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Empirical measurement of interventions to address significant
global health and development problems is necessary to ensure
that resources are applied appropriately. Such intervention pro-
grams are often deployed at the group or community level. The
gold standard design to measure the effectiveness of community-
level interventions is the community-randomized trial, but the
conditions of these trials often make it difficult to assess their
external validity and sustainability. The sheer number of commu-
nity interventions, relative to randomized studies, speaks to a need
for rigorous observational methods to measure their impact. In this
article, we use the potential outcomesmodel for causal inference to
motivate a matched cohort design to study the impact and sus-
tainability of nonrandomized, preexisting interventions. We illus-
trate themethodusing a sanitationmobilization,water supply, and
hygiene intervention in rural India. In a matched sample of 25
villages, we enrolled 1,284 children <5 y old and measured out-
comes over 12 mo. Although we found a 33 percentage point dif-
ference in new toilet construction [95% confidence interval (CI) =
28%, 39%], we found no impacts on height-for-age Z scores (ad-
justed difference = 0.01, 95% CI = −0.15, 0.19) or diarrhea (adjusted
longitudinal prevalence difference = 0.003, 95% CI = −0.001, 0.008)
among children <5 y old. This study demonstrates that matched
cohort designs can estimate impacts from nonrandomized, preex-
isting interventions that are used widely in development efforts.
Interpreting the impacts as causal, however, requires stronger
assumptions than prospective, randomized studies.

impact evaluation | study design | propensity score matching | community-
led total sanitation | open defecation

In 2000 the United Nations member states agreed upon the
Millennium Development Goals (MDGs), which formalized

the global community’s renewed commitment to solve some of the
world’s most intractable health and development problems. The
MDGs set aggressive targets for 2015 in core metrics, such as
reducing by two-thirds the under 5 y population mortality rate and
reducing by half the population without access to safe drinking
water and basic sanitation. Governments, foundations, and non-
governmental organizations (NGOs) have subsequently increased
investment in global health and development programs and have
relied on the scientific community to help rigorously measure the
impact and cost effectiveness of the interventions. Such empirical
measurement is necessary to guarantee that resources are applied
in the best possible way (1).
Many development programs use community interventions that

deploy treatments at the group level, because they change the
physical or social environment, because they cannot be delivered
to individuals, or because they wish to capture group-level dy-
namics. The gold standard for inference in community inter-
ventions is a community-randomized trial because the design
eliminates confounding bias (2). Bias from other sources can result
from frequent measurement (3) or lack of blinding treatment
(blinding is rarely possible for community interventions) (4, 5).
Even if unbiased, trials must evaluate treatments that are ame-
nable to randomization and typically estimate the average effect of
an intervention under ideal conditions (delivery and compliance)

in populationsmost likely to benefit; it is widely acknowledged that
treatment effects estimated in such trials can differ from those
obtained when the intervention is deployed in the general pop-
ulation (6). Measuring intervention sustainability using pro-
spective trials can also be difficult due to logistical complexity,
short funding cycles, and rare sequential awards (7).
The gap between the evidence generated by most community-

randomized trials and information that is directly useful to policy
makers suggests that studies of nonrandomized, preexisting com-
munity interventions implemented by governments and NGOs
could contribute both unique and complementary data to inform
evidence-based decisions. The sheer number of such community
interventions, relative to randomized studies addressing the same
issues, speaks to a need for a more rigorous methodology with
which to evaluate the impact of the interventions used. We define
“nonrandomized, preexisting” interventions as those that were
designed and deployed before a structured scientific study.
In this articlewedrawon thepotential outcomesmodel for causal

inference (8–11) to motivate a matched cohort design that enables
scientific learning from preexisting, real-world implementation
programs under a reasonable set of conditions (described below).
Causal inferencemethodshavebeenwell articulated in the statistics
and economics literature for decades, but have only recently gained
popularity in epidemiology. Here, we frame the matched cohort
design in terms of potential outcomes—an extension of prior epi-
demiologic literature on the design (4, 12)—and tailor it to studies
of preexisting, community interventions. The design we propose is
most relevant for evaluations with a nonrandomized, predefined
intervention group of communities, baseline (pretreatment) data
on key confounding variables, and finite resources so that outcome
measurement is not possible in all communities. The design natu-
rally estimates theaverage treatment effect among thosemost likely
to receive an intervention from providers who will actually deliver
it—a policy-relevant quantity (1)—and the design enables rapid
collection of data about intervention sustainability. We illustrate
the usefulness and limitations of the approach with a village-level
sanitation mobilization, water supply, and hygiene education in-
tervention conducted in rural Tamil Nadu, India. We believe this
general methodology will be useful to study a wide range of pre-
existing, development interventions beyond the sanitation, water,
and hygiene sector.

Materials and Methods
Potential Outcomes Model for Causal Effects. Our approach to evaluating
preexisting interventions is grounded in the Neyman–Rubin potential out-
comes model (8–11). Let Yi,1 denote the potential outcome for community i
if the community receives an intervention (treatment), and let Yi,0 denote its
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potential outcome if it does not receive treatment. The treatment effect for
community i is ψi = Yi,1 − Yi,0, but only one potential outcome can ever be
observed at the same time. If treatment is randomized, then the treatment
assignment (A) is independent of the potential outcomes (A ╨ Yi,1, Yi,0), and
the average difference between treatment groups in observed outcomes, Yi,
is an unbiased estimate of the individual community treatment effect:
bψ ¼ E½Yi;1 � Yi;0� ¼ E½Yi;1� � E½Yi;0� ¼ E½Yi jAi ¼ 1� � E½Yi jAi ¼ 0�. Valid infer-
ence further requires that the units of intervention (communities) are
independent—the treatment of one unit does not influence outcomes in an-
other—and that those treated receive the same treatment (10).

In observational studies treatment assignmentA is not random, and so the
design does not guarantee that treatment is independent of the potential
outcomes. There are usually characteristics (covariates) W that are common
causes of both receiving treatment and the outcome and confound the
unadjusted comparison of means. The potential outcomes model requires
a “strong ignorability” assumption to identify unbiased treatment effects in
observational studies (13). Strong ignorability states that all W are measured
(no unmeasured confounding) and the treatment and control groups
overlap for all combinations of W (0 < P[A = 1 | W] < 1). The assumption of
no unmeasured confounding cannot be evaluated empirically and is a cen-
tral problem for observational studies.

One approach to weaken the assumption slightly is to target a conditional
average treatment parameter: The average treatment effect among the
treated (ATT), ψATT

i ¼ Yi;1 � Yi;0 jAi ¼ 1. Estimating the ATT weakens the co-
variate overlap assumption because it estimates the average effect in the
subsample of treated units and thus requires that overlap exist between
treatment and control groups at levels of W | A = 1 rather than the full dis-
tribution of W. Observational studies of preexisting interventions are usually
constrained to estimating the conditional ATT parameter because without
randomization interventions are usually targeted to, or adopted by, a self-
selected group that is a nonrandom subset of the total population. However,
the ATT is still a very policy-relevant parameter: when estimated for preex-
isting interventions, it is the average effect in the population most likely to
receive the intervention given the providers who would actually deliver it.

Matching in the Design to Approximate a Randomized Experiment. Epidemi-
ology and the social sciences have a long history of using matched cohort
designs to study interventions and exposures that are not randomly assigned
(14, 15). Recent efforts have used the design in prospective group-level in-
tervention studies (16–18) and in preexisting intervention studies (19–21). In
a typical scenario, investigators define a study population, and a subset of
the population is selected to receive the intervention by a known or un-
known process that is not random. Investigators have information about
important confounders, but have not measured outcomes. Matched cohort
studies incorporate nonrandom sampling from the study population so that
the observed covariate distribution in the control group overlaps and closely
matches the covariate distribution in the treatment group. In practice, the
design naturally estimates the ATT and is consistent with a general approach
of first assembling a control group that is as similar as possible to the
treatment group using matching methods and then adjusting for any re-
sidual confounding using some form of regression (10, 11).

It is well established that exact matching methods fail to find matches for
many treated units in finite samples because the dimension of the joint
covariate distribution is too large for nonparametric inference (10). There are
many multivariate matching approaches to help address this problem (11, 15,
22). One of the most common is propensity score matching, which simplifies
the problem of matching on large numbers of covariates by collapsing the
covariates into a single scalar—the propensity score—and then matching
treatment and control communities using a one-dimensional match on the
propensity score (23, 24). The propensity score is the probability of receiving
treatment given a set of baseline covariates, P(A = 1 | W), which is unknown
for observational studies and must be estimated, usually with a logistic re-
gression. There are numerous ways to match treatment and control units
using functions of the propensity score, including nearest-neighbor matching,
Mahalanobis distance matching, and optimal matching (11). Sekhon (15)
discusses the limitations of propensity score matching in realistic scenarios,
where covariates are poorly behaved and not linearly related to the outcome,
and proposes a genetic matching algorithm that searches for a matched
sample with optimal balance in W.

Whatever matching technique is used, matching does not solve the fun-
damental problem of unmeasured confounding in observational studies;
however, selecting a matched control group in the design stage before
measuring outcomes has important advantages (11). First, restricting field
data collection to matched treatment and control communities is cost ef-
fective because it prevents outcome measurement in extraneous control

communities that will not help estimate the ATT parameter. Second,
matching helps guarantee that the observed covariate distributions in the
treated group overlap with the control group, which enables the analysis to
rely less on parametric statistical models and the assumptions they require
(25). Matching also accounts for arbitrarily complex relationships between
the treatment and covariates, which would need to be modeled explicitly if
using regression alone (10). Finally, compared with post hoc statistical ad-
justment, matching can increase the statistical efficiency of difference
parameters, which are useful contrasts for intervention studies (4, 12).

Matched Cohort Designs for Preexisting, Community Interventions. Fig. 1
provides an overview of the design. The innovative components of the de-
sign are its use of retrospective, baseline (preintervention) data at the
community level to match intervention communities to control communities
and its use of propensity score matching—or another alternative multivari-
ate matching approach—to overcome the practical limitations of exact
matching in finite samples.

A challengeof studyingpreexisting interventions is that investigators donot
control the intervention, and many community-level interventions that are
planned outside of the scientific process have characteristics that make them
impossible to evaluate. Before evaluating a nonrandomized, preexisting in-
tervention, investigators should confirm that the intervention meets basic
conditions that will enable a valid study (Table 1). In this article we focus on
community interventions that are deployed to known geographical units, such
as rural villages or neighborhoods in urban areas. We make this restriction
because the availability of baseline data collected for purposes other than the
study at hand is a core component of the design. These data are typically
available for administrative units with known geography (as in a national
census), but in theory the design applies to any unit of intervention.

Threats to Validity. Unmeasured confounding. Because the matched design for
preexisting interventions relies on data collected in the past—often in-
dependent from the study—it is likely that the data available tomatch will be
incomplete or poorly measured. Matching will improve the balance for
measurable characteristics, but is unlikely to remove all differences between
treated and control communities so the strong ignorability assumption is
unlikely to hold. Matching in the design does not preempt subsequent data
analysis (11). Investigators can conduct additional statistical adjustment using
data collected in the field study, but they must make a reasoned argument
that adjustment covariates could not fall on the causal path between the
intervention treatment and outcome of interest (10). If pretreatment out-
comes can be measured retrospectively, then the change in the outcome can
be compared between treatment and control groups. This “difference-in-
differences” parameter removes time-invariant unmeasured confounding
assuming the two groups would have had parallel outcome trajectories ab-
sent treatment (11). As a robustness check, we recommend falsification tests,
where the analysis is repeated for outcomes that could not be influenced by
the treatment to investigate whether other interventions or characteristics
correlated with treatment could account for the results.
Informative censoring. In the time that elapses between the baseline mea-
surement used to define the study population and the postintervention out-
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Fig. 1. Overview of thematched cohort design for preexisting interventions.
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come measurement, individuals within communities will exit the study pop-
ulation (commonly referred to as censoring). If censoring is a common effect of
both the intervention treatment and the outcome, then it is informative and
will cause bias (26). Informative censoring is a potential source of bias in all
study designs, but in prospective designs, characteristics of individuals who exit
the study population are available to assess whether censoring is informative.
In studies of preexisting interventions, the censored individuals are never
measured and so investigators have no direct information about the magni-
tude of censoring or characteristics of those censored.
Measurement error. If outcomes or exposures are measured retrospectively in
the postintervention survey, then theywill likely bemeasuredwithmore error
than if they had beenmeasured contemporaneously. Measurement error will
cause bias unless it is independent of both treatment status and outcomes
(27). Limiting the recall period over which outcomes are measured and using
objective outcomes rather than those that rely on self-report can reduce
measurement error.
Sampling bias. Sampling bias is possible during community selection or, if
outcomes are measured below the community level, in the selection of units
below the community level. Investigators should evaluate the completeness
of baseline data used to select communities, as incomplete sampling frames
could lead to systematic bias. If outcomes are sampled from within the
community, then they should be collected from a random sample.

Application of the Design
Sanitation, Water Supply, and Hygiene Intervention in India. Between
2003 and 2007 two NGOs, Water.org and Gramalaya, imple-
mented a combined environmental intervention in 12 rural vil-
lages near the city of Tiruchirappalli in Tamil Nadu, India. The
intervention combined water supply improvements and repairs
with sanitation and hygiene behavior change campaigns that used
similar demand mobilization to India’s Total Sanitation Cam-
paign. Intervention details varied slightly by village (Table S1),
and its intent was to bring all villages to a high level of water
supply, sanitation access, and hygiene knowledge. SIMaterials and
Methods includes details of the intervention and study location.
The primary objective of the field study was to revisit households
after the conclusion of intervention activities to assess outcomes
compared with a control group matched on preintervention
characteristics. Outcomes included sanitation, water and hygiene

conditions and behavior, and health in children<5 y oldmeasured
by caregiver-reported diarrhea and anthropometric growth. Di-
arrhea and child weight measure acute illness in young children,
whereas height measures cumulative effects of acute diarrheal
illness and chronic intestinal enteropathy caused by repeated
exposure to gastrointestinal pathogens (28–30).

Control Selection and Outcome Measurement. The intervention was
not randomized and was deployed in villages that were purposely
selected by the NGOs. To help reduce potential bias due to dif-
ferences between intervention and control villages at baseline, we
selected control villages with a combination of restriction, pro-
pensity score matching on baseline characteristics, and rapid as-
sessment in late 2007. Fig. 2 summarizes the selection process, and
SIMaterials and Methods includes a more detailed description.We
enrolled a random sample of up to 50 households per village with
children<5 y old. Between January 2008 and April 2009 we visited
each participating household once per month for a total of 12
visits. All data collection followed protocols approved by the in-
stitutional review boards at the University of California, Berkeley,
and Sri Ramachandra Medical College, Chennai, India, and all
participants provided informed consent. SI Materials and Methods
includes details of our exposure and outcome measurement
methodology, as well as our statistical analyses using the matched
cohort sample. Briefly, we collected detailed information about
sanitation conditions and practices, water sources and water
quality, and hygiene indicators and handwashing knowledge. In
each visit, we collected symptoms of diarrhea, respiratory illness,
and general illness in children <5 y old (7 d recall). In the first and
last surveys we collected anthropometric growthmeasurements for
children <5 y old. We measured the change in private toilet
ownership and water supply between 2003 and 2008 on the basis of
household reports in 2008 (retrospective recall for 2003). For all
other outcomes we compared groups using postintervention out-
comes measured in the 2008–2009 field visits. All estimates are
conditional on the matching process using baseline confounders
(Fig. 2 and SI Materials and Methods). We conducted adjusted

Table 1. Necessary conditions for matched cohort studies of nonrandomized, preexisting community interventions

Condition, rationale, and example from this evaluation

1 A partnership with the implementing organization.
The implementing organization is the key provider of information about the intervention components, how the intervention
beneficiaries were selected, and the timeline and location of activities.
Example: We partnered with Water.org and Gramalaya through their funding organization.

2 Sufficient intervention scale.
Each community is the independent unit of intervention and it is unusual to have adequate power without at least 8–10
communities per group (2).
Example: The intervention included 12 independent communities.

3 Uniformity of the intervention across communities.
A relatively uniform intervention is necessary to define and estimate a common treatment effect across communities (in practice,
implementation will often vary slightly across communities).
Example: The NGOs implemented sanitation, water supply, and hygiene education improvements to raise all communities
to a high level of coverage for all three components.

4 Availability of control communities.
Control communities are necessary to provide a counterfactual comparison group. Ideally, there should be at least
2 potential control communities for every treatment community.
Example: We started with 240 potential control communities from neighboring blocks.

5 Community independence.
As with community randomized trials, all units of intervention must be independent with respect to effect of the
intervention on outcomes (i.e., no spillover effects).
Example: We selected control communities from separate administrative blocks to prevent spillover. We also ensured
that communities were qualitatively independent during a rapid assessment following the match but before data collection.

6 Availability of baseline (preintervention) data.
Baseline data that include key confounding covariates are used for matched sampling of communities. Baseline data
provide a basis for judging baseline comparability of groups in the matched sample. They should reflect conditions
at the time of intervention community selection.
Example: Census 2001 and Tamil Nadu Water Supply and Drainage board 2003 data collected in the 2 y before the
program started included key sanitation, water, and socioeconomic covariates at the community level.
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analyses using a marginal, g-computation estimator with a village-
level stratified bootstrap for inference (31).

Matched Cohort Characteristics. The matched cohort design led to
a set of matched intervention and control villages that were very
similar at baseline, and the approach improved balance greatly
for the most imbalanced characteristics (income, biofuel use,
sanitation, and water supply) (Table 2). Household character-
istics such as durable goods ownership, community participation,
and education level were also very similar in our intervention and
control groups, postintervention in 2008 (Table S2). Intervention
villages were slightly more agricultural than control villages and
consequently there were small differences in home ownership,
housing materials, and literacy. Our field study sample included
456 control and 444 intervention households [totals exclude 17
control households and 33 intervention households that either
moved between listing and enrollment (n = 44) or refused]. The
900 households included 1,284 children <5 y old (648 control
and 636 intervention). Of these, 612 (94%) control and 608
(96%) intervention children completed the 12-mo follow-up.

Household Sanitation and Water Infrastructure. At baseline in 2003,
intervention and control groups were highly similar in toilet and
water infrastructure on the basis of census data (Table 2) and
retrospective measurement (Fig. 3). Between 2003 and 2008, in-
tervention households were far more likely to build a new private
toilet than controls (change in toilet ownership 2003–2008: 48%
vs. 15%, P < 0.0001, Fig. 3). The intervention increased toilet
coverage greatly in the most socially and economically marginal-
ized households (SI Materials and Methods and Fig. S1). Of the
private toilets in the sample, 89% were pour–flush toilets with
a water seal, 5% were ventilated improved pit latrines, and 5%
were unimproved concrete slab pit latrines. Toilets were new:
83% were constructed during the 5-y intervention period (since
2003) and 94% were constructed in the last 10 y. Of the 374
households with private toilets, 94% were classified as functional
and in use during inspections over the 12-mo period.
Gains in private and public taps were more modest, and

increases between 2003 and 2008 did not differ significantly be-
tween intervention and control villages (Fig. 3). All households in
the study had improved water sources on the basis of the WHO/
Unicef Joint Monitoring Program definition (32), and 93%
obtained water from public or private taps fed by ground water-
supplied overhead tanks. We observed some fecal contamination
in household drinking water samples: 27% (120/441) had ≥10
Escherichia coli colony-forming units (cfu) per 100 mL. We also
found evidence of microbial contamination from general envi-
ronmental sources in household drinking water: 84% (2,551/
3,026) of samples tested positive for hydrogen sulfide (H2S)-
producing bacteria and 91% (2,755/3,015) of samples had ≥100
total coliform cfu per 100mL (Table S3). Households with private

taps spent a median 50 min per day gathering water vs. a median
75 min for households with public taps.

Sanitation and Hygiene Behavior. Households in intervention vil-
lages were 11 percentage points less likely to report practicing
open defecation (77% vs. 88%) than control households (Table
S4). Adult open defecation in intervention villages, which had all
been declared “open defecation free,” ranged between 35% and
83%. Reductions in open defecation were largest among women
and smallest among children<5 y old (Table S4). Households that
practiced open defecation reported that adult sites were outside
the village (98%), but 91% of sites for children <5 y old were
within the village. In households with private toilets, 39% repor-
ted that adults practice daily open defecation and 52% reported
that children <5 y old practice daily open defecation. The most
common answers to an open-ended question about the reasons
for continuing to practice open defecation despite owning a toilet
were no choice (50%), privacy (26%), convenience (25%), and
safety (9%). Discrete hygiene spot checks collected by inter-
viewers show overall moderate hygiene conditions, and in-
tervention households fare the same or worse across a large
number of indicators (Table S5). Overall, self-reported hand-

240 potential controls  

195 potential controls  

24 potential controls  

13 control villages  

45 Excluded by restriction:  
    15: > 80% Scheduled caste  
    20: < 50 households  
    10: < 70% of households cook with biofuel 

171 Unmatched with propensity score matching  

11  Excluded during a rapid assessment:  
    1: two villages combined to single village  
    6: < 18 households with children < 5  
    2: > 150 households with children < 5  
    2: < 2 self-help groups  

1.  Restriction  

2.  Matching  

3. Rapid  Assess. 

Fig. 2. Control village selection process in the Tamil Nadu study.

Table 2. Summary of preintervention characteristics before and
after village selection

Mean

All villages Study sample

Control Intervention Control Intervention

Demographic
Total households 170 161 181 161
Persons per household 5 5 5 5
Scheduled caste, % 19 12 15 12
Children ≤5 y old, % 12 12* 12 12
Female literacy, % 52 48 49 48

Socioeconomic
Employment rate, % 81 78 79 78
Cultivators, % 27 28 31 28
Agricultural laborers, % 24 33 21 33
Marginal workers, % 19 22 21 22
Females work, % 74 69 71 69
Panchayat income
(Rp/person)

12,255 7,470*** 7,143 7,470

Per-capita cattle
ownership

4 4 5 4

Use banking services, % 29 25 25 25
Use biofuel for
cooking, %

91 97** 96 97

Own radio, % 43 43 38 43**
Own television, % 21 16 17 16
Own scooter/moped, % 10 10 9 10

Sanitation and water
Private toilet/latrine, % 15 8** 9 8*
Open defecation, % 85 92** 91 92*
Tap water (private/
public), %

75 76 75 76

Hand pump, % 12 14** 18 14
Other water source, % 13 10* 7 10
Persons per hand pump 260 302 240 302
Persons per deep
bore well

437 679** 510 679

Water supply level (lpcd) 12 15** 14 15
No. of villages 240 12 13 12

Authors’ calculations using India National Census 2001 and Tamil Nadu
Water Supply and Drainage 2003 surveys are shown. lpcd, liters per capita
per day; Rp, rupees. Scheduled castes include historically disadvantaged, low
rank Indian castes, which are currently under government protection. Kol-
mogorov–Smirnov test for differences in distribution between control and
intervention groups: *P < 0.1; **P < 0.05; ***P < 0.01.
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washing with soap was rare: Women reported washing their hands
after defecation in 24% of 2,657 caregiver interviews (Table S5).

Privacy and Safety for Women and Girls. Private toilet owners were
28 percentage points more likely to report that women and girls
feel safe while defecating during the day or night compared with
households without private toilets (81% vs. 53%). Overall, the
intervention increased the perception of privacy and safety for
women and girls during defecation by 13 percentage points
compared with controls (72% vs. 59%, Table S4).

Child Health. We identified 259 diarrhea cases from 14,259 child
weeks of observation (mean prevalence 1.8%). The mean diarrhea
prevalencewas slightly higher in intervention villages than in control
villages (1.96% vs. 1.67%), and the two groups differed primarily
during the summermonths (Fig. S2). In unadjusted analyses, we did
not observedifferences indiarrhea between children in intervention
and control villages [longitudinal prevalence difference (LPD) =
0.003, 95% confidence interval (CI) = −0.002, 0.008]. Adjusted
estimates, which account for a large set of potentially confounding
characteristics (Table S6), also showed no difference between
groups (LPD = 0.003, 95% CI = −0.001, 0.008). Despite low di-
arrhea prevalence, 53% of the children were stunted, 47% were
underweight, and 19% were wasted on the basis of weight-for-
height.Over 37%wereboth stuntedandunderweight (definitions in
SI Materials and Methods). Mean Z-scores were low for both height
(mean=−1.96, SD=1.69) andweight (mean=−1.86, SD=1.16).
We observed no difference in anthropometric Z-scores between in-
tervention and control groups [adjusted difference (adj. diff.) in
height = 0.01, 95% CI = −0.15, 0.19; and weight = 0.03, 95%
CI=−0.11, 0.17; Fig. S3]. Impacts on height aremost likely before
age 24 mo (33). Restricting the analysis of height-for-age to chil-
dren who were most likely to benefit from the intervention (<12
mo old at the conclusion of intervention activities, n= 1,093) did
not change our findings (adj. diff. = 0.04, 95% CI = −0.28, 0.36).

Discussion
Evaluations of Preexisting Interventions. In this article we have
drawn on causal inference theory to develop an evaluationmethod

for nonrandomized, preexisting interventions. Traditionally, such
interventions are often evaluated with a before–after comparison
in the intervention group alone or with a postintervention, cross-
sectional survey in intervention and comparison groups. Before–
after comparisons lack a counterfactual comparison and cannot
address what would have happened in the absence of intervention.
A postintervention, cross-sectional survey neither demonstrates
baseline comparability between intervention and comparison
communities nor guarantees overlap between groups in important
confounding characteristics. In contrast, under appropriate con-
ditions (Table 1), thematched cohort design that we have proposed
can demonstrate baseline comparability between intervention and
control groups and ensure overlap for observable baseline char-
acteristics so that a valid counterfactual comparison is possible.
The attractive features of the design are that it naturally estimates
the average effect of an intervention deployed by actually imple-
menting organizations in populations most likely to receive it and
yields information about intervention sustainability without years
of prospective follow-up. Our motivating example adds to three
previous applications of similar methods (to our knowledge)
to evaluate preexisting interventions in development settings
(19–21), but prior work has not clearly articulated the design’s
underlying framework, assumptions, and threats to validity. In SI
Materials and Methods and Fig. S4, we discuss the details of inter-
preting intervention sustainability in the context of this design.
Although we have framed the design in the context of community
interventions, in principle it could apply to any unit of intervention
(e.g., households or individuals) if appropriate baseline data are
available and the study meets the conditions in Table 1.
Our evaluation from Tamil Nadu illustrates many of the

strengths and weaknesses of the design. The use of restriction,
propensity score matching, and rapid assessment to select control
villages (Fig. 2) led to highly similar intervention and control
groups on the basis of key exposures and socioeconomic charac-
teristics at baseline (Table 2 and Fig. 3). Although it remains
possible that unmeasured confounding has masked the inter-
vention effect, the extremely good overlap in observable con-
founding characteristics between groups at baseline and follow-up
makes this scenario unlikely (Table 2 and Table S2). As a robust-
ness check, we repeated the analyses using caregiver-reported fe-
ver in the previous 7 d among children <5 y old as our outcome.
Fever is a nonspecific outcome that should not be influenced by the
intervention and thus serves as a falsification test. We found no
difference between groups in fever (combined prevalence =
11.8%; adj. LPD = 0.008; 95% CI = −0.006, 0.021). Nonetheless,
we relied on matched, postintervention differences for all out-
comes besides toilet and tap construction; evaluations that use
difference-in-differences estimators by comparing the changes in
outcomes from baseline to postintervention could be more robust
to unmeasured confounding if baseline outcome measures are
available (11).
Formatching in the design to reduce bias, baseline datamust be

accurate and complete with respect to key confounders (Table 1,
condition 6). Without meeting this condition, matching is unlikely
to improve the comparability of intervention and control groups.
For sanitation, water, and hygiene interventions, the major con-
founding variables and intermediate outcomes are often available
from national census data, but this condition may not hold for
some development research questions. If investigators use sec-
ondary data to match groups, as we did in this study, we recom-
mend a brief qualitative and quantitative rapid assessment to
validate the data in matched communities before the full field
study. This exercise is consistent with integrating ethnographic
“thick description” into the selection process (34)—using checks
to ensure that intervention units that appear comparable on the
basis of computer records are comparable if observed directly.
An additional weakness of this design is its vulnerability to bias

from nonrandom subgroups of the population leaving between
the intervention and the evaluation (informative censoring). Be-
cause such losses are difficult or impossible to measure retro-
spectively, the evaluation must rely on plausibility arguments. In

Fig. 3. Population access to private toilets, private water taps, and public
water taps in 2003 and 2008. Vertical lines mark bootstrapped 95% confi-
dence intervals. n = 456 control and n = 444 intervention households.
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our study sample, just 4.4% of households were lost to follow-up
and they were highly similar to those that remained (Table S7).
We infer that informative censoring is not a major source of bias
in this evaluation.

Combined Interventions, Child Diarrhea, and Growth. Child diarrhea
was rare in this population without improved sanitation: 88% of
control households practiced open defecation, yet their weekly
diarrhea prevalence was just 1.67%over 12mo. Although we were
surprised by this low prevalence, the weekly diarrhea prevalence
of all cases reported in the 13 control village health clinics was
1.36% over the same period. (We use the total number of children
<5 y old from our original sampling frame as a denominator for
the surveillance data. In our control village sample, 80% of di-
arrhea cases reported visiting the health clinic: 0.8 × 1.67% =
1.34%, which is very close to the 1.36% prevalence estimated
through passive surveillance.)
Our results have a number of implications for government and

NGO programs in the sector. They provide evidence that in some
populations it is not necessary to combine improvements in water
supply, sanitation, and hygiene conditions to achieve very low
levels of child diarrhea (35, 36). We infer (although have not
tested) that field open defecation is not a primary transmission
pathway of diarrhea-causing pathogens for children<5 y old in this
population. This study shows that in some rural Indian environ-
ments costly sanitation improvements are not guaranteed to have
large health benefits, but do improve the perception of privacy and
safety for women.

The study also shows that severe growth faltering can persist in
populations with rare diarrhea. Poor nutrition is likely a key reason
for this (30), but it remains possible that some faltering results
from bacterial exposure that is insufficient to cause symptomatic
diarrhea, but is sufficient to cause intestinal enteropathy in young
children. Enteropathy is hypothesized to cause growth faltering
through poor nutrient absorption and low-level immune system
stimulation (29). Nutritionists have hypothesized that toilet pro-
vision and handwashing with soap could reduce enteropathy and
improve growth (37). Our findings indicate that the environmental
improvements observed in this study have been insufficient to
measurably improve growth (Fig. S3).

Conclusions. Empirical evaluations of interventions that address
the most significant global health and development problems are
necessary to ensure that resources are applied most responsibly.
It is often difficult or impossible to use randomized studies to
measure such impacts. If nonrandomized studies are to be used,
they require a more nuanced process of study design and inter-
pretation than randomized studies. In this article we have sum-
marized this process for preexisting interventions, and we expect
the methodology could be used to study many types of develop-
ment programs.
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