent and leukocyte-12-LOX expression is maximal by day 8 of 3T3-L1 differentiation,
which immediately follows the rise in activity of several key enzymes of fatty acid synthesis
[76,79] (also, our unpublished observations).

Leukocyte-12-LOX (12/15-LOX) appears to be a significant player in modulating adipocyte
function in vivo in diet-induced mouse models of obesity. Comparison of 12/15-LOX
knockout mice with C57BL6/J mice fed either a standard chow or high-fat “Western” type
diet (a diet containing 0.2% cholesterol of which 42% calories are from fat, 15.3% calories
are from protein, and 42.7% calories are from carbohydrate, primarily sucrose) revealed that
12/15-LOX is the primary enzyme generating the 12(S)-HETE products under obese
conditions [35]. This increased 12/15-LOX activity coincides with increased inflammation
both systemically and in epididymal adipose tissue [35,36]. Although both C57BL6/J and
12/15-LOX knockout mice exhibited similar weight gain and increased adiopcyte size when
fed the Western diet, fewer incidences of macrophage infiltration and activation were
observed in the epididymal adipose fat pads from 12/15-LOX knockout mice when fed the
Western diet. Additionally, MCP-1 staining was significantly decreased in adipose tissue
from the 12/15-LOX knockout mice. Furthermore, mice were also protected from
developing insulin resistance and maintained normal adiponectin (an adipokine that
improves insulin sensitivity by increasing energy expenditure and fatty acid oxidation)
levels during the high fat diet [80]. Thus 12/15-LOX activation under diet-induced obese
conditions plays a significant role in mediating inflammation via ensuing adipocyte
dysfunction. Preliminary data also suggests that the Zucker rat genetic model of obesity and
insulin resistance shows higher 12/15-LOX in adipose tissue compared to lean controls
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(Chakrabarti, Wen, Dobrian, Cole, Ma, Pei, Williams, Bevard, Vandenhoff, Keller, Gu, and
Nadler, unpublished observations).

Further validation for a role in 12/15-LOX pathway in mediating adipocyte function comes
from studies revealing a regulatory role of lipocalin-2 on 12/15-LOX activity. Lipocalin-2, a
glycoprotein member of the lipocalin superfamily, is a novel abundant adipokine implicated
in obesity-mediated inflammation and insulin resistance. Reports demonstrate that
lipocalin-2 expression is increased and correlates with increased inflammation in visceral
adipose tissue from obese patients and obese rodent models [81-83]. Lipocalin-2 directly
regulates adipose inflammation by activating 12/15-LOX activity [84]. Law and colleagues
demonstrated that epididymal adipose tissue from lipocalin-2 deficient mice placed on a
high-fat diet exhibited decreased macrophage infiltration, markers of oxidative stress,
inflammatory markers, including TNF-α and MCP-1, with marked improvement in insulin
action with increased insulin-stimulated glucose uptake compared to control C57BL6/J mice
on a high fat diet [84]. This protection correlated with decreased expression of 12/15-LOX
and its primary metabolite, 12(S)-HETE, and decreased metabolism of its main substrate,
arachidonic acid, in adipose tissue. Addition of cinnamyl-3,4-dihydroxy-α-cyanocinnamate
(CDC; 12-LOX inhibitor) prevented lipocalin-2 induction of TNF-α and ensuing insulin
resistance in adipose tissue of normal C57BL6/J mice fed a high-fat diet. Interestingly
lipocalin-2 appears to exert adipose-specific effects on 12/15-LOX as expression of the
latter was not altered and insulin sensitivity did not differ in other tissues examined between
wild-type and lipocalin-2 deficient mice. Thus, these studies provide additional evidence
implicating a critical role for 12/15-LOX in modulating adipocyte dysfunction with
significant whole-body consequences.

Less investigation has been devoted to the role of epidermal- and platelet-12-LOX in
obesity-induced adipocyte dysfunction. However, a recent paper from our lab has
demonstrated that platelet-12-LOX is upregulated in adipocytes from C57BL6/J mice fed a
Western diet for 12 weeks, and interestingly treatment with an angiotensin type 1 receptor
(AT1R) blocker, valsartan, can abolish this effect [85]. It would be of interest to follow-up
whether 12/15-LOX is also regulated by the renin-angiotensin system (RAS) in adipose
tissue, as much evidence reveals that LOX products upregulate RAS components and in turn
can be regulated by the RAS in several cell types [85].

A more detailed evaluation of the role of 12/15-LOX-derived products in adipocytes was
performed by Chakrabarti and colleagues [76]. 12(S)-HETE and 12(S)-HPETE were added
directly to differentiated 3T3-L1 adipocytes and shown to increase inflammatory cytokine
expression of TNF-α, MCP-1, IL-6, and IL-12p40, and to decrease the expression of the
anti-inflammatory adipokine, adiponectin. In addition, these products induced insulin
resistance as measured by a decrease in insulin-mediated activation of key insulin-signaling
proteins, such as Akt and IRS-1 (insulin receptor substrate-1). Furthermore, a free fatty acid
component of high-fat diets, palmitic acid, was able to induce 12/15-LOX expression in
3T3-L1 adipocytes. These results demonstrate that products of 12/15-LOX pathway can
directly impair adipocyte function in a fatty acid surplus environment.

A model for a proposed role of leukocyte 12-LOX (12/15-LOX) in adipose tissue
inflammation is shown in Figure 3. When this tissue is stressed, such as under diet-induced
obesity, the adipocytes no longer function properly, and this leads to significant
inflammatory consequences. Leukocyte-12-LOX appears to greatly contribute to this local
and systemic decline (Figure 3). Thus further dissecting the role and regulation of
leukocyte-12-LOX in adipose tissue will be of utmost importance and could lead to the
development of novel therapeutic agents to reduce complications associated with obesity.
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5. THE 12/15-LIPOXYGENASE PATHWAY IN VASCULAR PHYSIOLOGY AND
PATHOLOGY

The mammalian 12- and 15-LOXs have high substrate specificity oxidizing predominantly
ω-6 (arachidonic and linoleic acids) but also the ω-3 (docosahexanoic) acid [86-88].
Different LOXs oxidize fatty acids both in the free form or in complex lipid-protein
assemblies like membrane phospholipids and cholesterol esters in lipoproteins [87]. While
having high substrate specificity, the positional selectivity of the oxygenation varies, leading
in most cases to a mix of 12- and 15HPETEs which are subsequently reduced to their
corresponding hydroxyl, more stable derivatives HETEs. In contrast, oxygenation of linoleic
acid leads to the uniformly predominant formation of 13HPODEs and subsequently the
reduced 13HODEs. Recently, 15-LOX1 was also implicated in oxygenation of ω-3
docosahexanoic acid leading to the resolvin D1 and protectin D1 classes of eicosanoids
[89-91] (described in the Introduction and in Figure 1).

The complex array of metabolites formed as a result of 12- and 15-LOX catalytic action are
tissue- and species-specific. Furthermore, the various metabolites generated in different
pathways have pro- or anti-inflammatory actions and the net result varies according to the
cell type and intracellular redox state. The evidence for protective vs. deleterious roles of
different LOX isoforms and metabolites on vascular reactivity, atherosclerosis, and
angiogenesis will be discussed.

5.1. The 12/15-lipoxygenase pathway in vascular reactivity and remodeling
5.1.1.Effects on vascular reactivity—All of the 12- and 15-LOX isoforms illustrated in
Figure 4 (blue boxes) reportedly have roles in modulation of vascular tone and remodeling
via actions on vascular endothelium, smooth muscle cells, or both [92]. Expression of 15-
LOX-1 was reported for human aortic endothelial cells [93] and 15-LOX-2 for pulmonary
aortic and umbilical vein endothelial cells [94]. Also, in human vascular smooth muscle
cells an isoform similar to the mouse 12/15-LOX was detected and is regulated by
angiotensin II. Additionally, 15-LOX-1 is the major LOX expressed in rabbit aorta and other
arteries [95,96]. The vasoactive properties of 15HPETE were reported related to both
vasodilation and vasoconstriction [92] (Figure 4). The net effect on vascular function is dose
and species specific and also depends on other local regulators. For example, the contractile
responses to 12/15 LOX products varied substantially between different vascular segments
in guinea pig basilar arteries [97].

One important determinant of vasoconstrictive effect is production of bioactive nitric oxide
(NO). Multiple interactions were uncovered between NO and the LOX pathway [98,99].
LOX-expressing cells reduce NO bioavailability compared to LOX negative controls [100].
This process is guanylate cyclase dependent and results in vasoconstriction [100]. In vivo
data confirmed that 12/15-LOX knockout mice have elevated biosynthesis of NO [101].
Also, in neo-natal rabbit pulmonary arteries increased expression of 12/15-LOX following
chronic hypoxia induced vasoconstriction via formation of 15(S)-HETE [102]. On basal
tone, 15HETE and 15HPETE cause slight relaxation at low concentrations while inducing
constriction at high concentrations [92]. At least in rabbit aorta the vasomotric effect of 15-
LOX metabolites 15HETE and 15HPETE are endothelium-dependent [103,104]. In pre-
constricted rabbit arterioles, treatment with AA led to vasorelaxation, the effect was
endothelium dependent and the major mediators were the THETA and HEETA metabolites
formed via the 15-LOX-1 pathway [104] (Figure 4). A recent report identified 13-H-14,15
EETA as the major vasodilator via K(+) channel activation and smooth muscle cell
hyperpolarization in rabbit aorta and mesenteric arteries treated with AA [105]. Therefore,
the HEETAs and THETAs may represent the major mediators of the actions of 15-LOX-1
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on vascular relaxation in both conduit and resistance arteries (for a comprehensive review
see [92]).

Like the 15-LOX pathway, various mediators generated via the 12-LOX pathway were
found in arteries of different species. 12(S)-HETE is produced by arteries and the vascular
endothelium [106,107]. The endothelium-dependent vasodilatory effect of 12(S)-HETE was
reported for rat basilar and mesenteric arteries [108,109] and for human and porcine
coronary vessels [107,110]. Smooth muscle cells underwent hyperpolarization in response to
addition of 12(S)-HETE through activation of large conductance K channels (BKca) [110].
However, vasoconstrictive responses were reported following treatment of dog renal arcuate
arteries with 12(S)-HETE [111]. The alternative 12-LOX pathway generating hepoxilins and
trioxilins has not been well studied in vasculature. One report showed production of trioxilin
C3 by rat aorta treated with 12-LOX, which apparently mediates vasodilation [112]. Also,
hepoxilin A3 while having no direct effect on vascular tone in rat aorta and portal vein,
potentiated norepinephrine induced vascular contractions in a calcium-dependent fashion
[113]. Lipoxins promote vasorelaxation in aorta and pulmonary arteries [114].

5.1.2. Effects on vascular remodeling—The 12- and 15-LOX pathways are also
involved in vascular remodeling of conduit vessels and arterioles. Vascular remodeling is an
active process that occurs in response to elevated shear stress or pressure. As a result of
remodeling the vessel wall becomes thicker and involves active proliferation and migration
of the smooth muscle cells. The lipoxygenase pathway is involved in smooth muscle cell
migration, proliferation and apoptosis, processes involved in physiologic or pathogenic
vessel remodeling [13]. 12/15-LOX metabolites have mitogenic and chemotactic effects on
smooth muscle cells and signaling through MAP kinase has been implicated for the
mitogenic effects [115,116]. Similar data were obtained for 13HPODE effects on porcine
vascular smooth muscle cells [16], and both the MAP kinase and NFkB and VCAM-1 were
actively involved [117]. In addition, NFkB was involved in 13HPODE effect on inducing
MCP-1 expression in smooth muscle cells [117]. Also, a recent report identified Rho-kinase
pathway as the mediator of 15HETE remodeling effect induced by hypoxia in rat pulmonary
arteries [118]. A unique effect for 12HETE and 13HODE was reported in porcine aortic
smooth muscle cells on increasing intracellular calcium and cGMP which counteracted
vasoconstriction [119]. Migration of porcine aortic smooth muscle cells in response to
PDGFB was inhibited following silencing of 12/15LOX, suggesting that the LOX pathway
is actively involved in smooth muscle cell migration [120]. Additionally, the effect of 15(S)-
HETE on smooth muscle cell migration requires IL-6 expression via CREB activation [121]
and is Src-dependent STAT3 mediated [122]. Furthermore, 12/15-LOX appears to be
involved in cell cycle regulation and hence in control of proliferation, since vascular smooth
muscle cells from 12/15LOX knockout mice displayed decreased S-phase entry [123].
Finally, a recent paper indicates that 15HETE protects rat pulmonary arterial smooth muscle
cells from apoptosis via the PI3K/Akt pathway [124]. Collectively the data indicate that 12-
and 15-LOX pathways have multiple effects on both endothelial and smooth muscle cells
contributing to vasomotric properties and active remodeling of the large and small vessels.

5.2. Pro- and anti-atherogenic effects of the 12/15-lipoxygenase pathway
Atherosclerosis is associated with chronic inflammation at every stage and the progression
of the disease may critically depend on the balance between the pro- and anti-inflammatory
factors at any given time. The 12- and 15-LOX enzymes and associated metabolites are
critical players in generation as well as resolution of inflammation [20,125]. While the pro-
atherogenic role of the 5-LOX pathway is generally better established in animal models and
human studies, the role of the 12- and 15-LOX pathways is not yet clear. The pro-
atherosclerotic effects of this latter pathway include effects on LDL oxidation, monocyte
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recruitment to the vessel wall, effects on proliferation of smooth muscle cells, and
production of pro-inflammatory cytokines by various cells component or homing into the
vessel wall [20]. Amongst the anti-atherosclerotic effects is inhibition of oxidative stress by
15-LOX metabolites as well as formation of anti-inflammatory lipids, such as lipoxins that
have vasodilatory actions (Figures 1, 4 and 5) and protectins and resolvins that reduce
endothelial-leukocyte adhesion, reduce monocyte chemotaxis and promote a more anti-
inflammatory macrophage phenotype in the vessel wall.

Studies in various animal models susceptible to develop atherosclerosis are in line with both
the anti- and pro-atherogenic effect of 12/15-LOX pathway (Figure 5). Mice overexpressing
human 15-LOX in the endothelium are more susceptible to develop atherosclerotic lesions
compared to littermate controls [126]. However, transgenic rabbits overexpressing human
15-LOX in the macrophages were protected against developing atherosclerosis [127]. Also,
in rabbits with transient anemia that is characterized by overexpression of 15-LOX in
reticulocytes, lipid deposition in the thoracic aorta was significantly diminished compared to
controls [128]. Interestingly, apoE, LDLR and apobec/LDLR knockout mice lacking the 12-
LOX gene consistently showed reduction of atherosclerosis [40,129-131]. The apparent
discordance in the results may be due in part to the species- and cell- specific pattern of
expression of the 12- and 15-LOX enzymes and metabolites, as described earlier in the
review. Also, the formation of anti-inflammatory lipid mediators via consecutive action of
15-LOX and 5-LOX may explain why in some 15-LOX deficient models an athero-
protective effect is reported. For example, lipoxin A4 generation, with general vasorelaxant
and anti-inflammatory properties, requires the sequential action of 15- and 5-LOX or of 5-
and 12-LOX. Hence, formation of lipoxins may be trans-cellular involving, for instance,
neutrophils and platelets [132]. In line with this comes a recent study by Funk et al. in which
the double 15- and 5-LOX apoE knockout mice are protected from developing
atherosclerosis [133].

Among the athero-relevant LOX isoforms, the 12/15-LOXs are unique due to their
capability to oxidize lipids in membranes and lipoproteins. Formation of the oxidized LDL
particles in the arterial wall is a hallmark for atheroma initiation and progression due to their
ability to induce foam cell formation. The 15-LOX was shown to directly oxidize LDL in
vitro [134,135]. Also, fibroblasts transfected with 12-LOX cDNA have an enhanced
capability to oxidize LDL in vitro [136]. In macrophages, deletion of 12-LOX led to a
reduced ability to oxidize LDL [77], while LDL oxidation in macrophages treated with
IL-13 or IL-6 was mediated via the 12-LOX pathway [137]. The mechanism by which
cytoplasmic 15-LOX or 12-LOX causes LDL oxidation appears to require translocation of
the enzymes from the cytosol to the plasma membrane where they directly oxidize the LDL
particles [138]. The oxidation requires the binding of LDL particles to the low density
lipoprotein receptor related protein (LRP) [139]. In addition to LDL oxidation, 12/15-LOX
metabolites may contribute to foam cell formation via modulation of scavenger receptor
CD36 on macrophages. 15-LOX, 15(S)-HETE and 13(S)-HODE were all shown to increase
expression of CD36 in macrophages and the effect is mediated via PPARγ activation [71].
Also, recent findings show that 12/15-LOX activity increase degradation of ABCG1
transporter in murine macrophages [140] and the effects occur through p38 MAPK and
JNK2-dependent pathways [141]. However, it is debatable whether the foam cell formation
will be increased in vivo, since 13-HODE activation of PPARα also results in increased
expression of ABCA1 transporter and increased cholesterol efflux from macrophages [142].
Besides LDL oxidation, 15-LOX oxidizes HDL particles, leading to impairment of their
anti-atherogenic function. The 15-LOX oxidized HDL has a lower cholesterol accepting
potential, probably by impaired binding to ABCA1 and SR-BI receptors [143,144]. This
may result in reduced cholesterol efflux from macrophages and increased development of
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the lesional lipid core. Also, HDL3 modification by 15-LOX results in a loss of anti-
inflammatory mechanisms of HDL towards TNF-α in endothelial cells [145].

Another pro-atherogenic mechanism of the 12/15-LOX pathway is via interaction with
angiotensin II. Angiotensin II plays multiple roles in early stages of atherosclerosis and has
been shown to upregulate 12-LOX expression and activity in mouse macrophages and
smooth muscle cells [146]. Enhanced expression of 12-LOX is critical to mediate the
vasoconstrictive properties of angiotensin II, as shown by in vitro data and in 12-LOX
deficient mice [101]. The 12-LOX effect on angiotensin II signaling appears to take place
via AT1R, since valsartan treatment alleviated the inflammation induced by 12-LOX [85].

An additional key mechanism modulated by 12- and 15-LOX pathways is monocyte/
endothelial interaction. Overexpression of 12-LOX in mice significantly increased monocyte
adhesion to the endothelium and resulted in aortic fatty streak formation [147]. On the same
line, addition of 12(S)-HETE and 13(S)-HODE to the endothelial cells of transgenic mice
increased significantly monocyte adhesion [147]. Also, in hyperglycemic mice with
increased expression of 12/15-LOX an augmented monocyte recruitment to endothelium
was reported [147]. The mechanisms include an increase of monocyte chemotaxis via
elevated MCP-1 expression and enhanced monocyte-endothelial adhesion via ICAM-1 and
VCAM-1 [147-149]. 12HETE reportedly increased ICAM-1 expression via activation of
protein kinase Cα [150]. 12/15-LOX may also exert atherogenic effects via modulation of
the pro- inflammatory cytokine IL-12 in macrophages[40]. It has been shown that IL-12 has
pro-atherogenic effects and 12/15-LOX enhances transcription of the IL-12p40 subunit in
macrophages [40]. The effect is apparently not mediated via the 12/15-LOX pro-
inflammatory lipid metabolites, but rather due to oxidative stress that changes the
intracellular redox state [41].

An important pro-inflammatory role is played by 15-LOX-2, which is upregulated by
hypoxia in human macrophages [151]. Increased expression of 15-LOX-2 in human
macrophages induces chemokine secretion and T cell migration, both contributing to plaque
inflammation and instability [152]. Finally, effects of 12- and 15-LOX pathway on vascular
smooth muscle cell migration and induction of pro-inflammatory cytokines secretion
(described in detail above) are contributors to atheroma formation.

While a wealth of evidence points towards a pro-atherogenic role of 12- and 15-LOX
pathway, several reports suggest an anti-atherogenic role mainly through production of lipid
mediators with anti-inflammatory and vasodilatory effects [20,125]. In addition, besides the
pro-inflammatory properties, both the 15(S)-HETE and 13(S)-HODE display anti-
inflammatory effects on circulating and vascular cells. 15(S)-HETE antagonizes the action
of leukotriene B4 on PMNs by inhibiting superoxide production and degranulation [153]; it
also inhibits trans-endothelial migration of PMNs in vitro in response to cytokines [154].
The mechanism involves a substantial reduction in the affinity for LTB4 receptor following
esterification of phospholipids in neutrophils by 15HETE [155]. Also, 13(S)-HODE inhibits
leukocyte and platelet adhesion to the endothelium via binding of the lipid to the vitronectin
receptor [156]. 13(S)-HODE also activates PPARγ and PPARα which results in reduction of
pro-inflammatory TNF-α, IL-1β and IL-6 cytokine expression mainly by interfering with
AP-1 and NFkB transcription factors [157].

The 12- and 15-LOX pathway has a particularly important role in cardiovascular
complications related to insulin resistance and type 2 diabetes. An earlier study showed
increased 12/15-LOX enzymes and metabolites in a diabetic pig model displaying
accelerated atherosclerosis [158]. Also, activation of the 12-LOX pathway and the
downstream STAT-4 signaling was reported during neointima formation in Zucker rats, a
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rodent model of metabolic syndrome [159]. Intimal hyperplasia due to carotid injury has
been prevented by inhibition of rat 12-LOX achieved by ribozyme inactivation [160]. In
addition, inactivation of the 12-LOX in porcine aortic smooth muscle cells significantly
reduced the chemotactic effect of PDGFβ and reduced monocyte adhesion to transfected
endothelial cells [120]. Finally, the 12-LOX pathway plays a role in cardiac enlargement via
effect on cardiac fibroblasts hypertrophy [161].

The 15(S)-HETE could be further metabolized by 5-LOX to the anti-inflammatory lipoxins
A4 and B4 (Fig 1). As described earlier, lipoxins have vasorelaxant actions on aorta and
pulmonary arteries. In addition, they are counteracting the pro-inflammatory actions of
leukotrienes and prostanoids. Lipoxins also limit neutrophil chemotaxis, adhesion, and
transmigration [162,163] and promote uptake of apoptotic neutrophis by macrophages
[164,165]. Interestingly, lipoxins are potent chemoattractants for monocytes but the latter
show features of alternative activation after tissue recruitment and local differentiation
[166]. Hence, the resulting non-phlogistic macrophages show reduced secretion of pro-
inflammatory cytokines and increased scavenging activity of apoptotic cells [167]. This is an
important mechanism in the resolution of plaque inflammation and clearance of
accumulating apoptotic cells is important for plaque stability.

Other families of anti-inflammatory lipid mediators generated via the 15-LOX pathway are
the resolvins and protectins (Figures 1 and 5). Recent studies have shown that some
members of the resolvin and protectin families prevent neutrophil infiltration and cytokine
secretion in models of inflammation, including atherosclerosis [125,168]. Overexpression of
12/15-LOX in macrophages leads to formation of protectin D1 (PD1) and resolvin D1
(RvD1), along with lipoxin A4 (LXA4) during the resolution phase of inflammation [168].
These lipid mediators suppress the pro-inflammatory cytokine production by macrophages
and down-regulate endothelial VCAM-1 and selectin-P [168]. Also, while not involving the
12- or 15- LOX pathways, resolvins of the E-series, derived from eicosapentaenoic acid
(EPA) (in particular the most extensively studied resolvin E1) are important in limiting
inflammation by antagonizing the BLT1 receptor and therefore dampening the effects of
leukotrienes [169]. The potential beneficial role of protectins and resolvins in atherosclerosis
is also of interest in the context of the abundant evidence on cardio-protective effects of ω-3
fatty acids that has otherwise limited mechanistic explanation [170].

Collectively, the studies in cell culture and animal models support a dual role of the 12- and
15-LOX pathways in atherosclerosis (Figure 5). However, to date, the relevance of these
pathways for human atherosclerosis is not clear. The 15-LOX protein was found in
macrophage-rich areas of human fatty streaks [171]. The presence of 15-LOX linoleic acid
metabolite 13HPODE in early lesions, but not in advanced plaques, suggest a more
important role of the pathway at early disease stages [172]. Also, 15-LOX-2 was found in
human carotid plaques and associated to increased local hypoxia [173]. Human 15-LOX
gene contains 11 polymorphisms, of which a −292C>T variant, associated to higher enzyme
activity, showed a tendency towards protection against atherosclerosis in a case-control
study involving 498 Caucasian heterozygotes [174]. In a study genotyping of atherosclerotic
disease, vascular function and genetic epidemiology (ADVANCE) heterozygote carriers of a
near null T560M allele (associated to a 20-fold reduction in enzymatic activity) had an
increased risk of clinical coronary artery disease [175]. While these two studies may suggest
an atheroprotective role of 15-LOX pathway in humans, a recent study indicates that
polymorphisms in ALOX12 gene are associated to sub-clinical atherosclerosis and
biomarkers of disease in families with type 2 diabetes [176]. Larger genetic association
studies are clearly imperative to determine whether the pro- or anti-atherosclerotic effects of
12/15-LOX pathway prevail in human atherogenesis. It is possible the the 12- and 15-LOX
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pathways will play a more prominent role in atherosclerosis associated with insulin resistant
or diabetic states.

Developing conditional knockout models for vascular or immune cells for each of the LOX
isoforms is of utmost importance. Also, to complement the knockout approach and extend
the studies to species other than rodents, it will be crucial to conduct studies using specific
pharmacologic inhibitors for each of the LOX isoforms. Unfortunately, this has been a
limitation in the field, since there are no specific LOX inhibitors that do not also have non-
specific anti-oxidant properties. Also, specific pharmacologic inhibitors for different LOX
isoforms could be used in the future for therapeutic intervention in human disease.
Development of highly specific pharmacological tools acting as isotype specific LOX
inhibitors is therefore an imperative goal that is currently under investigation.

5.3. The 12/15-lipoxygenase pathway in angiogenesis
There is limited evidence that LOX pathways are involved in the control of pathogenic
angiogenesis. Evidence for both promoting and limiting angiogenesis has been published in
different animal models and in humans. The 12/15-LOX pathway was involved in vascular,
retinal, and tumor angiogenesis. A human cell line of prostate cancer over-expressing 15-
LOX-1 displayed increased VEGF secretion and enhanced angiogenesis [177]. In contrast,
in a rabbit skeletal muscle system, co-administration of 15-LOX-1 significantly blunted all
angiogenic effects induced by VEGF-A including capillary number and perfusion and
vascular permeability [178]. A similar effect was noticed in two xenograft models, where
tumor angiogenesis is inhibited in mice overexpressing 12/15-LOX [179]. One possible
mechanism described for the anti-angiogenic effect of the 15-LOX pathway is via reduction
of NO production and availability in endothelial cells [178]. An anti-angiogenic effect of
adenoviral transfection of 15-LOX-1 gene prevented corneal neovascularization induced by
VEGF-A in rabbits [180]. Moreover, substantial alteration in vascular morphology was
reported in subcutaneously implanted mouse tumors overexpressing 12/15-LOX, and the
vascular phenotype was successfully reversed following 12/15-LOX pharmacological
inhibition [181]. 12-LOX, via the 12(S)-HETE metabolite, enhanced angiogenesis and
HIF-1α expression in hypoxic tumor cells of the prostate [182]. 15(S)-HETE has also been
shown to increase pathologic angiogenesis associated with atherosclerosis and re-stenosis
via Src-mediated Egr-1 dependent induction of FGF-2 expression [183]. Finally, recent
evidence suggests that LXA4 and lipoxin A4 receptors have anti-angiogenic effects in a
model of corneal vascularization following injury [184]. LXA4 seems to be a key metabolite
that is responsible for the anti-angiogenic effect of 15-LOX-1 observed in certain angiogenic
model systems [184]. In conclusion, the role of 12/15-LOX pathway in angiogenesis
remains controversial and requires careful future examination.

6. THE 12/15-LIPOXYGENASE PATHWAY IN REGULATION OF RENAL
FUNCTION AND PATHOLOGY

A variety of AA metabolites formed via the three major enzymatic pathways (COX,
CYP450, and LOX) have significant effects on regulation of renal hemodynamics, and
disturbances in any of these pathways can contribute to renal injury, progression to renal
nephropathy and renal function alterations [185-187]. Generation of eicosanoids in the
kidney is altered in a variety of conditions such as hypertension, diabetic nephropathy, and
acute renal failure. Therefore there is evidence that altered vascular production of AA
metabolites could be both cause and effect in various renal pathologic conditions. In this
chapter we will focus solely on evidence for the physiologic and pathogenic role of the 12-
and 15-LOX pathway in the kidney.
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Several studies showed key renal hemodynamic effects of 12- and 15-LOX pathway in the
kidney (Figure 6). 12(S)-HETE and 15(S)-HETE were shown to have vasoconstrictive
actions on renal vessels and glomerular mesangial cells [185,188]. 12HETE infusion in the
renal artery of rats resulted in decreased renal blood flow and glomerular filtration rate
(GFR) [189]. Also, 12(S)-HETE was shown to contribute to vasoconstrictive response of the
renal afferent arteriole to angiotensin II [188]. Likewise, 12(S)-HETE enhanced the
vasoconstrictive effect of angiotensin II in the aorta of SHR through an increase in
intracellular calcium [190]. Recent studies showed that interaction between 12/15-LOX and
angiotensin II is mediated in part by AT1 receptor. 12-LOX enhanced AT1R expression in
diabetic glomeruli and 12-LOX inhibition could ameliorate diabetic nephropathy
progression through downregulation of AT1R expression [191]. Also, valsartan reduced
platelet 12-LOX in mice in adipocytes [85]. Of importance, as described under vascular
actions of 12/15-LOX in this review, there is mutual interaction with the NO production and
signaling. 12/15-LOX induces catalytic consumption of NO and can prevent NO-dependent
soluble guanylate cyclase activation [192]. In accordance to above reported effects, 12/15
LOX knockout mice had reduced vasoconstriction responses to angiotensin II and increased
eNOS expression and NO bioavailability [101].

Of importance, the 12- and 15-LOX pathways also act as mediators of the interaction
between angiotensin II and aldosterone in the adrenal cortex with important implications on
renal function and on cardiac hypertrophy. Angiotensin II stimulated aldosterone production
in both rat and human granulosa cells [193,194]. The major lipid mediator responsible for
this effect is the 12(S)-HETE but not the 15(S)-HETE. Basal aldosterone secretion is not
mediated via the 12-LOX products, however angiotensin-dependent aldosterone secretion is
critically dependent on the the LOX pathway metabolite. A recent report emphasizes the
reciprocal effect of aldosterone on up-regulation of 12- and 15-LOX expression and LDL
oxidation in human vascular smooth muscle cells [195]. Increased production of 12(S)-
HETE and 15(S)-HETE induced increased smooth muscle cell contractility, hypertrophy and
migration as well as enhanced LDL oxidation [195]. Via these effects, 12- and 15-LOX
could contribute to vascular reactivity and atherogenesis, as well as blood pressure
regulation.

Since all the above vascular and glomerular effects contribute to blood pressure regulation,
it is expected for 12/15-LOX pathway to play a role in pathogenesis of hypertension (Figure
6). Indeed, there is evidence for alterations of the 12- and 15LOX enzymes and metabolites
both in humans with essential hypertension and in various animal models of hypertension. In
patients with essential hypertension urinary 12HETE excretion was found to be increased
[196]. Also, a polymorphism in the human 12-LOX gene (encoding for the platelet form) is
associated with essential hypertension [197]. Increased 12(S)-HETE production and 12-
LOX mRNA expression was reported in the vasculature of SHR as well as other animal
models of both angiotensin-dependent and renovascular hypertension [198-200]. Also, blood
pressure was decreased in 12/15-LOX knockout mice that were chronically infused with
angiotensin II [101]. In addition, 12-LOX inhibitors have also been shown to ameliorate
hypertension in different animal models [200,201]. Altogether the data supports a key role
for 12- and 15-LOX pathway in animal and human hypertension; additional studies are
needed to clearly substantiate a causative effect for this pathway in different forms of
hypertension.

The 12- and 15-LOX pathway is the primary LOX pathway implicated in vascular and renal
injury associated with diabetes [6,186] (Figure 6). 12/15-LOX was detected in renal
microvessels, glomeruli mesangial cells, and podocytes [188,202-204]. Importantly, 12(S)-
HETE is increased in urine of diabetic patients with early kidney disease [6,205] and 12-
and 15-LOX mRNA and protein expression increases in parallel with established markers of
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diabetic nephropathy [205]. 12/15-LOX expression has been increased in glomeruli of
diabetic animals and glucose was shown to directly increase 12/15-LOX expression in
cultured mesangial cells [203,205,206]. The LOX pathway is also involved in high glucose-
induced monocyte adhesion to endothelial cells [120,207]. In addition, the 12/15-LOX
pathway is a critical mediator of mesangial cell hypertrophy and matrix accumulation
induced by TGF-β and angiotensin II [101,208,209] and the effect could be blocked by LOX
pharmacological inhibition or by targeted 12/15-LOX gene deletion [6,101,208,209].
Cultured rat mesangial cells treated with TGFβ and angiotensin II displayed increased 12-
LOX mRNA expression and formation of 12(S)-HETE [6].

There is evidence for a dual role of the LOX pathway in acute renal failure. While LOX
enzymes and metabolites were shown to act as vasoconstrictive and pro-inflammatory
mediators in acute and chronic renal disease, there is also evidence for a protective role of
the 15-LOX pathway in acute renal failure mediated by the lipoxin family of metabolites
[210] (Figure 6). The spectrum of bioactivities reported for lipoxins suggests that they may
be protective in various human renal diseases. LXA4 has been demonstrated to oppose the
reduction in renal blood flow and GFR induced by LTD4 infusion, and the effect is owed to
the activation of peptide-LT receptors [185,211]. Lipoxin generation can also shift the
glomerular response from inflammation to resolution and inhibition of monocyte
recruitment [211].

Also lipoxins reportedly reduced PMN chemotaxis, adhesion, and migration across
glomerular endothelial cells [212] and increased clearance of apoptotic PMNs from inflamed
glomeruli [164]; they also inhibited mesangial cell proliferation in response to PDGF and
reduced pro-inflammatory cytokine production [213-215]. Overexpression of 15-LOX in rat
kidney has demonstrated a protective role in immune-mediated glomerulonephritis and is
paralleled by lipoxin formation [216]. Of importance, structural analogs of LXA4 show
therapeutic potential for the treatment of acute renal failure. Also, in a murine model of
ischemia-reperfusion injury (IRI) the lipoxin analog 15-epi-16(FPhO)-LXA4-Me reduced
PMN infiltration, preserved tubular integrity, and normalized serum creatinine levels [217].
Also, SOCS-1 and -2 were increased in IRI animals treated with the LXA4 analogue and
several pro-inflammatory cytokine expression was reduced [217]. Finally, the role of LXA4
in its ability to downregulate the mesangial cell receptor tyrosine kinases in primary cultures
of human mesangial cells is suggestive of a protective role of lipoxins against renal chronic
inflammatory response [213,214]. A very recent report indicates a protective role of
protectins (PD1) in IRI [218]. Therapeutic or dietary amplification of PD1 formation via
increase in dietary ω-3 PUFA dramatically impacts renal lipid autacoid formation and
positive outcome of IRI [218].

In conclusion, the 12- and 15-LOX enzymes and metabolites have a dual role in renal
disease and are key regulators of renal function. Better understanding of this pathway in
different renal pathologies will lead to newer therapeutic options in the future for treatment
of hypertension and chronic renal disease and renal injury. This is another example where
development of targeted pharmacologic inhibitors will be valuable for research and as
therapeutic tools.

7. THE 12/15-LIPOXYGENASE PATHWAY IN DISEASES OF THE NERVOUS
SYSTEM
7.1. Cerebrovascular disease

Concentrations of AA in neuronal tissue rise (up to 30 times normal) after an ischemic
insult, and are a source of the neurotoxic free radicals involved in cell death and damage
following a stroke [219]. While earlier data suggested a role for cycloxygenase and its
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products in cerebrovascular disease, more recent studies have demonstrated a role for the
12/15-LOXs [220,221]. Van Leyen et al. demonstrated increased concentrations of 12/15-
LOX in the neurons surrounding an infarct in a murine model of transient middle cerebral
artery occlusion, and showed that intraperitoneal injection of the 12/15-LOX inhibitor
baicalein prior to the ischemic event led to reductions in infarct size [221]. Similar
reductions in infarct size were seen in a 12/15-LOX knockout mouse model. In a rabbit
model of embolic stroke, baicalein given within one hour of a stroke reduced post-stroke
deficits in behavior [222].

Accumulation of the oxidant peroxynitrite has been suggested as having an important role in
neuron damage after ischemia. Zhang et al., in studies involving rat neurons in culture,
showed that 12-LOX mediated peroxynitrite toxicity, perhaps after activation by increased
intracellular zinc release [223]. 12-LOX activation led to activation of p38 MAPK and
caspase-3 proteins involved in neuronal cell death. The non-selective lipoxygenase inhibitor
AA-861 reduced the reactive oxygen species generation seen after neuronal exposure to
zinc, and also blocked the activation of p38 MAPK. Pallast et al. have recently associated
murine 12/15-LOX with apoptosis-inducing factor (AIF), a mitochondrial protein involved
in a caspase-independent pathway of neuron death after ischemic stroke [224]. They found
that 12/15-LOX and AIF co-localized in peri-infarct areas of the mouse cortex following
cerebral ischemia, and demonstrated that 12/15-LOX was activated after glutathione
depletion, leading to AIF movement to the nucleus of the neuron. This translocation was
inhibited by baicalein. This nuclear translocation step may be necessary for the apoptotic
effect of AIF, which may promote condensation of nuclear chromatin [225]. Jin et al.
evaluated the role that 12/15-LOX plays in the cerebral vasculature [226]. The 12/15-LOX
inhibitors AA-861 and baicalein were each able to reduce the cell injury seen after
transformed human brain endothelial cells were exposed to hydrogen peroxide. 12/15-LOX
was expressed in both neurons and vascular endothelial cells in peri-ischemic areas of
mouse brain after ninety minutes of middle cerebral artery occlusion, but was not present in
astrocytes. Jin et al. also studied the role of 12/15-LOX in the blood-brain-barrier [226].
They found that baicalein reduced the loss of the endothelial tight junction protein claudin-5
seen after ischemia. 12/15-LOX knockout animals had less leakage of immunoglobulin IgG
into the brain after ischemia, as did animals treated with baicalein, both evidence for a role
for 12/15-LOX in the disruption of the blood brain barrier seen after an ischemic event. By
studying the water content of ischemic brains, the group was able to show that baicalein-
treated animals and 12/15-LOX knockout mice had less water, and therefore less cerebral
edema, after an ischemic insult.

7.2. Alzheimer’s disease
A role for 12/15-LOX has been suggested in Alzheimer’s disease (AD). Lebeau et al.
demonstrated that 12/15-LOX and 12HETE were involved in the over-expression of c-Jun, a
protein necessary for the apoptosis associated with the beta-amyloid peptide found in AD
[227]. Praticò et al. demonstrated by Western blot analysis elevated concentrations of 12/15-
LOX in the frontal and temporal brain regions of patients that had died from AD when
compared to controls without AD [4]. 12HETE and 15HETE concentrations were elevated
in both of these brain regions as well. In an extension of this work, Yao et al. showed that
12HETE and 15HETE concentrations were elevated in the cerebrospinal fluid of individuals
with both mild cognitive impairment and AD [228]. Elevated HETE concentrations
correlated with isoprostane F2α, a marker of lipid peroxidation that is elevated in AD. A
recent study in a murine model of AD that develops neuro-amyloidosis and cognitive
deficits revealed that deleting 12/15-LOX reduced amyloid formation and improved
memory, and that this effect involved the beta-secretase proteolytic pathway [229].
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7.3. Parkinson’s disease
12/15-LOXs may also play a role in the neuromotor disorder Parkison’s disease (PD). Li et
al. demonstrated that decreased neuronal concentrations of the antioxidant glutathione, an
early finding in (PD), were associated with 12-LOX activation (as assessed by 12HETE
production) in vitro [230]. Canals et al. have suggested that NO, under glutathione-depleted
conditions, becomes neurotoxic, particularly to the dopaminergic neurons of the midbrain
that are damaged in PD [231]. Later work by this group demonstrated that inhibition of 12-
LOX with nordihydrogualaretic acid and baicalein prevented this neurotoxic effect of NO
[3]. The addition of AA to cells that had been depleted of glutathione was found to be
neurotoxic, as was the separate addition of the 12-LOX product, 12HETE. The authors
hypothesized that the glutathione-depletion seen in PD led to neurotoxicity via a NO/12-
LOX pathway [3].

8. CONCLUSIONS AND FUTURE PERSPECTIVES
Arachidonic acid and other polyunsaturated fatty acids, and their lipid metabolites, play very
important roles in human health and disease. This review has outlined the functions of 12-
and 15-lipoxygenases, enzymes that are present in multiple systems and organs of the body,
including pancreatic islet, adipose, vascular, immune, renal, and nervous tissues. As a result
of their widespread expression in the body, 12- and 15-LOX and their metabolites are
important in a variety of disease states, including diabetes (both type 1 and type 2),
atherosclerosis, renal disease, obesity, and various diseases of the central and peripheral
nervous system. In all of these areas, the development of isoform specific LOX-inhibitors
will be necessary to fully establish the therapeutic opportunity to treat these disorders by
reducing expression or activity of 12/15-LOXs. A recent paper has indicated promising new
15-LOX-1 inhibitors have been developed [232]. Much interesting and important work is
still needed and underway in this exciting field. Nevertheless, the existing data indicate
promise of the 12/15-LOX pathway as a target in a number of disorders, particularly related
to diabetes and its complications and in states of insulin resistance.
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AIF apoptosis-inducing factor

AA arachidonic acid
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CDC cinnamyl-3,4-dihydroxy-α-cyanocinnamate
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EPA eicosapentaenoic acid
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ELISA enzyme-linked immunosorbent assay

GC/MS gas chromatography-mass spectrometry

HPETE hydroperoxyeicosatetraenoic

HETE hydroxyeicosatetraenoic acid

HODE hydroxyoctadecadienoic acid

HPODE hydroperoxyoctadecadienoic acid

LT leukotrienes

LRP lipoprotein receptor-related protein

LXA4 lipoxin A4

LOX lipoxygenase

12-LOX 12-lipoxygenase

15-LOX 15-lipoxygenase

LC liquid chromatography

MS/MS tandom mass spectrometry

MAPK mitogen-activated protein kinase

NO nitric oxide

NDGA nordihydroguaiaretic acid

PD Parkinson’s Disease

PPAR peroxisome proliferators-activated receptor

PC phosphatidylcoline

PE phosphatidylethanolamine

PUFA polyunsaturated fatty acid

PD1 protectin D1

PKC protein kinase C

RAS renin-angiotensin system

RvD1 resolvin D1

TxA2 thromboxane

TLR4 Toll-like receptor 4
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Figure 1. Major 12- and 15-lipoxygenase isoforms and their lipid substrates and products
Several 12- and 15-LOX isoforms are known in mammalian cells, including 12-LOX in
platelets, and 12/15LOX in vascular and immune cells (for a comprehensive list of human
isoforms please refer to Table 1). When arachidonic acid is metabolized, all of the different
LOX isoforms generate lipid hydroperoxides (HPETEs) as the primary product. The latter
are rapidly reduced intracellularly to their corresponding hydroxides (HETEs).
Alternatively, the LOX-derived hydroperoxides can serve as precursors for the generation of
other classes of secondary lipid mediators such as lipoxins, hepoxilins and trioxilins. 12-
HPETE generated by the action of 12/15-LOX could be converted to the bioactive 8-
hydroxy-11,12-epoxyeicosatrienoic acid (hepoxilin A3) and the inactive 10-hydroxy-11,12-
epoxyeicosatrienoic acid (hepoxilin B3); also, the the trihydroxy-containing trioxilin such as
8,9,12-trihydroxyeicosatrienoic acid (trioxilin C3) can be formed in some tissues. 15-
HPETEs can be generated by the 12/15LOX isoform present in rodents and rabbits or by one
of the two 15-LOX isoforms in humans. While 15-LOX1 produces 90% 15-HPETEs and
10% 12-HPETES, 15-LOX-2 produces exclusively 15-HPETEs and can only use
arachidonic acid as a substrate. Like the 12-HPETE, the 15-HPETE can generate also a
variety of secondary lipid mediators such as HEETAs (hydroxyepoxyeicosatrienoic acids) or
THETAs (trioxilins). Another category of metabolites generated by the sequential action of
15-LOX and 5-LOX are the lipoxins (trihydroxytetraenes). Lipoxin generation may occur in
the same cell or in a trans-cellular fashion, involving two different cell types expressing
different LOX isoforms. 15-LOX-1 and epidermal 12-LOX (e12-LOX) can also metabolize
linoleic acid generating 13-HPODE (hydroperoxyoctadecadienoic acid) which is further
peroxidized to 13-HODE. Docosahexanoic acid is also a substrate for 15-LOX-1 which
metabolizes the ω3 fatty acid to a hydroperoxy derivative which is rapidly transformed into
two epoxy intermediates. Subsequently 5-LOX converts these intermediates into resolvin D
series. Also, the epoxy intermediates can be directed towards formation of protectin D1
following the catalytic action of an epoxydase.

Dobrian et al. Page 33

Prog Lipid Res. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2. 12-Lipoxygenase associated pathways impacting islet function
Activation of 12-lipoxygenase (12-LOX) either as a consequence of inflammation or
elevated free fatty acids (FFA) leads to a reduction in the pool of arachidonic acid (AA;
concentric circles with arrows). Since AA is important for insulin secretion this leads to
impaired insulin release. The products of 12-LOX activity, 12-HPETE/12-HETE further
contribute to a diminished AA pool by increased activation of the cyclooxygenase (COX2)
enzyme that also uses AA as a substrate in the production of prostaglandin (PGE2). Lipid
products of 12-LOX activity (12-HPETE/12-HETE) induce mitochondrial dysfunction
which contribute to induced cellular oxidative stress in addition to the induction of second
messenger signaling, including p38 MAPk/cJun that lead to new gene expression. The
activity of 12-LOX and its lipid mediators are upstream of induced STAT4 signaling and
interleukin-12 (IL-12) expression in islets. These are key mediators in the recruitment of
inflammatory cells/mediators that compound islet dysfunction.
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Figure 3. Proposed role of 12-lipoxygenase in obesity-induced inflammation in adipose tissue
Excess consumption of energy leads to a situation where adipocytes become stressed due to
the increasing demand for adipocyte storage of nutrients. The adipocytes become
hypertrophic, leading to adipocyte dysfunction marked by ensuing inflammation. Secretion
of inflammatory cytokines by adipocytes leads to activation and recruitment of macrophages
into the fat bed, further propagating the inflammatory cascade. This inflammatory response
is not confined to the adipose tissue, but also exerts systemic effects on other tissues in the
body. A key player in the onset and progression of the inflammatory cascade is
leukocyte-12-lipoxygenase (leukocyte-12-LOX). This enzyme is activated in a fatty-acid
surplus environment whereby its products promote the onset of adipocyte dysfunction by
inflammation.

Dobrian et al. Page 35

Prog Lipid Res. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4. Roles of various lipoxygenase isoforms and lipid metabolites on vascular reactivity
All major 12- and 15-LOX metabolites exhibit vasomotric properties. The same metabolite
may exert either vasorelaxant or vasoconstrictive effects that are concentration-, vessel- or
species-specific dependant. For example, 15-HETE and 15-HPETE cause slight relaxation at
low concentrations while inducing vasoconstriction at higher concentrations. THETA and
HEETA have an endothelium-dependent vasorelaxant effect on pre-constricted rabbit aorta
and mesenteric arterioles. Evidence suggests that HEETAs and THETAs are major
mediators of the action of 15-LOX-1 on vascular relaxation in conduit and resistance
arteries. The 12-HETE generated from 12-LOX action has vasorelaxant effects in rat, human
and porcine vessels. However, a vasoconstrictive effect of 12-HETE was reported for a
similar concentration in dog renal arcuate arteries. Lipoxins reportedly produce
vasorelaxation in aorta and in pulmonary arteries.
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Figure 5. Pro- and anti-atherogenic effects of various 12- and 15-lipoxygenase lipid metabolites
The controversial effects of different 12- and 15-LOX isoforms on the development of
atherosclerosis in different animal models or in human epidemiological studies may be due
to both pro-and anti-atherogenic effects mediated via particular lipid metabolites. While 12-
LOX - generated lipid products such as 13-HODEs and 12(S) HETEs have more
unanimously atherogenic effects, both 15-LOX-1 and 15-LOX-2 may have pro- or anti-
atherogenic effects depending on metabolites formed and the specific cell type and animal
model. For example, 15-LOX-1 may generate lipoxins, protectins and resolvins that are
associated with resolution of inflammation in vasculature. However, both 15-LOX-1 and 15-
LOX-2 produce 15-HETEs that can exert anti-inflammatory effects by antagonizing the
effects of leukotriene B4 on polymorphonuclear cells and inhibiting their trans-endothelial
migration in response to cytokines.
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Figure 6. Effects of 12- and 15-lipoxygenases and their metabolites on renal function and
pathology
Arachidonic acid-derived 12-HETEs and 15-HETEs generated by platelet 12-LOX or 15-
LOX-1 or 15-LOX-2 are associated with hypertension and may have a causative effect by
reducing renal blood flow, reducing GFR and NO production and by potentiating
angiotensin II-related vasoconstriction. In addition, 12- and 15-HETEs may contribute to
progression of diabetic nephrophathy via profibrotic effect, matrix proliferation and
inflammation. Also, 15-LOX may generate lipoxinA4, via sequential action of 5-LOX or the
protectin D1 lipid mediators. The latter were shown to protect against ischemic renal injury
(IRI) and chronic renal inflammation by reducing local PMN infiltration and attenuating
fibrosis and tubulo-sclerosis.

Dobrian et al. Page 38

Prog Lipid Res. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Dobrian et al. Page 39

Table 1
Lipoxygenase isoforms in humans. (From Entrez Gene, through the National Center for
Biotechnology Information)

Humans have five different lipoxygenase (LOX) genes, termed by convention “ALOX” for arachidonic acid
lipoxygenase. 5-LOX predominantly produces leukotrienes (LTs), while 12- and 15-LOX predominantly
produce the eicosanoids hydroperoxyeicosatetraenoic acid (HPETE) and hydroxyeicosatetraenoic acid
(HETE). All LOX genes are located on chromosome 17.

Gene Name Abbreviation Alternative
Nomenclature

Predominant Enzyme
Products

Arachidonate 12-
lipoxygenase

ALOX12 12S-LOX
platelet-type
lipoxygenase 12

12(S)-HPETE
12(S)-HETE

Arachidonate 12-
lipoxygenase,
12R type

ALOX12B 12R-LOX,
epidermis-type
lipoxygenase 12

12(R)-HPETE
12(R)-HETE

Arachidonate 15-
lipoxygenase

ALOX15 15-LOX-1 15(S)-HPETE, 15HETE

Arachidonate 15-
lipoxygenase,
type B

ALOX15B 15-LOX-2;
15-LOX-B

15(S)-HPETE,
15HETE

Arachidonate
lipoxygenase 3

ALOXE3 eLOX3,
epidermis-type
lipoxygenase 3

Epoxyalcohols
(hepoxilins), from 12(R)-
HPETE
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Table 2

Summary of current evidence for 12-lipoxygenase (12-LOX) involvement in diabetes

1 Islet inflammation: Interleukin-1 beta regulates the expression of a leukocyte type of 12-LOX in rat islets and RIN m5F cells [43].

2 Defect in glucose-stimulated insulin secretion in both rodents and human islets: 12-LOX products reduce insulin secretion and β
cell viability in human islets [30].

3 Insulin resistance on high-fat fed diet in rodents: 12/15-LOX is required for the early onset of high fat diet-induced adipose tissue
inflammation and insulin resistance in mice [36].

4 β cell apoptosis: Evidence that increased 12-LOX expression impairs pancreatic β cell function and viability [31,45].

5 Activation of oxidative stress and/or mitochondrial dysfunction in islets: 12-HETE increases mitochondrial nitric oxide by
increasing intramitochondrial calcium [46].

6 Activation of stress kinase pathways such as MAPK and JUNK in islets: The stress-activated c-Jun protein kinase (JNK) is
stimulated by LOX pathway product 12-HETE in RIN m5F cells [44].

7 Autoimmune destruction of islets by activation of Th1 response in type 1 diabetes: Non-obese diabetic (NOD) mice congenic for a
targeted deletion of 12/15-LOX are protected from autoimmune diabetes [38].

Prog Lipid Res. Author manuscript; available in PMC 2012 January 1.


