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Objections to Darwinian evolution are often based on the time
required to carry out the necessary mutations. Seemingly, expo-
nential numbers of mutations are needed. We show that such es-
timates ignore the effects of natural selection, and that the
numbers of necessary mutations are thereby reduced to about
K log L, rather than KL, where L is the length of the genomic
“word,” and K is the number of possible “letters” that can occupy
any position in the word. The required theory makes contact with
the theory of radix-exchange sorting in theoretical computer
science, and the asymptotic analysis of certain sums that occur
there.

mutations ∣ natural selection ∣ geometric distribution

The 2009 “Year of Darwin” has seen many welcome tributes to
this great scientist, and reaffirmations of the validity of his

theory of evolution by natural selection, though this validity is
not universally accepted. One of the main objections that have
been raised holds that there has not been enough time for all
of the species complexity that we see to have evolved by random
mutations. Our purpose here is to analyze this process, and our
conclusion is that when one takes account of the role of natural
selection in a reasonable way, there has been ample time for the
evolution that we observe to have taken place.

The Calculations
Biological evolution is such a complex process that any attempt to
describe it precisely in a way similar to the description of the
dynamic processes in physics by mathematical methods is impos-
sible. This fact does not mean, however, that arbitrary models of
biological evolution are allowed. Any allowable model has to re-
flect the main features of evolution. Our main aims, discussed
below, are to indicate why an evolutionary model often used
to “discredit” Darwin, leading to the “not enough time” claim,
is inappropriate, and to find the mathematical properties of a
more appropriate model.

Before doing so we take up some other points. Evolution as a
Darwinian-Mendelian process takes place via a succession of
gene replacement processes, whereby a new “superior” gene
arises by mutation in the population and, by natural selection,
steadily replaces the current gene. (We use here the word “gene”
rather than the more technically accurate “allele”.) It has recently
been estimated (1) that a newborn human carries some de novo
100–200 base mutations. Only about five of these can be ex-
pected, on average, to arise in parts of the genome coding for
genes or in regulatory regions. In a population admitting a million
births in any year, we may expect something on the order of five
million such de novo mutations, or about 250 per gene in a gen-
ome containing 20,000 genes. There is then little problem about a
supply of new mutations in any gene. However only a small pro-
portion of these can be expected to be favorable. We formalize
these considerations in the calculations below.

We now turn to the inappropriate evolutionary model referred
to above concerning the fixation of these genes in the population.
The incorrect argument runs along the following lines: Consider
the replacement processes needed in order to change each of the
resident genes at L loci in a more primitive genome into those
of a more favorable, or advanced, gene. Suppose that at each
such gene locus, the argument runs, the proportion of gene types

(alleles) at that gene locus that are more favored than the primi-
tive type is K−1. The probability that at all L loci a more favored
gene type is obtained in one round of evolutionary “trials” is K−L,
a vanishingly small amount. When trials are carried out sequen-
tially over time, an exponentially large number of trials (of order
KL) would be needed in order to carry out the complete trans-
formation, and from this some have concluded that the evolution-
by-mutation paradigm doesn’t work because of lack of time.

But this argument in effect assumes an “in series” rather than a
more correct “in parallel” evolutionary process. If a superior gene
for (say) eye function has become fixed in a population, it is not
thrown out when a superior gene for (say) liver function becomes
fixed. Evolution is an “in parallel” process, with beneficial muta-
tions at one gene locus being retained after they become fixed
in a population while beneficial mutations at other loci become
fixed. In fact this statement is essentially the principle of natural
selection.

The paradigm used in the incorrect argument is often forma-
lized as follows: Suppose that we are trying to find a specific un-
known word of L letters, each of the letters having been chosen
from an alphabet of K letters. We want to find the word by means
of a sequence of rounds of guessing letters. A single round con-
sists in guessing all of the letters of the word by choosing, for each
letter, a randomly chosen letter from the alphabet. If the correct
word is not found, a new sequence is guessed, and the procedure
is continued until the correct sequence is found. Under this para-
digm the mean number of rounds of guessing until the correct
sequence is found is indeed KL.

But a more appropriate model is the following: After guessing
each of the letters, we are told which (if any) of the guessed letters
are correct, and then those letters are retained. The second round
of guessing is applied only for the incorrect letters that remain
after this first round, and so forth. This procedure mimics the
“in parallel” evolutionary process. The question concerns the
statistics of the number of rounds needed to guess all of the let-
ters of the word successfully. Our main result is

Theorem 1. The mean number of rounds that are necessary to guess
all of the letters of an L letter word, the letters coming from an
alphabet of K letters, is

¼ logL
logð K

K−1Þ
þ βðLÞþOðL−1Þ ðL→∞Þ [1]

with βðLÞ being the periodic function of logL that is given by Eq. 7
below. The function βðLÞ oscillates within a range which for K ≥ 2,
is never larger than :000002 about the first two terms on the right-
hand side of Eq. 7.

For example, if we are using a K ¼ 40 letter alphabet, and a
word of length 20,000 letters, then the number of possible words
is about 1034;040, but our theorem shows that a mean of only about
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log20;000
logð40

39
Þ ≈ 390

rounds of guessing will be needed, where each round consists of
one pass through the entire as-yet-unguessed word.

The central feature of this result lies in the logarithmic terms in
the above expression. Even if L is very large, log L is (for values of
L arising in practice in any genome) in practice manageable. The
inappropriate arguments referred to above lead to the value
1034;040, and arise because of the incorrect “in series” rather than
the correct “in parallel” implicit assumption about the nature of
genetic evolution.

We have chosen the numerical values in this example to reflect
the biological evolutionary process. The value 20,000 represents
the number of gene loci in the genome at which replacement pro-
cesses are to take place. The value K ¼ 40 is arrived at by using
the value 250 found above for the number of de novo mutations
per gene locus per year and a rough estimate that only one muta-
tion in 10,000 is selectively favored over the resident gene type. In
practice further modifications are needed to the calculations
since, because of stochastic events, only a proportion of selec-
tively favored new mutations become fixed in a population.

However, the force of our result does not depend on the nu-
merical values that one assigns to K and L. The fact is that with
the parallel model, i.e., taking account of natural selection, the
number of rounds of mutations that are needed to change the
complete genome to its desirable form are only about K logL,
instead of the hugely exponential KL which would result from
the serial model.

The Analysis
The probability that the first letter of the word will be correctly
guessed in at most r rounds of guessing is

1−
�
1−

1

K

�
r
;

so the probability that all L letters of the given word will be
guessed correctly in ≤ r rounds is

�
1−
�
1−

1

K

�
r
�

L
:

Thus the mean number of rounds that will be needed to guess all
of the letters of the word is

∑
∞

r¼1

r
��

1−
�
1−

1

K

�
r
�

L
−
�
1−
�
1−

1

K

�
r−1
�

L
�
;

which is simply the mean of the maximum of L independently and
identically distributed (iid) geometric random variables.

This infinite sum can be transformed into a finite sum because

∑
r

rfð1− xrÞL − ð1− xr−1ÞLg

¼∑
r

r∑
j

� L

j

 !
ð−1Þjxrj −

L

j

 !
ð−1Þjxðr−1Þj

�

¼∑
L

j¼0

L

j

 !
ð−1Þjþ1

1− xj
:

Consequently the mean number of rounds needed to guess all
L letters is

αðLÞ ¼def∑
L

j¼1

L

j

 !
ð−1Þ jþ1

1−ð1−1∕KÞj ¼ 1þ∑
L

j¼1
ð−1Þ jþ1

L

j

 !
1

Xj−1 :

ðX ¼ K∕ðK − 1ÞÞ: [2]

The appearance of this latter sum in the current context is
somewhat surprising. It is one which is well known to theoretical
computer scientists, and it arises there in connection with radix-
exchange sorting.

To find the asymptotic behavior of this sum, we note that
the behavior of the following sum is known, and can be found
in Exercise 50 of section 5.2.2 of (2):

Um;n ¼∑
k≥2

n
k

� � ð−1Þk
mk−1 − 1

; ðm> 1Þ: [3]

The result in (2), due to N.G. deBruijn, is that

Um;n ¼ n logm nþ n
�
γ − 1

logm
−
1

2
þ f−1ðnÞ

�
þ m
m− 1

−
1

2 logm
−
1

2
f 1ðnÞþOðn−1Þ; [4]

where γ ¼ :57721.: is Euler’s constant and

f sðnÞ ¼
2

logm∑
k≥1

ℜðΓðs− 2πik∕ logmÞexpð2πik logmðnÞÞÞ:

These f sðnÞ’s are bounded functions, and in fact, they are evi-
dently periodic of period 1 in logmðnÞ.

To relate our sum to Knuth’s, we have

αðLÞ ¼ 1þUX;Lþ1 −UX;L: ðX ¼ K∕ðK − 1ÞÞ:

We note in passing that our argument shows that the mean of L
iid geometric random variables is, quite generally, simply related
to the quantities Um;n, which had previously been encountered in
connection with radix-exchange sorting, and whose (notoriously
difficult) asymptotic behavior had been found as a result of that
connection.

After doing the subtraction we obtain

αðLÞ ¼ logL
logX

þLðf−1ðLþ 1Þ− f−1ðLÞÞ

þ 1

2
þ γ

logX
þ 1

2
ðf 1ðLþ 1Þ− f 1ðLÞÞ

þOðL−1Þ¼def logL
logX

þ βðLÞþOðL−1Þ; [5]

where again X ¼ K∕ðK − 1Þ, and we have written

βðLÞ ¼ Lðf−1ðLþ 1Þ− f−1ðLÞÞþ
1

2
þ γ

logX

þ 1

2
ðf 1ðLþ 1Þ− f 1ðLÞÞ: [6]

But we have

Lðf−1ðLþ 1Þ− f−1ðLÞÞ ¼
2

logm∑
k≥1

ℜ

�
Γð−1− 2πik∕ logmÞ

× expð2πik logmLÞ 2πik
logm

�
þOðL−1Þ;

whereas
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f 1ðLþ 1Þ− f 1ðLÞ ¼OðL−1Þ:

Therefore for βðLÞ in Eq. 5 we can take

βðLÞ ¼ 1

2
þ γ

logX

þ 2

logX∑
k≥1

ℜ

�
Γð−1− 2πik∕ logXÞexpð2πik logX LÞ 2πik

logX

�
:

[7]

Therefore the mean number of rounds that are necessary to
guess all of the letters of an L letter word, the letters coming from
an alphabet of K letters, is given exactly by Eq. 2, and is asymp-
totically

¼ logL
logð K

K−1Þ
þ βðLÞþOðL−1Þ ðL→∞Þ [8]

with βðLÞ being the periodic function of period 1 in logX L that is
given by Eq. 7 and X ¼ K∕ðK − 1Þ. If terms of order L−1 and the
small constant 0.000002 mentioned in the statement of the the-
orem are ignored, Eq. 8 becomes simply

logLþ γ

logð K
K−1Þ

þ 1

2
: [9]

We conclude with a comment on the oscillatory behavior of
this mean, as revealed by the exact expression in Eq. 7. In prob-
ability theory the asymptotic behavior of a maximum of several iid
random variables is often found by “sandwiching” the discrete
random variable between two continuous random variables
whose asymptotic behavior is known. In the case of geometric
random variables the appropriate continuous random variables
to be used for this purpose have negative exponential distribu-
tions. This sandwiching procedure has been used frequently
and leads to the expression (9), but does not lead to the more
precise oscillatory behavior exhibited in the expression Eq. 7.

1. Yali Xue, et al. ( 15, 2009) Human Y chromosome base-substitution mutation rate mea-
sured by direct sequencing in a deep-rooting pedigree. Curr Biol 19:1453–1457.

2. Knuth DE (1973) The art of computer programming. Sorting and Searching, (Addison-
Wesley, Reading MA), Vol 3.

22456 ∣ www.pnas.org/cgi/doi/10.1073/pnas.1016207107 Wilf and Ewens


