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Background: Copy number variants (CNVs) have recently been reported to be associated with several au-
toimmune conditions. Moreover, loci involved in immunity are enriched in CNVs. Therefore, we hypoth-
esized that CNVs in immune genes associated with Graves’ disease (GD) may contribute to the etiology of
disease.
Methods: One hundred ninety-one North American Caucasian GD patients and 192 Caucasian controls were
analyzed for CNVs in three major immune regulatory genes: CD40, PTPN22, and CTLA-4. Copy number was
determined using quantitative-PCR (Q-PCR) assays specifically designed for determining copy numbers in
genomic DNA. Additionally, a well-characterized CNV in the amylase gene was typed in a separate dataset
of DNA samples that were derived from cell lines or blood.
Results: No CNVs could be confirmed in the CD40 and CTLA-4 genes, even though a CD40 CNV is cataloged
in the Database of Genomic Variants. Only the PTPN22 CNV was confirmed in our cohort, but it was rare
and appeared in only two individuals. A key finding was that the source of DNA has a significant effect on
CNV typing. There was a statistically significant increase in amylase locus deletions in cell line-derived
DNA compared to blood-derived DNA samples.
Conclusions: We conclude that CNV analysis should be performed only using blood-derived DNA
Samples. Additionally, the CTLA-4, CD40, and PTPN22 loci do not harbor CNVs that play a role in the
etiology of GD.

Introduction

Graves’ disease (GD) represents one of the most com-
mon autoimmune diseases in the United States with a

prevalence approaching 1% (1). GD is an organ-specific au-
toimmune disease characterized by the formation of thyroid-
stimulating hormone receptor (TSHR) autoantibodies that
stimulate the TSHR-inducing secretion of excess thyroid
hormones leading to thyrotoxicosis (2,3). GD is a complex
disease whose etiology involves an interaction of multiple
inherent genetic components and various environmental
triggers [reviewed in Ref. (4)]. Several susceptibility genes for
GD have been identified, including tissue-specific genes, such
as thyroglobulin and TSHR (1), and a set of immune regula-
tory genes. Of the immune regulatory genes associated with
GD, the major one is HLA-DR (5–7). The key HLA-DR variant
associated with GD is arginine at position 74 of the DRb chain
(8). Three non-HLA immune-regulatory genes also contribute

significantly to the genetic risk for disease: CTLA-4, PTPN22,
and CD40 [reviewed in Ref. (9)].

So far, variants that were the focus of genetic studies in GD
included single-nucleotide polymorphisms (SNPs) and micro-
satellites. However, recently it has been shown that copy number
variants (CNVs) are also associated with complex diseases, in-
cluding autoimmune diseases [reviewed in Ref. (10)]. CNVs are
large DNA segments, ranging from kilobases to megabases, that
are altered within the genome as a result of duplications, dele-
tions, insertions, inversions, or complex combinations of re-
arrangements [reviewed in Ref. (11,12)]. Immune regulatory
genes have been found to be enriched with CNVs, suggesting
that CNVs in immune-related genes may predispose to auto-
immune diseases [reviewed in Ref. (12,13)]. We hypothesized
that CNVs in the three major immune-regulatory genes associ-
ated with GD, CTLA-4, CD40, and PTPN22, may play a role in
the etiology of GD. Therefore, the aim of this study was to test
CNVs in these three genes for association with GD.

1Division of Endocrinology, Department of Medicine, Mount Sinai School of Medicine, New York, New York.
2Division of Endocrinology, The University of Cincinnati College of Medicine, Cincinnati, Ohio.
3Genome Center, Cincinnati Children’s Hospital Medical Center and 4Bronx VA Medical Center, Bronx, New York.

THYROID
Volume 21, Number 1, 2011
ª Mary Ann Liebert, Inc.
DOI: 10.1089/thy.2010.0262

69



Subjects and Methods

Subjects

The project was approved by the Mount Sinai Institutional
Review Board. One hundred ninety-one North American
Caucasian GD patients were studied. GD was diagnosed by
(i) clinical and biochemical primary hyperthyroidism, (ii)
diffuse goiter, and (iii) the presence of TSHR antibodies and/
or a diffusely increased I-131 uptake in the thyroid. Of the 191
GD patients 107 (56.0%) had ophthalmopathy. The average
age of onset of GD was 40.4 years. Our controls consisted of
192 North American Caucasian individuals without personal
or family history of thyroid disease. All controls had normal
thyroid functions, and negative thyroid antibodies.

DNA purification

For the comparison of CNVs between blood- and cell line-
derived DNA, 218 blood-derived DNA samples and 253 cell
line-derived DNA samples were extracted using the Puregene
kit (Gentra Systems, Minneapolis, MN). For the CNV analysis,
191 patient and 192 control blood-derived DNA samples were
studied.

Analysis of copy number variants

To type CNVs in each DNA sample, we used the TaqMan
Copy Number Assays (Applied Biosystems, Foster City, CA):
for CD40, Hs04041560_cn and Hs99999100_s1; PTPN22,
Hs07226371_cn; and CTLA-4, Hs04714283_cn. For the amy-
lase 2A CNV we used the TaqMan assay; Hs04204136_cn.
Quantitative-PCR (Q-PCRs) were performed using the ap-
plied biosystems universal genotyping Master Mix in a 20 mL
duplex reaction that contained FAM-MGB target gene probes
and VIC-TAMRA reference gene (RNaseP part number
4403326) probes and 20 ng of genomic DNA. The amplifica-
tion reaction was performed using the Applied Biosystems
7300 real-time PCR machine using the following PCR pro-
gram: 2 minutes of incubation at 508C, initial DNA poly-
merase enzyme activation at 958C for 10 minutes, followed by
40 cycles of: denaturation at 958C for 15 seconds and an-
nealing/extension at 608C for 1 minute. Data were collected at
the end of each 608C step. All samples were run in quadru-
plicates and standard deviations were calculated. The 7300
software automatically excluded samples with large standard
deviations based on a predesigned algorithm. The results
were expressed as the threshold cycle (Ct), that is, the cycle
number at which the PCR product crossed the threshold of
detection. The Copy Caller program (Applied Biosystems)
was used to determine copy numbers of the tested gene in the
samples. This program is based on the DDCt method and
obtained copy number values as follows: Ct values were im-
ported into the program and normalized to the reference gene
(RNase P) generating a DCt value. To obtain the DDCt value of
the samples, since all samples had unknown copy numbers,
the program found the DCt value obtained in the majority of
the population and assigned this DCt value as that of a sample
with two copies, as this is what would be expected since most
normal individuals have two copies at all CNVs, having
gotten one copy from the maternal side and one from the
paternal side. Once found, this DCt value was then subtracted
from the DCt values of all other samples, thus giving a DDCt
value. The DDCt value was then used to find the relative

quantification of the gene analyzed using the formula 2(�DDCt).
A relative quantification value of 1 is equivalent to two copies,
and the program uses this to calculate all other sample copy
numbers. This method has been tested and proven to provide
reliable results.

Statistical analysis

The comparisons of the CNV typing between patients and
controls were performed using the w2 test. We used EpiInfo
3.4.2 software (CDC, Atlanta, GA) for the statistical analyses.
A p-value of <0.05 was considered statistically significant.

Power calculations

Power calculations were performed using CDC simulation
software (Epi Info, Version 3.3.2; CDC). We assumed the
lowest population frequency of the susceptible CNV to be
10% since we were analyzing only common CNVs. Our
power calculations indicated that our dataset of 191 patients
and 192 controls would give our study 80% power to detect a
difference between the patients and the controls resulting in
an odds ratio of>2.37 with an a of 0.05. Thus, our dataset gave
us enough power to detect biologically significant CNVs.

Results

Comparison of copy number variations
in blood-versus cell line-derived DNA

Since Epstein Barr Virus (EBV) immortalization of B-cells
has been shown to introduce genetic changes in the DNA, we
first compared cell line-derived DNA to whole blood-derived
DNA. To test this potential artifact, we analyzed a well-
characterized CNV in the amylase gene (chromosome 1, at
base positions 103,911,245-104,109,897 [NCBI/hg18 Build 36;
http://genome.ucsc.edu/]). We typed this CNV using the
TaqMan assay Hs04204136_cn, and compared the frequency
of deletions or duplications in DNA samples derived from
whole blood versus cell lines (Fig. 1 and Table 1). DNA de-
rived from cell lines consistently showed significantly higher
number of deletions compared to blood-derived DNA (Table
1), suggesting that immortalization of B-cells introduces arti-
ficial copy number changes in numerous genetic loci. On the
basis of this surprising and important finding, we limited our
immune-gene CNV analysis only to blood-derived DNA.

Analysis of copy number variations in immune
regulatory genes associated with GD

CNV assay selection. To identify CNVs in the CD40,
PTPN22, and CTLA-4 genes, we searched the Database of
Genomic Variants (DGV; http://projects.tcag.ca/variation/
?source¼hg18) for cataloged CNVs. CD40 has one cataloged
CNV in DGV that encompasses the entire gene and was an-
alyzed by an assay specific for this CNV. PTPN22 has multiple
listed CNVs in DGV, all overlapping and encompassing the
entire gene and was analyzed by a CNV assay that covered the
overlapping areas of its CNVs. CTLA-4 has no cataloged CNVs
in the DGV, but many CNVs are still not deposited in DGV.
Therefore, to test for potential disease-associated CNVs in the
CTLA-4 gene, we used a CNV assay in the CTLA-4 gene locus.

CNV analysis of the CD40 gene. Even though a CD40
CNV is listed in the DGV, the CD40 gene showed no copy
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number variation in either the controls or GD patients (Fig.
2A). To confirm this surprising result, we used another CNV
assay for the CD40 CNV (ABI assay No: Hs99999100_s1). This
assay uses primers within exon 3 of the CD40 gene, and again
showed 2 copies for all samples tested with no evidence for
any deletions or duplications (data not shown).

CNV analysis of the PTPN22 gene. PTPN22 showed no
copy variation in the GD patients, but in the control samples,
there was one duplication and one deletion present (Fig. 2B),
demonstrating that this is a rare CNV that is not associated
with GD.

CNV analysis of the CTLA-4 gene. Since no CNV was
described in the CTLA-4 gene we first typed a smaller cohort
of 56 GD samples and 15 controls to detect a CNV in the

CTLA-4 gene. In all 71 samples tested we found no copy
variation in the CTLA-4 gene (Fig. 2C).

Discussion

Copy number variants (CNVs) are areas in the genome of
duplications or deletions of large DNA sequences ranging
from kilobases to megabases [reviewed in Ref. (11)]. CNVs
have received much attention recently as they were suggested
as a major source of human phenotypic variation specifically
susceptibility to complex diseases. Moreover, recent data
suggest that genes involved in immunity are particularly
enriched in CNVs (13,14). These findings raised the possibility
that immune-gene CNVs may predispose to autoimmune
diseases, in a similar manner to the well-documented associ-
ations between immune-gene SNPs and autoimmunity (1). To
date, several autoimmune diseases have been found to be
associated with immune-regulatory gene CNVs (15–20).
Therefore, we hypothesized that immune-regulatory genes
associated with GD may harbor CNVs that influence sus-
ceptibility to disease. We tested the 3 major non-HLA
immune-regulatory genes associated with GD: CTLA-4, CD40,
and PTPN22.

CD40 is a surface receptor with diverse functions, including
activation of B-cells and antigen presenting cells, immuno-
globulin class switching, and IgG secretion. CD40 is a major
susceptibility gene for GD (21); therefore, we tested whether a
CD40 CNV, which is cataloged in the DGV, was associated
with GD. However, we found no deletions or duplications in
the locus of the DGV-listed CD40 CNV when testing 191 GD
patients and 192 controls. All 383 individuals had two copies
at this locus. This suggests that this CNV is very rare.

The PTPN22 gene, responsible for encoding a lymphoid
tyrosine phosphatase, is a powerful inhibitor of T-cell acti-
vation. A C/T SNP in the PTPN22 gene causing an arginine to
tryptophan change at position 620 was found to be associated
with GD (22), as well as other autoimmune diseases (23).
When we tested a DGV-deposited CNV in the PTPN22 gene in
our large cohort, only two controls showed a copy number
change at this locus, one deletion and duplication. None of the
patients showed copy number changes at this locus, again
suggesting that it is a rare CNV that does not contribute to the
etiology of GD.

CTLA-4 is a negative costimulatory molecule that sup-
presses the activation of T-cells. CTLA-4 is also expressed on
T-reg cells and is important to their function. Several CTLA-4
polymorphisms are associated with GD, as well as with other
autoimmune diseases (1). When we tested the CTLA-4 gene
locus for copy number changes, we could not find a CNV in
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FIG. 1. Comparison of copy number variants between
blood- and cell line-derived DNA. To compare the differ-
ences between blood- and cell line-derived DNA, we ana-
lyzed a well-characterized CNV in the amylase gene.
Calculated copy numbers of the AMY2A gene in blood-
derived (left) and cell line-derived (right) DNA samples are
shown. Each dot represents the copy number of each indi-
vidual sample. The area between the horizontal black bars
represents the range of values that constitutes two copies.
Gray-shaded regions signify borderline values that cannot be
clearly assigned, either a one or two copies (lower region) or
a two or three copies (upper region). Samples that fell in
these gray areas were excluded from analysis. DNA samples
derived from cell lines showed a significant increase in the
number of samples showing deletions compared to those
derived from whole blood ( p¼ 0.008).

Table 1. Comparison of the Frequencies of CNVs in the Amylase 2A Gene

Between Blood- and Cell Line-Derived DNA Samples

DNA source <2 copies (%) 2 copies (%) >2 copies (%)

Blood-derived DNA (n¼ 218a) 17 (8.0) 157 (73.7) 39 (18.3)
Cell line-derived DNA (n¼ 253b) 42 (19.7) 172 (68.8) 36 (14.4)
p-Value <2 vs. 2 copies: p¼ 0.007 2 vs. >2 copies: p¼NS

aOf the 218 blood-derived DNA samples, 165 (75.7%) were healthy controls and 53 (24.3%) were patients with type 1 diabetes and
thyroiditis.

bOf the 253 cell line-derived DNA samples, 199 (78.7%) were healthy controls and 54 (21.3%) were patients with type 1 diabetes and
thyroiditis.

NS, not significant.
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this gene, suggesting that CTLA-4 CNVs do not predispose to
GD or other autoimmune diseases.

An important and surprising finding from our study is that
the source of DNA, whether cell line-derived or blood-
derived, significantly altered the CNV analysis. Our data

clearly demonstrated that DNA derived from cell lines con-
tained novel CNVs that have been introduced during trans-
formation, but do not exist in blood-derived samples that
represent the native unperturbed DNA. As we were con-
cluding this study, the Wellcome Trust group published an
article that reported the same phenomenon. They have shown
increased presence of variation in cell line-derived samples
compared to blood-derived samples (24). Typically, cell line-
derived DNA is purified from EBV-transformed B-cells,
resulting in immortalized B-cells that can serve as an unlim-
ited source of DNA. However, the immortalization of B-cells
can introduce duplications and deletions as a result of defects
in cell cycle checkpoints. It has been shown that cells im-
mortalized using viral oncogenes inactivate the p53 and
p16INK4a/Rb pathways that extend cells life spans and allow
them to override the normal cell cycle checkpoints. This can
introduce genetic aberrations, including aneuploidy, and
copy number changes [reviewed in Ref. (25)]. In addition to
changes in large chromosome segments, the genomic insta-
bility in these cells can also involve subtle base substitutions
and deletions or insertions of a few nucleotides [reviewed in
Ref. (26)]. These findings may explain the presence of CNVs in
the DGV (e.g., CD40) that could not be confirmed in our large
cohort of patients and controls, as these CNVs may be cell line
derived. Taken together, the findings from the Wellcome
Trust study and our study demonstrate that the source of
DNA for CNV analyses needs to be taken into serious con-
sideration. Most likely CNV studies should be limited to
blood-derived DNA samples. Therefore, in the current study
all GD patients and control DNA samples were derived from
whole blood.

In conclusion, our study showed that copy number variation
in the immune regulatory genes CD40, PTPN22, and CTLA-4
do not play a role in the etiology of GD. It is possible that
previous CNV studies in complex diseases may need to be re-
analyzed if the DNA samples were derived from cell lines. For
the 3 immune-regulatory genes we tested, the entire genetic
risk is likely to be attributed to non-CNV genomic variations.
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