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OBJECTIVE—We have previously shown that overnight fasted
women have higher insulin-stimulated whole body and leg glu-
cose uptake despite a higher intramyocellular triacylglycerol
concentration than men. Women also express higher muscle
mRNA levels of proteins related to lipid metabolism than men.
We therefore hypothesized that women would be less prone to
lipid-induced insulin resistance.

RESEARCH DESIGN AND METHODS—Insulin sensitivity of
whole-body and leg glucose disposal was studied in 16 young
well-matched healthy men and women infused with intralipid or
saline for 7 h. Muscle biopsies were obtained before and during
a euglycemic-hyperinsulinemic clamp (1.42 mU � kg�1 � min�1).

RESULTS—Intralipid infusion reduced whole-body glucose in-
fusion rate by 26% in women and 38% in men (P � 0.05), and
insulin-stimulated leg glucose uptake was reduced significantly
less in women (45%) than men (60%) after intralipid infusion.
Hepatic glucose production was decreased during the clamp
similarly in women and men irrespective of intralipid infusion.
Intralipid did not impair insulin or AMPK signaling in muscle and
subcutaneous fat, did not cause accumulation of muscle lipid
intermediates, and did not impair insulin-stimulated glycogen
synthase activity in muscle or increase plasma concentrations of
inflammatory cytokines. In vitro glucose transport in giant sar-
colemmal vesicles was not decreased by acute exposure to fatty
acids. Leg lactate release was increased and respiratory ex-
change ratio was decreased by intralipid.

CONCLUSIONS—Intralipid infusion causes less insulin resis-
tance of muscle glucose uptake in women than in men. This
insulin resistance is not due to decreased canonical insulin
signaling, accumulation of lipid intermediates, inflammation, or
direct inhibition of GLUT activity. Rather, a higher leg lactate
release and lower glucose oxidation with intralipid infusion may
suggest a metabolic feedback regulation of glucose metabolism.
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W
hole-body insulin resistance plays a major
role in the pathogenesis of type 2 diabetes
and has generally been related to high plasma
concentrations of lipids. Intralipid infusion

increases plasma lipid concentrations and has been used
as a model to investigate lipid-induced insulin resistance in
rodents (1,2) and humans (3–5). The studies uniformly
demonstrate that intralipid infusion reduces whole-body
insulin sensitivity markedly within 3–4 h. Various mecha-
nisms have been suggested to explain this phenomenon,
including lipid-induced interaction with proximal insulin-
signaling capacity, accumulation of lipid intermediates,
and inflammation (5). The classic lipid-induced inhibition
of the insulin-signaling pathway has, however, been chal-
lenged in recent studies where insulin receptor substrate
(IRS)-1 tyrosine phosphorylation, IRS-1–associated phos-
phatidylinositol (PI) 3-kinase activity, Akt, and AS160
phosphorylation were unaltered after 2- to 6-h intralipid
infusion in rats (1) and in lean (6) and obese (7) men.

Only one of the human studies included women and, in
that study, a matching of sexes with respect to important
matching criteria (i.e., aerobic fitness levels) was not
performed (8). In a rodent study, 2 h of intralipid infusion
reduced insulin-stimulated whole-body glucose uptake in
male rats but not in females rats (9) and, in accordance,
phosphorylation of IRS-1 and PI 3-kinase activity was
reduced only in male rats (9). We have previously reported
that women have greater insulin-stimulated whole-body
and leg glucose uptake than matched men despite higher
intramyocellular triacylglycerol (IMTG) concentration
(10). Also, women have higher muscle mRNA levels of
several proteins involved in muscle lipid metabolism in-
cluding fatty acid translocase/CD36 (FAT/CD36), mem-
brane-bound fatty acid–binding protein (FABPpm),
cytosolic fatty acid–binding protein (FABPc), lipoprotein
lipase (11), and a higher percentage of myosin heavy chain
type 1 muscle fibers (10,12,13). Therefore, the aims of this
study were 1) to test the hypothesis that women are less
prone to intralipid-induced insulin resistance on a whole-
body level and in skeletal muscle than men and 2) to
investigate the molecular mechanisms responsible for the
intralipid-induced decrease in insulin sensitivity.

RESEARCH DESIGN AND METHODS

Women (n � 8) and men (n � 8) were recruited for the study after gaining
written informed consent of the study protocol and possible risks. The study
was approved by the Copenhagen Ethics Committee (number KF 01 261127)
and performed in accordance with the Declaration of Helsinki II.

All subjects were moderately fit, and women and men were matched with
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respect to maximal oxygen uptake (VO2peak) expressed relative to lean body
mass (LBM), habitual physical activity level, and exercise training history
(Table 1). LBM and lean leg mass (LLM) were calculated from their body
composition determined by dual-energy X-ray absorptiometry (DPX-IQ Lunar;
Lunar Corporation, Madison, WI) and by hydrostatic weighing (14). Women
were eumenorrheic, and none were taking oral contraceptives. All experi-
ments in women were performed in the midfollicular phase of their menstrual
cycle (days 7–11).
Experimental protocol. All subjects underwent two experimental trials
including infusion of either intralipid (20%, containing 200 g soy oil and 12 g
egg-lecithin per liter; Fresenius-Kabi, Copenhagen, Denmark) plus heparin or
saline (control) for 7 h in randomized order. After 8 days on a controlled diet
(60 energy percent [E%] carbohydrate, 15 E% protein, and 25 E% fat), the
subjects arrived at the laboratory at 7:00 A.M. after a breakfast (20% of the daily
energy intake) given 3 h (5:00 A.M.) before the experiment started. Subjects
had abstained from exercise training 48 h before the experimental day. After
45 min of rest in the supine position, expired air was collected in Douglas bags
for determination of resting metabolic rate. A venous catheter was inserted
into an antecubital arm vein, and blood was drawn for determination of sex
hormones. Then infusion of saline (1.15 ml � kg�1 � h�1) or intralipid (1.15 ml �
kg�1 � h�1) plus heparin (0.2 units � kg�1 � min�1) was initiated. A catheter was
inserted into an antecubital vein of the contralateral arm for infusion of stable
isotopes. Teflon catheters were inserted into the femoral artery and vein and
a thermistor (EDSLAB T.D. Model 94-030-2.F; Baxter Healthcare CA) was
inserted through the femoral vein catheter for blood flow determination. After
3 h of infusion of intralipid plus heparin or saline, a bolus injection of
[6,6-2H]glucose was given (3.203 mg/kg body mass) within 1 min followed by
a constant infusion (0.055 ml � kg�1 � min�1) for the remaining experimental
period (4 h). After 5 h of saline or intralipid plus heparin infusion, subjects
underwent a 120-min hyperinsulinemic-euglycemic clamp (1.42 mU � kg body
mass�1 � min�1) initiated with a bolus injection of insulin (9.0 mU/kg)
(Actrapid, Novo Nordisk, Bagsvaerd, Denmark). Blood was sampled simulta-
neously from the femoral artery and vein, femoral venous blood flow was
determined (15), and expired air was sampled in Douglas bags frequently
during the experiment.

Biopsies were obtained from the vastus lateralis muscle and from the
subcutaneous adipose tissue near the umbilicus before the clamp (after 5 h of
intralipid or saline infusion), 30 min after initiation of the clamp, and at the
end of the clamp. One part of the muscle biopsy and the adipose tissue
biopsies were immediately frozen in liquid nitrogen and stored at �80°C.
Another part of the muscle biopsy was mounted in embedding medium, frozen
in precooled isopentane, and stored at �80°C. Before biochemical analysis,
muscle samples were freeze-dried and dissected free of all connective tissue
and blood under a microscope. Analysis and calculations are described in the
supplementary data, available in an online appendix at http://diabetes.
diabetesjournals.org/cgi/content/full/db10-0698/DC1.
Glucose transport in giant sarcolemmal vesicles in rats. To study the
hypothesis that the effect of intralipid infusion is a direct effect of fatty acids
on sarcolemmal glucose transport, giant sarcolemmal vesicles were prepared
from rat gastrocnemius muscle (16) and incubated in vitro with linoleic acid
because intralipid contains 52% linoleic acid. 2-Deoxy glucose transport into
giant vesicles was measured as previously described (16). More details are
given in the online appendix.

Statistical analysis. All data are expressed as means � SE. Data were
evaluated using two-way ANOVA with repeated measures for both time and
sex. For variables independent of time, a two-way ANOVA was used to
determine influences of sex and trials. For variables independent of time and
trial (delta values), an unpaired t test was performed to test for differences
between men and women. A Tukey test was used as a post hoc test.
Correlation was investigated using the Pearson product moment correlation.
A significance of P � 0.05 was chosen.

RESULTS

Characteristics of the subjects are given in Table 1.
Resting metabolic rate and respiratory exchange ra-
tio. Basal oxygen uptake per kilogram LBM was 4.9 � 0.3
and 4.74 � 0.2 ml � min�1 � kg LBM�1 in women and men,
respectively, in the control trial and remained unchanged
preclamp (after 5 h infusion) and during the clamp in both
sexes. In the intralipid trial, oxygen uptake was similar
compared with control at basal and preclamp and re-
mained unchanged during the clamp in women, whereas it
was increased to 5.2 � 0.1 ml � min�1 � kg LBM�1 (P �
0.05) in men and was higher (P � 0.05) compared with the
control trial.

Respiratory exchange ratio (RER) was �0.78 in women
and men in both trials preclamp. In the intralipid trial, RER
remained at this level during the clamp in both sexes,
whereas RER increased (P � 0.05) in the control trial in
both women and men and was higher (P � 0.05) than in
the intralipid trial (Table 2).
Insulin sensitivity. In response to insulin infusion, the
arterial insulin concentration reached �90 �U/ml in both
sexes in both trials (Table 2).

In the control trial, insulin-stimulated whole-body glu-
cose infusion rate to maintain euglycemia was 54 � 5 and
56 � 5 �mol � min�1 � kg�1 LBM in women and men,
respectively (Fig. 1A). Glucose infusion rate was de-
creased (P � 0.05) by intralipid infusion and significantly
more in men (�38%) than in women (�24%) also when
expressed in absolute numbers (Fig. 1B).

Glucose infusion rate expressed per kilogram body mass
was 42 � 4 and 47 � 4 �mol � min�1 � kg�1 body mass in
women and men, respectively, in the control trial and was
reduced (P � 0.05) to 31 � 3 and 29 � 4 �mol � min�1 � kg�1

body mass, respectively, in the intralipid trial.
Insulin-stimulated leg glucose uptake increased contin-

uously from basal to 120 min of the clamp and was higher
(P � 0.05) in women than in men in both trials (Fig. 1C and
D). In the control trial, insulin-stimulated leg glucose
uptake expressed per kilogram LLM was higher (P � 0.05)
in women (69 � 8 �mol � min�1 � kg�1 LLM) than in men
(45 � 6 �mol � min�1 � kg�1 LLM) and reduced (P � 0.05)
by 43% in women and 60% in men (P � 0.05) in the
intralipid trial (Fig. 1E). However, in absolute numbers,
the intralipid-induced suppression of insulin-stimulated
leg glucose uptake (delta glucose uptake) was not different
between women and men (Fig. 1F).
Hepatic glucose production. Hepatic glucose production
preclamp was 10.0 � 0.4 and 11.4 � 0.6 �mol � min�1 � kg�1

in women and men, respectively, in the control trial and
10.6 � 0.6 and 10.5 � 0.5 �mol � min�1 � kg�1 in the
intralipid trial, respectively. Hepatic glucose production
decreased similarly to slightly negative values in both
sexes during the clamp in both trials (data not shown).
Blood flow and blood parameters. Venous blood flow,
epinephrine, and norepinephrine remained unchanged
during the clamp in both trials and was not changed with
intralipid infusion in either sex (Table 2).

TABLE 1
Subject characteristics

Women Men

n 8 8
Age (years) 25 � 1 25 � 1
Height (m) 1.74 � 0.03 1.81 � 0.03
Body mass (kg) 65.3 � 3.0* 77.9 � 2.8
BMI (kg/m2) 21.5 � 0.5 23.5 � 0.5
Body fat (%) 23.4 � 0.9* 17.4 � 1.4
LBM (kg) 50.0 � 2.5† 64.3 � 2.6
LLM (kg) 8.6 � 0.4† 11.8 � 0.5
Vo2peak

l/min 3.1 � 0.1† 4.1 � 0.1
ml � kg�1 body mass � min�1 47.3 � 1.0† 52.3 � 0.6
ml � kg�1 LBM � min�1 61.9 � 1.5 63.4 � 1.3

Training history
Frequency (workouts/week) 2.9 � 0.4 2.7 � 0.3
Duration (h/week) 2.8 � 0.2 3.9 � 0.6

Data are means � SE. *P � 0.05; †P � 0.001 vs. women.
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In response to insulin, the concentration of long-chain
fatty acids (LCFAs) was completely suppressed (P � 0.05)
in the control trial in both sexes, whereas triacylglycerol
concentrations remained unchanged. Intralipid infusion
markedly elevated (P � 0.05) arterial plasma LCFAs
(1,706 � 197 and 2,020 � 216 �mol/l in women and men,
respectively) and triacylglycerol concentrations (1,706 �
209 and 2,478 � 180 �mol/l in women and men, respec-
tively, P � 0.05), compared with the control trial and
remained unchanged during the clamp in both sexes
(Table 2).

Leg lactate release was higher preclamp (P � 0.05) in
the intralipid trial than in the control trial in both sexes
and increased during the clamp to a larger extent in the
intralipid trial than in the control trial (Table 2).

Basal serum estradiol concentration was 0.28 � 0.05 and
0.11 � 0.01 nmol/l (P � 0.05) in women and men, respec-
tively, in the control trial and 0.21 � 0.03 and 0.11 � 0.01
nmol/l (P � 0.05) in the intralipid trial. Basal serum
progesterone concentration was 1.92 � 0.15 and 2.08 �
0.15 nmol/l in women and men, respectively, in the control
trial and 2.17 � 0.25 and 2.07 � 0.10 nmol/l in the intralipid
trial.

Muscle substrates. Preclamp muscle glycogen concen-
tration was 374 � 23 and 433 � 33 mmol/kg dry weight
(d.w.) in women and men, respectively, in the control trial
and 455 � 39 and 444 � 37 mmol/kg d.w. in the intralipid
trial and was not changed during the clamp in either trial.
Proximal insulin signaling in skeletal muscle. IRS-1–
associated PI 3-kinase activity, Akt Thr308, Ser473, and
AS160 phosphorylation were similar in both trials and
sexes preclamp and increased (P � 0.05) similarly during
the clamp in both trials and sexes (Fig. 2). AMPK Thr172

phosphorylation was not different between trials and
sexes preclamp and remained unchanged during the clamp
(Fig. 2E).

Glycogen synthase (GS) activity expressed as the I-form
(Fig. 3C) and fractional velocity (%FV) (data not shown)
was similar in both trials and sexes preclamp and in-
creased during the clamp in both sexes in both trials.
Protein content of HKII, GLUT4, and Munc 18C.

Preclamp hexokinase II (HK II) protein expression was
higher (P � 0.05) and HKII mRNA expression tended to be
higher (P � 0.1) in women than in men and remained
unchanged during the clamp in both trials and sexes (Fig.

TABLE 2
Femoral venous blood flow, arterial blood concentration, plasma substrate concentration, hormone concentration, and serum
cytokine concentration in the control and intralipid trial in women and men

Control Intralipid
Preclamp
(300 min)

End of clamp
(420 min)

Preclamp
(300 min)

End of clamp
(420 min)

RER
Women 0.80 � 0.02 0.89 � 0.01� 0.77 � 0.01 0.79 � 0.01†
Men 0.78 � 0.02 0.87 � 0.01� 0.76 � 0.01 0.78 � 0.01*

Blood flow (ml/min)
Women 523 � 44 607 � 55 626 � 91 564 � 93
Men 520 � 90 670 � 58 472 � 83 491 � 58

Arterial blood glucose (mmol/l)
Women 5.4 � 0.1 5.4 � 0.1 5.3 � 0.1 5.3 � 0.1
Men 5.2 � 0.1 5.1 � 0.1 5.3 � 0.1 5.3 � 0.1

Plasma LCFA (�mol/l)
Women 541 � 50§ 9 � 4� 1,706 � 197† 1,415 � 236†
Men 519 � 92� 15 � 6� 2,020 � 216† 1,572 � 111†

Plasma triacylglycerol (�mol/l)
Women 484 � 24 409 � 26 1,706 � 209* 2,038 � 351†
Men 540 � 45 471 � 47 2,478 � 180†‡ 2,765 � 253†

Plasma insulin (�U/ml)
Women 8.0 � 0.8 87.7 � 5.7� 9.4 � 0.7 88.8 � 2.9�
Men 7.8 � 0.5 94.3 � 9.5� 10.1 � 1.0 86.9 � 7.6�

Plasma epinephrine (nmol/l)
Women 0.36 � 0.06 0.40 � 0.09 0.21 � 0.04 0.47 � 0.11
Men 0.34 � 0.07 0.45 � 0.09 0.26 � 0.05 0.38 � 0.09

Plasma norepinephrine (nmol/l)
Women 1.2 � 0.23 1.33 � 0.28 0.98 � 0.11 1.34 � 0.17
Men 1.46 � 0.36 1.48 � 0.35 1.14 � 0.18 1.38 � 0.21

Serum TNF-� (pg/ml)
Women 2.21 � 0.66 2.08 � 0.66 2.27 � 0.85 2.28 � 0.82
Men 1.50 � 0.32 1.44 � 0.45 1.42 � 0.36 1.49 � 0.45

Serum adiponectin (pg/ml)
Women 26.5 � 3.1 25.0 � 2.9 28.5 � 2.2 27.1 � 2.6
Men 10.5 � 1.3‡ 9.9 � 1.2‡ 11.1 � 1.3‡ 10.1 � 1.2‡

Lactate release (�mol/min)
Women 5 � 2 74 � 6� 11 � 2* 111 � 11*�
Men 6 � 2 63 � 9� 11 � 1* 95 � 16*�

Data are means � SE of eight determinations in both women and men. *P � 0.05, †P � 0.001 vs. control trial; ‡P � 0.05 vs. women, §P �
0.05, �P � 0.001 vs. previous time point.
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3A and B). Insulin-stimulated leg glucose uptake corre-
lated with HKII protein expression (r � 0.58, P � 0.02, n �
16) when combining values from women and men in the
saline trial. This was due to a significant correlation in
the women alone (r � 0.74, P � 0.035, n � 8) but not in the
men alone (supplementary Fig. 1). GLUT4 and Munc 18C

protein expression were similar in both trials and sexes
before and during the clamp (Fig. 3D and E).
IMTG and lipid intermediates. In the basal state, the
content of IMTG in vastus lateralis muscle was greater
(P � 0.05) in women than in men in both type 1 and type
2 fibers (Fig. 4). Preclamp mean IMTG concentration was
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�85 mmol/kg d.w. in women in both trials, which was 42%
higher than in men (�50 mmol/kg d.w. in both trials).
IMTG content remained unchanged during the clamp in
both trials and sexes.

In the control trial, the preclamp content of LCFA-CoA
was 51 � 8 and 52 � 6 nmol/g d.w., DAG was 140 � 12 and
167 � 36 nmol/mg d.w., and ceramide was 26 � 10
and 28 � 9 nmol/mg d.w. in women and men, respectively,
and was not changed in the intralipid trial (LCFA-CoA was
47 � 6 and 42 � 4 nmol/g d.w., DAG was 185 � 29 and
167 � 25 nmol/mg d.w., and ceramide was 27 � 8 and 32 �
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9 nmol/mg d.w. in women and men, respectively). LCFA-
CoA, DAG, and ceramide content remained unchanged
during the clamp in both trials.
Cytokines. Serum tumor necrosis factor (TNF)-� concen-
tration was similar in both trials and sexes before and
during the clamp (Table 2). Serum adiponectin concentra-
tion was higher (P � 0.05) in women than in men before
and during the clamp in both trials (Table 2). Preclamp
plasma resistin concentration was 10.9 � 0.77 and 10.6 �
1.11 ng/ml in the control trial in women and men, respec-
tively, and was not different from the intralipid trial.
Plasma resistin concentration remained unchanged during
the clamp in both trials (data not shown).

Fiber type composition, fiber area, and capillary density
can be found in supplementary Table 1 (online appendix).
Adipose tissue. Akt Ser473 phosphorylation preclamp
was similar in women and men in both trials and increased
significantly during the clamp in both sexes and trials
(Fig. 5A).

Phosphorylation of AMPK decreased during the control
clamp in both women and men, and this was prevented by
intralipid infusion. Phosphorylation of acetyl-CoA-carbox-

ylase (ACC) was similar in both sexes and trials before and
during the clamp (Fig. 5B and C).
Glucose transport in giant sarcolemmal vesicles in
rats. Glucose transport was similar when giant sarcolem-
mal vesicles were incubated with linoleic acid in concen-
trations from 0 to 700 �mol/l and 190 �mol/l BSA and
decreased with incubation of cytochalasin B (Fig. 6).
Interestingly, we also observed that unbound fatty acid
concentration did not interfere with glucose uptake into
giant sarcolemmal vesicles until it reached 400 �mol/l
using both linoleic and palmitic acid (data not shown).
This unbound fatty acid concentration was �200-fold
higher than the estimated unbound interstitial fatty acid
concentration in the subjects that were infused with
intralipid.

DISCUSSION

In agreement with our hypothesis, women were less prone
to acute lipid-induced insulin resistance than men on the
whole-body level and measured as percentage reduction of
leg glucose uptake. In contrast to the current dogma
linking the effect of acute lipid-induced insulin resistance
to decreased tyrosine phosphorylation of IRS-1 (17), insu-
lin-stimulated IRS-1–associated PI 3-kinase activity (17–
19), Akt Ser473 phosphorylation (17), and nPKC activity
(5), intralipid-induced insulin resistance of skeletal muscle
glucose uptake was not accompanied by changes in mark-
ers of the insulin-signaling cascade (Fig. 3) or AMPK. Akt
phosphorylation in subcutaneous adipose tissue was also
unimpaired (Fig. 5). Furthermore, intralipid infusion did
not increase muscle content of LCFA-CoA, DAG, cer-
amide, and IMTG in women or men. In contrast to the
effect of intralipid on glucose uptake, but supporting the
lack of effect on the insulin-signaling cascade, intralipid
infusion did not decrease activation of GS in muscle.
Infusion of intralipid, furthermore, did not change plasma
concentrations of inflammatory cytokines and did not
change the intrinsic activity of glucose transporters, as
judged by the lack of effect of fatty acids on glucose
transport in giant sarcolemmal vesicles. On the other
hand, there was indirect evidence for a decrease in pyru-
vate dehydrogenase (PDH) activity with intralipid such as
increased leg lactate release and decreased RER, which, as
proposed by Randle et al. (20), might decrease glucose
uptake. Consistent with our observations, a few other
studies have also failed to observe intralipid-induced in-
teractions with parts of the insulin-signaling cascade.
These include studies where insulin-mediated whole-body
glucose disposal was reduced after 2–6 h of intralipid
infusion in lean (6) and obese (7) subjects without any
changes in IRS-1 tyrosine phosphorylation (7), insulin-
stimulated IRS-1–associated PI 3-kinase activity (7), or Akt
Ser473 phosphorylation (6,7). In addition, Hoy et al. (1)
recently reported no changes in IRS-1, Akt, or AS160
phosphorylation after 3 and 5 h intralipid infusion in rats.
Clearly changes in insulin sensitivity of glucose uptake can
be induced independent of changes in insulin signaling.
For instance, glucose infusion (21) and short-term high-fat
feeding (22) caused whole-body insulin resistance without
changes in Akt and AS160 phosphorylation in rats (21,22).
In aerobically fit humans, increased insulin sensitivity of
glucose uptake after exercise is not accompanied by
increased activation of the proximal insulin-signaling cas-
cade (23,24). We therefore contend that intralipid-induced
insulin resistance of glucose uptake in human skeletal
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muscle is unrelated to impairment of the canonical insulin-
signaling pathway, a contention that is supported by the
finding that insulin-induced activation of GS was also
unimpaired. This latter observation indicates that the
effect of intralipid is specific to glucose transport and is

not a general impairment of insulin effects. Supporting our
interpretation, it has been shown that 2 weeks of high-fat
feeding in C57BL6J mice impaired glucose uptake in
cardiomyocytes without changes in Akt phosphorylation,
AS160, and PDH activity (22). In that study, it was found
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that total GLUT4 content and translocation measured by
subcellular fractionation and immunofluorescence were
significantly decreased after high-fat feeding (22). Al-
though GLUT4 translocation could not be assessed in the
present human study, it is possible that intralipid did
interfere with GLUT4 translocation, docking, or fusion and
that this is unrelated to defects in the canonical insulin-
signaling cascade.

An accumulation of lipid intermediates such as LCFA-
CoA, DAG, and ceramide as well as high IMTG levels has
been reported to be associated with intralipid-induced
suppression of insulin signaling. For instance, in healthy
men, 5- to 6-h intralipid infusion resulted in accumulation
of ceramide (25), LCFA-CoA (6), and a threefold increased
DAG content accompanied by decreased protein kinase C
activity (5). However, in the latter study, the intralipid
infusion was carried out on different subjects than the
controls, which may explain the large difference in DAG
content between trials. Furthermore, the subjects were
30–44 years old, physical activity level was not mentioned,
and BMI ranged from 22 to 27 kg/m2. Absolute fitness level
and BMI could probably play a role in whole-body sub-
strate handling during intralipid infusion and may contrib-
ute to explain the discrepant findings in that study
compared with our study. With regard to ceramide accu-
mulation, palmitate serves as a precursor for ceramide
synthesis (26) and because intralipid consists primarily of
soybean oil, which contains unsaturated fatty acids, one
would not expect ceramide accumulation during intralipid
infusion. In the present study, no difference was observed
in LCFA-CoA, DAG, or ceramide content in the control
trial compared with the intralipid trial in women or men.
Our findings are supported by studies where young healthy
subjects infused with intralipid decreased whole-body
insulin sensitivity without any changes in ceramide con-
tent (5,26).

In the present study, no significant change in IMTG was
found with intralipid infusion. Others have reported re-
markably large increases in IMTG content during 4- to 6-h
intralipid infusion, e.g., 20 and 60% in the soleus and
tibialis anterior muscles, respectively (27), and 56% in the
vastus lateral muscle (4). However, to increase IMTG

concentrations by 50% in a total muscle mass of 45 kg
would require 280 mmol triacylglycerol, provided that the
uptake in all muscles would be equal, which is 2.2 times
more than what reportedly was infused in the quoted
studies (4,27).

In an attempt to elucidate the mechanisms impairing
insulin action in the present study, we also evaluated
inflammatory cytokines that have been suggested to in-
hibit insulin signaling (28). Inflammatory cytokines such
as TNF-� and resistin levels were not different in the
intralipid trial compared with the control trial in women or
men. Furthermore, because the insulin-signaling pathway
was not inhibited by intralipid infusion, it is unlikely that
insulin resistance in the present study was caused by
inflammation.

AMPK is an important energy sensor in skeletal muscle
and a decrease in its activity and/or protein expression in
muscle has been found in several rodent models of insulin
resistance (29) as well as in some (30) but not all (31)
studies of type 2 diabetic patients. Furthermore, infusion
of glucose to rats leads to insulin resistance and decreased
AMPK activity (32). Finally, activation of AMPK in rat
muscle increased insulin sensitivity (33). Together, these
observations led us to examine whether intralipid infu-
sion, which is also an acute energy overload, decreased
AMPK activity. This was not the case in either muscle or
subcutaneous adipose tissue, but interestingly the clamp
procedure resulted in a slight decrease in AMPK phosphor-
ylation in adipose tissue, which, however, was prevented
by intralipid infusion (Figs. 3E and 5B).

In the present study, we measured lactate release and
found that intralipid increased lactate release from the leg
in both sexes. This finding might suggest that PDH activity
was inhibited in the intralipid trial in accordance with the
Randle cycle (20). It was previously found that intralipid
inhibited the insulin-mediated decrease in PDK4 mRNA in
humans (6) and in rats (1,34), which would be expected to
impair the insulin-mediated increase in PDH activity. How-
ever, in a study by Pilegaard et al. (35), 4 h of intralipid
infusion increased PDK4 mRNA and PDH-E1� phosphor-
ylation without corresponding changes in PDHa activity
measured in vitro. This finding might indicate that PDHa
activity measured in vitro may not accurately reflect
activity in vivo. Alternatively, changes in PDHa activity
might be too small to be detectable in an in vitro assay. At
any rate, the lower RER values recorded during intralipid
infusion during the clamp in the present study indicate a
lower carbohydrate oxidation rate consistent with lower
conversion of pyruvate to acetyl-CoA. Whether the Randle
cycle could also contribute to decreased glucose uptake is
more doubtful, since no accumulation of glucose-6-
phophate or free glucose (data not shown) was observed
in accord with earlier findings using nuclear magnetic
resonance spectroscopy (18).

The present finding that intralipid infusion decreased
whole-body insulin sensitivity 38% in men and only 26% in
women compared with the control situation was observed
despite similar insulin-stimulated reduction in hepatic
glucose production and similar impairment in insulin-
stimulated leg glucose uptake in both sexes when ex-
pressed in absolute numbers (Fig. 1F). This allowed for
the speculation that impaired whole-body insulin sensitiv-
ity also relates to defects in adipose tissue. However,
similar to the findings in skeletal muscle, Akt Ser473

phosphorylation in adipose tissue was not different be-
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tween women and men and was not affected by intralipid
(Fig. 5A). Previously, sex differences in intralipid-induced
insulin resistance were investigated showing that 5 h of
intralipid infusion reduced insulin-stimulated whole-body
glucose uptake in men but not in women (8). Findings
reported in that study were, however, conducted in
women and men matched only with respect to BMI with
no considerations of aerobic physical activity level, which
is important when comparing sexes (10,36). The study
included both pre- and postmenopausal women, and the
premenopausal women were studied twice in the follicular
phase of their menstrual cycle with 5 to 10 days between
the trials (8). Therefore, serum estradiol concentrations
likely differed between the control and the intralipid trial,
which may confound the results. In this study, insulin-
stimulated whole-body insulin sensitivity was not different
between women and men in contrast to our previous
findings showing that women were more insulin sensitive
than well-matched men (10). In that study, subjects fasted
overnight before the experiment, whereas in the present
study, a breakfast was given, which perhaps can influence
the results. Still, women were more insulin sensitive in leg
muscle glucose uptake than men in agreement with previ-
ous findings (10). An explanation for the higher insulin-
stimulated leg glucose uptake in women than in men could
be linked to 28% higher type 1 fibers and 28% higher
capillary density as discussed previously (10). Further-
more, in the present study, a 56% higher HKII protein
expression was found in women than in men, and HKII
protein expression correlated (r � 0.74, P � 0.035) with
insulin-stimulated leg glucose uptake in women (supple-
mentary Fig. 1), suggesting that increased HKII may play a
role in increased muscle insulin sensitivity in women. This
has also been suggested by experiments in mouse muscle
where increased HKII expression increased insulin-stimu-
lated glucose uptake at high uptake rates (37).

In conclusion, while women are less prone to acute
lipid-induced insulin resistance than men, insulin resis-
tance was not accompanied by accumulation of lipid
intermediates, signs of inflammation, or decreased signal-
ing in the canonical insulin-signaling pathway in muscle or
subcutaneous adipose tissue or decreased AMPK phos-
phorylation. The lack of inhibition of signaling is sup-
ported by the finding that insulin-induced activation of GS
was not affected by intralipid. Moreover, glucose transport
measured across sarcolemmal vesicles in vitro was not
reduced when vesicles were incubated with different fatty
acid levels, indicating that glucose transport or transporter
activity is not directly impaired by the presence of lipids.
Intralipid increased leg lactate release during insulin infu-
sion and others have found that a fat-rich diet in mice
decreases GLUT4 translocation in cardiomyocytes in the
absence of changes in insulin signaling. Thus, taken to-
gether with our findings, the currently accepted mecha-
nism for acute intralipid-induced insulin resistance of
glucose uptake is challenged. A higher leg lactate release
and lower glucose oxidation with intralipid infusion may
rather suggest a metabolic feedback regulation of glucose
metabolism.
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