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Abstract
Ischemia/reperfusion (I/R) injury still represents an 
important cause of morbidity following hepatic surgery 
and limits the use of marginal livers in hepatic trans-
plantation. Transient blood flow interruption followed by 
reperfusion protects tissues against damage induced by 
subsequent I/R. This process known as ischemic pre-
conditioning (IP) depends upon intrinsic cytoprotective 
systems whose activation can inhibit the progression of 
irreversible tissue damage. Compared to other organs, 
liver IP has additional features as it reduces inflamma-
tion and promotes hepatic regeneration. Our present 
understanding of the molecular mechanisms involved in 
liver IP is still largely incomplete. Experimental studies 
have shown that the protective effects of liver IP are 
triggered by the release of adenosine and nitric oxide 
and the subsequent activation of signal networks involv-
ing protein kinases such as phosphatidylinositol 3-kinase, 
protein kinase C δ/ε and p38 MAP kinase, and transcrip-
tion factors such as signal transducer and activator of 
transcription 3, nuclear factor-κB and hypoxia-inducible 

factor 1. This article offers an overview of the molecular 
events underlying the preconditioning effects in the liver 
and points to the possibility of developing pharmacologi-
cal approaches aimed at activating the intrinsic protec-
tive systems in patients undergoing liver surgery. 
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INTRODUCTION
The understanding of  the proteomic features associated 
with cell response to stresses is one of  the present-day 
challenges in medical science. This knowledge is increas-
ingly necessary to identify new molecular targets for thera-
peutic interventions. A turning-point on this matter has 
been the discovery that tissues already possess a number 
of  inducible systems able to make them more resistant to 
a wide array of  injuries. One of  these adaptive responses 
is represented by the capacity of  a non-lethal ischemia to 
modulate cell functions by increasing resistance to sub-
sequent lethal ischemia/reperfusion[1,2]. Since its first de-
scription in the myocardium[1], this phenomenon, termed 
“ischemic preconditioning” (IP), has been the subject of  
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rising interest in the scientific and medical communities. 
The effects of  IP can be differentiated into early effects 
and late effects. The former, immediately follows the 
transient ischemia and involves the direct modulation of  
specific cell functions, while late effects are evident within 
12-24 h from the transient ischemia and require the si-
multaneous activation of  multiple stress-responsive genes 
associated with the synthesis of  several proteins[2,3]. 

ISCHEMIA-REPERFUSION INJURY OF THE 
LIVER
Hepatic ischemia/reperfusion (I/R) injury occurs as a 
consequence of  trauma and hemorrhagic shock as well 
as temporary clamping of  the hepato-duodenal ligament 
during liver resection (Pringle manoeuvre). 

I/R is the main factor responsible for primary graft 
non-function or malfunction following liver transplanta-
tion[3,4]. Even moderate reperfusion damage, which does 
not severely affect the graft, can impair long-term hepatic 
recovery and enhance patient susceptibility to infections 
and multiple organ failure[3,4]. The shortage of  organs for 
liver transplantation, forces consideration of  cadaveric 
and steatotic grafts (marginal grafts) which have a higher 
susceptibility to I/R injury[4]. Living donor liver transplan-
tation (LDTL) is a promising alternative approach aimed 
at increasing the number of  donor livers[5]. A major con-
cern over the application of  LDTL in adults is graft size 
disparity which is responsible for the appearance of  the 
life threatening effects of  the “small for size syndrome”[6]. 
“Small for size syndrome” can occur even when the criti-
cal mass for safe LDTL (40% of  standard liver volume) is 
transplanted and this effect is related to the impaired re-
generation of  the reduced liver mass[7] induced by I/R[7,8].

LIVER ISCHEMIC PRECONDITIONING
Beside the heart, IP effects have been demonstrated in 
many other tissues[2,3]. Studies performed in rats and mice, 
showed that interruption of  liver blood supply for 5- 
10 min followed by 10-15 min of  reperfusion reduced 
hepatic injury during a subsequent extended period of  
ischemia followed by reperfusion[9-13]. These beneficial 
effects were particularly evident in fatty livers in which 
preconditioning almost halved transaminase release and 
histological evidence of  necrosis[11]. The application of  
preconditioning protocols to rodent liver transplanta-
tions showed that IP applied before cold preservation, 
decreased transaminase release and sinusoidal endothelial 
cell killing in the graft, improving rat survival[12,13].

A further feature of  hepatic IP was the capacity to 
promote hepatocyte regeneration. Hepatocyte prolifera-
tion in rats subjected to 70% hepatectomy is significantly 
reduced by 45 min of  hepatic ischemia. Such an effect was 
entirely reverted by pre-exposure to IP[14]. Consistently, 
preconditioning procedures significantly enhanced liver 
regeneration in the experimental model of  reduced-size 
rat liver transplantation[15,16].

MOLECULAR SIGNALS OF HEPATIC 
ISCHEMIC PRECONDITIONING
Despite a significant number of  studies on liver precon-
ditioning, knowledge on the mechanisms responsible for 
the induction of  the “preconditioned” phenotype is still 
incomplete. Studies from our and other laboratories have 
indicated that the process of  preconditioning implies the 
production of  complex proteomic modifications within 
liver cells which are now beginning to be characterized. 

Adenosine, adenosine triphosphate and nitric oxide as 
molecular inducers of hepatic preconditioning
“In vivo” and “in vitro” studies have clearly established 
that the onset of  IP is triggered by the production of  ad-
enosine and by the subsequent stimulation of  adenosine 
A2a receptor (A2aR)[9,17-21]. In particular, Peralta et al[9,17] 
showed that adenosine treatment reproduced the protec-
tive action of  IP and that IP was reverted by adenosine 
deaminase and by the adenosine A2 receptor antagonist, 
3,7-dimethyl-1-propargylxanthine. Pretreatment of  rats 
with the adenosine A2 receptor agonist, CGS21680, but 
not with the adenosine A1 receptor agonist, N-phenyl-
isopropyl adenosine, enhanced tolerance against IR dam-
age[18]. By using primary rat hepatocytes preconditioned 
with 10 min of  hypoxia plus 10 min of  re-oxygenation, 
we confirmed that the extracellular release of  adenosine 
induced hepatocyte protection by autocrine stimulation of  
the A2aR[20,21] (Figure 1). Indeed, studies in extra-hepatic 
and hepatic tissues have clearly shown that transient oxy-
gen deprivation triggers the release of  several metabolites 
including adenosine triphosphate (ATP)[2]. In the extra-
cellular space, ATP is rapidly metabolized to adenosine 
via CD39 and CD73 ecto-nucleotidases[22,23] present on 
the extracellular portion of  cell plasma membranes. In 
particular, ectoapyrase (CD39) converts ATP to adeno-
sine monophosphate (AMP), while ecto-5′-nucleotidase 
(CD73) further degrades it to adenosine[24]. Thus, CD73 
represents the major extracellular pathway for adenosine 
generation. Consistently targeted gene deletion or phar-
macologic inhibition of  CD73 was demonstrated to abol-
ish hepatic protection by IP[19]. 

Recent observations from our group also suggested 
that ATP itself  could act as an additional trigger of  liver 
preconditioning. We observed that the release of  ATP 
from hepatocytes enhanced their tolerance to hypoxia inde-
pendently from the generation of  adenosine[24] (Figure 1).  
Such an effect was mimicked by treatment with the non-
hydrolyzable ATP analogue adenosine-5’-O-(3-thiotri-
phosphate) (ATPγS) and involved the stimulation of  the 
P2Y2 purinergic receptor[25]. 

Further evidence indicated that during IP, hepatic en-
dothelial cells responded to adenosine stimulation by gen-
erating nitric oxide (NO) which contributed to the modu-
lation of  hepatocyte tolerance to I/R[3,17,26-28]. Indeed, the 
administration of  NO donors promoted tolerance to I/R 
in the absence of  adenosine, while NO synthase inhibi-
tors reverted IP[17,26]. Similarly, the treatment of  primary 
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rat hepatocytes with the NO donor (Z)-1-{N-methyl-N-
[6-(N-methyl-ammonio-hexyl) amino]} diazen-1-ium-
1,2-diolate (NOC-9) reproduced hepatocyte resistance 
to hypoxic damage induced by IP, ATP or A2aR stimula-
tion[27,28], suggesting that NO could act as an independent 
mediator of  hepatic preconditioning[26]. 

Signalling pathways involved in adenosine and ATP- 
induced hepatoprotection
Using preconditioned rat hepatocytes, we observed that 
A2aR stimulation activated a cascade of  intracellular sig-
nals involving Gi protein, phospholipase C (PLC), the 
novel isoforms of  protein kinase C (PKC) δ and ε and 
p38 MAP kinase (p38 MAPK)[21] (Figure 1). The effective 
contribution of  p38 MAPK in liver IP signalling was con-
firmed in vivo in mice where increased p38 MAPK phos-
phorylation was associated with tolerance against reperfu-
sion injury[29]. Moreover, p38 MAPK inhibitors abolished 
resistance to I/R injury both “in vitro” and “in vivo”[21,30].

A2aRs are known to be typically coupled to Gs pro-
teins that through adenylate-cyclase (A-C) stimulate protein 
kinase A (PKA)[31]. However, in an early study we excluded 
the involvement of  PKA in mediating IP, as PKA pharma-

cological activation was devoid of  protective action[21]. Sub-
sequent research clarified this discrepancy, as we observed 
that A2aRs were actually coupled with Gs proteins and 
PKA[32]. PKA, however, by phosphorylating A2aR, shifted 
A2aR coupling from Gs proteins to Gi proteins and this led 
to the recruitment of  the PLC-PKC pathway[32] (Figure 1).  
Interestingly, PKA phosphorylated A2aR only in the pres-
ence of  its ligand (adenosine) and this explained why direct 
PKA activation in the absence of  adenosine lacked protec-
tive activity[21,32] (Figure 1). The same research also high-
lighted the critical role of  phosphatidylinositol-3-kinase 
(PI3K) in hepatic IP[32]. PI3Ks are a family of  intracel-
lular signal transducers that generate phosphatidylinositol 
(3,4,5)-triphosphate (PIP3), a second messenger that plays 
a central role in the regulation of  cell proliferation, survival 
and metabolism[33]. In preconditioned hepatocytes, PI3K 
was activated upon A2aR engagement through Gi protein 
and Src kinase stimulation[32]. PI3K was shown to contrib-
ute to IP by promoting the activation of  PLC and of  PKC 
δ and ε (Figure 1)[32]. It is well known, however, that down-
stream of  PI3K, protein kinase B (PKB/AKT) is a key 
modulator of  a variety of  pro-survival and pro-regenera-
tive signals[33]. Thus, the PI3K-PKB/AKT pathway likely 
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Figure 1  Signalling pathways involved in the development of ischemic preconditioning in rat hepatocytes. Adenosine triphosphate (ATP), adenosine and 
nitric oxide (NO) act as inductors of hepatocyte preconditioning by modulating a network of constitutive and newly synthesized signal mediators. Some of these me-
diators play a common central role in hepatocyte cytoprotection. p38 MAP kinase (p38 MAPK) is a mediator of the cytoprotective effects of all three preconditioning 
stimuli. Phosphatidylinositol 3-kinase (PI3K) mediates both adenosine and NO early resistance to hypoxia. PI3K together with protein kinase C (PKC) δ and ε, also 
induces hepatocyte late resistance to hypoxia contributing to the normoxic activation of hypoxia-inducible factor 1 (HIF-1). Diacylglycerol kinase theta (DGKθ) and the 
phosphatase tensin-homologues-deleted from chromosome 10 (PTEN) which metabolize diacyglycerol and phosphatidylinositol, respectively, are inhibited during pre-
conditioning to sustain activation of the diacylglycerol (DAG)-dependent PKC δ and ε and the PI3K-dependent signals. See text and Refs[21,25,27,28,32,35,37,43]. P2YR: Pu-
rinergic P2Y receptors; A2aR: Adenosine 2A receptors; S-CG: Soluble guanylate cyclase; cGMP: Cyclic guanosine monophosphate; cGK: cGMP-dependent kinase; 
AC: Adenylate cyclase; cAMP: Cyclic adenosine monophosphate; PIP3: Phosphatidylinositol-3-phosphate; PKA: Protein kinase A; CAIX: Carbonic anhydrase IX; PLC: 
Phospholipase C; PA: Phosphatidic acid.
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represents an important pathway in the development of  
liver IP. Interestingly, PKB/AKT activation in connection 
with the development of  tolerance to I/R was evident in 
rat hepatocytes and mouse livers[32,34] undergoing IP, as well 
as in preconditioned human liver grafts immediately after 
transplantation[35].

At present, the intracellular signals involved in ATP-
dependent preconditioning are less well characterized. We 
reported that ATP-mediated activation of  P2Y receptors 
was coupled with the phosphorylation of  Src tyrosine 
kinase and of  p38 MAP kinase that, in turn, inhibited the 
activation of  ERK 1/2 consequent to hypoxic stress[25] 
(Figure 1). 

Constitutive mediators of nitric oxide-induced 
cytoprotection
The signalling pathways responsible for the cytoprotec-
tive action of  NO were investigated in rat hepatocytes 
treated with the NO donor, NOC-9, and then exposed to 
hypoxia. NOC-9-induced protection involved two parallel 
pathways. In one pathway, NO stimulated Ras GTPase, 
and in the other, NO directly activated the soluble gua-
nylate cyclase (sGC) that by producing cyclic guanosine 
monophosphate (cGMP), stimulated the cGMP-depen-
dent kinase (cGK) that also contributed to Ras GTPase 
activation[27,28]. Both the Ras and the cGK pathways then 
converged on the activation of  PI3K, while only the sGC-
cGK pathway was responsible for activating p38 MAPK 
(Figure 1)[27,28].

Negative regulators of liver preconditioning
It is increasingly clear that the development of  hepatic IP 
requires the activation of  a complex network of  signals 
comprising cell-surface receptors, redox signals and a di-
verse array of  protein kinases including PKCδ and PKCε. 
In preconditioned hepatocytes, the membrane recruitment 
and activation of  PKCδ and PKCε was fully dependent 
on their direct interaction with diacylglycerol, generated 
by adenosine-induced activation of  PLC-γ and diacylg-
lycerol analogues which fully mimicked the activation of  
the signals that induce IP[3,21]. However, it is now clear that 
the accumulation of  cellular diacylglycerol also depends 
on the rate of  its metabolism to phosphatidic acid by dia-
cylglycerol kinases (DGKs)[36]. In this regard, we recently 
observed that following IP or A2aR activation, the onset 
of  hepatocyte tolerance to hypoxia was associated with 
a decrease in DGK activity[37]. Moreover, stimulation of  
A2aR specifically inhibited DGK isoform θ by activat-
ing RhoA-GTPase[37]. The pharmacological inhibition of  
DGKs has consistently led to a diacylglycerol-dependent 
activation of  PKC δ/ε and of  p38 MAPK. Moreover, 
both genetic and pharmacological inhibition of  DGK θ  
induced cell tolerance to hypoxia[37]. Altogether these 
results unveiled a novel mechanism in the onset of  hepa-
tocyte preconditioning and demonstrated that the down-
regulation of  antagonist enzymes such as DGK was es-
sential to obtain the diacylglycerol accumulation required 
to trigger PKC-mediated survival signals. 

Similarly, preliminary data indicated that in parallel 

with the activation of  PI3K, A2aR stimulation reduced the 
intracellular levels of  the dual protein/lipid phosphatase 
tensin-homologues-deleted from chromosome 10 (PTEN) 
that inhibits PI3K-mediated signals by degrading phos-
phatidylinositol (3,4,5)-triphosphate[33]. We observed that 
PTEN inhibitors mimicked the induction of  precondition-
ing (Cescon et al[35] unpublished results), while PKB/AKT 
activation and the clinical efficacy of  IP in preconditioned 
human liver were fully explicated only in the presence of  
significant PTEN down-regulation.

Altogether these results demonstrated the importance 
of  the down-modulation of  key inhibitory enzymes for 
full activation of  preconditioning responses. Moreover, 
these observations indicated the possible use of  inhibitors 
of  DGKs or PTEN as pharmacological inducers of  he-
patic preconditioning.

Nuclear transcription factors in liver preconditioning
As previously mentioned, the late effects of  IP require the 
transcription of  different stress-responsive genes and pro-
tein synthesis[2,3]. Growing evidence indicates that these 
responses are achieved by the coordinated activation of  
several transcription factors.

Nuclear factor-κB: Nuclear factor-κB (NF-κB) is typi-
cally devoted to the regulation of  genes involved in in-
flammatory response and cell survival[38]. In experimental 
models of  liver I/R, IP modifies NF-κB activity in differ-
ent ways[29,39]. In one study, IP decreased NF-κB activity 
1 h after reperfusion[39], and in another study, IP activated 
NF-κB during the ischemic period[29]. These contrasting 
results could be due to predominant NF-κB modulation 
in non-parenchymal vs parenchymal cells or to a differen-
tial regulation of  NF-κB in the different phases of  liver 
preconditioning. In addition, the NF-κB decrease during 
reperfusion was strictly related to a reduction in inflamma-
tory cytokine expression[39], indicating a down-regulation 
of  pro-inflammatory responses in Kupffer/sinusoidal en-
dothelial cells. Conversely, NF-κB activation during isch-
emia was associated with the hepatoprotective action of  
IP[29], suggesting that, in hepatocytes, NF-κB-dependent 
genes contributed to survival responses.

Signal transducer and activator of  transcription: The 
signal transducer and activator of  transcription (STAT) 
transcription factors are a group of  proteins implicated in 
the control of  cell proliferation and survival processes[40]. 
IP induced the activation of  the interleukin (IL)-6/STAT3 
axis in liver and this pathway was involved in both cyto-
protection and hepatic regeneration. On the one hand, as 
a result of  hepatic preconditioning, NF-κB was shown to 
stimulate the expression of  IL-6 and STAT3 that, in turn 
controlled cyclin beta1 synthesis and cell cycle progres-
sion[29]. On the other hand, studies with IL-6 null mice 
showed that the cytoprotective effects of  IP against I/R 
injury depended on IL-6 signalling and were associated 
with hepatic STAT3 activation[41]. 

Hypoxia-inducible factor 1: Hypoxia-inducible factor 1 
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(HIF-1) is the main regulator of  tissue adaptation to oxy-
gen deprivation[42]. Active HIF-1 is a heterodimer consist-
ing of  an inducible HIF-1a subunit and a constitutively 
expressed HIF-1β subunit. HIF-1a is extremely labile in 
normoxia, as it is continuously degraded in proteasomes 
following hydroxylation, catalyzed by the oxygen-depen-
dent HIF-prolyl-4-hydroxylase and arginyl-hydroxylase[42]. 
The lowering of  intracellular oxygen prevents HIF-1a 
hydroxylation allowing its nuclear translocation and bind-
ing to hypoxic response elements of  a number of  genes 
regulating erythropoiesis, angiogenesis, glucose transport, 
glycolysis and cell survival[42]. Using preconditioned hepa-
tocytes, we showed that HIF-1 activation was associated 
with the induction of  a long lasting tolerance to hypoxic 
injury[43]. Furthermore, Amador and co-workers reported 
an increase in HIF-1a in concomitance with a lowering of  
hepatocyte apoptosis in human transplanted livers exposed 
to IP[44]. HIF-1 activation by IP was not due to the tran-
sient hypoxia occurring during the induction of  precon-
ditioning, but required A2aR activation[43]. This implicated 
an oxygen-independent mechanism in the regulation of  
HIF-1. Indeed, several reports demonstrated that a number 
of  non-hypoxic stimuli (i.e. growth factors, cytokines, hor-
mones and endotoxins) can activate HIF-1 in an oxygen-
independent manner[45]. This process implies a PI3K- and 
PKC-dependent increase in the translation of  HIF-1a 
mRNA, a process that shifts the synthesis/degradation 
balance towards HIF-1a accumulation[46]. We found that 
in hepatocytes, adenosine-dependent HIF-1 activation re-
quired the stimulation of  both PI3K and PKC pathways[43]. 
This indicated that preconditioning stimuli, acting through 
the same survival pathways, could contextually lead to the 
early and late phase of  response against cell injury. 

Changes in the pattern of protein expression following 
liver preconditioning
Information concerning the genes modulated in response 
to liver IP is still limited. In accordance with the role of  NO 
production as a trigger of  IP, increased nitric oxide synthase 
expression was detected in preconditioned rat liver[47]. Mi-
croarray analysis of  preconditioned human liver confirmed 
a significant increase in the amount of  inducible nitric oxide 
synthase and also showed an increase in the anti-apoptotic 
protein, Bcl-2[48]. These analyses also showed that IL-1 
receptor antagonist (IL-1Ra) was the most over-expressed 
gene in human preconditioned livers[48], in accordance with 
the anti-inflammatory effects of  IP. Parallel studies inves-
tigating the gene expression pattern in preconditioned rat 
hepatocytes showed changes in 43 genes including those of  
the anti-inflammatory IL-10 and the antioxidant enzyme su-
peroxide dismutase 2 (SOD2)[49]. In another study, a marked 
increase in SOD as well other endogenous antioxidants 
such as catalase (CAT) and glutathione peroxidase was also 
observed[50]. 

As previously mentioned, HIF-1 controls the expres-
sion of  a variety of  genes implicated in erythropoiesis, an-
giogenesis, glucose transport, glycolysis and cell survival[42]. 
In this context, we observed that the A2aR-dependent 
activation of  HIF-1 in hepatocytes was associated with the 

expression of  carbonic anhydrase IX (CAIX)[43], a trans-
membrane enzyme that by catalyzing bicarbonate produc-
tion was implicated in preventing hepatocyte death (see 
later). 

MOLECULAR MECHANISMS OF CELL 
RESISTANCE TO INJURY FOLLOWING 
HEPATIC PRECONDITIONING
The hepatoprotective effects of  liver preconditioning 
impact on a number of  different mechanisms. These in-
clude several processes acting against ischemia-induced 
damage as well as against reperfusion injury[2,3,50]. 

Protection against ischemic damage
A decrease in hepatic energy state is the main cause of  liv-
er cell injury during ischemia. Oxygen deprivation causes 
loss of  mitochondrial potential, ATP depletion and intra-
cellular acidification which are turning points in the onset 
of  irreversible liver cell injury[3,50,51]. In early research, we 
found that activation of  the Na+/H+ exchanger in re-
sponse to cellular acidosis combined with the inhibition 
of  Na+ extrusion by the Na+/K+ ATPase, resulted in Na+ 
accumulation within hepatocytes[52] (Figure 2). Na+ over-
load was a critical step in hepatocyte damage during warm 
and cold hypoxia, as well as at the beginning of  re-oxygen-
ation, and its prevention markedly delayed the appearance 
of  necrotic cell death[52-60]. Indeed, increased Na+ caused 
an irreversible influx of  Ca2+ by activating the Na+/Ca2+ 
exchanger[56] and deranged cell volume regulatory mecha-
nisms that ultimately led to osmotic hepatocyte lysis[53,58]. 
In rat hepatocytes, IP or treatment with A2aR agonists, 
ATP analogues or NO donors all protected against 
hypoxia-induced Na+ overload and such protection was 
causally associated with increased cell survival[20,21,25,27,28,43]. 
Interestingly, the maintenance of  Na+ homeostasis was 
achieved both in the early phase of  hepatocyte precondi-
tioning[20,21,25,27,28], as well as in the late effects[43] (Figure 2).  
In the early phase of  IP, inhibition of  the Na+/H+ ex-
changer and activation of  the vacuolar ATPase (V-ATPase) 
were mainly involved (Figure 2). Indeed, in hepatocytes 
treated with ATPγS, activation of  the P2Y receptors/Src/
p38MAPK axis inhibited ERK 1/2-mediated activation 
of  the Na+/H+ exchanger responsible for Na+ influx dur-
ing hypoxia[25] (Figure 2). Adenosine- and NO-dependent 
maintenance of  Na+ homeostasis in preconditioned hepa-
tocytes depended on p38 MAPK and PI3K signalling and 
involved the neutralization of  intracellular pH achieved by 
the activation and translocation on plasma membrane of  
the V-ATPase (Figure 2). V-ATPase, acting as an alterna-
tive pH buffering system, extruded protons thus avoiding 
the activation of  Na+-dependent transporters[20,27,28]. The 
mechanism of  Na+ maintenance during the late phase of  
IP involved the HIF-1-mediated expression of  CAIX in 
hepatocyte plasma membranes. The bicarbonate gener-
ated by CAIX was transferred to the cytosol through the 
Cl-/HCO3

- exchanger and neutralized intracellular pH 
avoiding Na+ influx[42] (Figure 2). Beside these effects on 
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Na+ homeostasis, during ischemia, IP also down-modulat-
ed hepatic energy metabolism by preserving the ATP and 
glycogen pools and limited lactate accumulation[61]. 

Protection against reperfusion damage
Mitochondria are a major target of  the damaging effects 
of  reperfusion[51]. Oxygen re-admission promotes free 
radical formation by uncoupled mitochondria with conse-
quent mitochondrial oxidative damage and swelling[62]. IP 
protected mitochondria from oxidative reperfusion dam-
age[63] and preserved mitochondrial redox-state[64], thus 
attenuating the impairment of  ATP synthesis occurring 
at reperfusion. IP also improved hepatic intracellular oxy-
genation[65], preserved sinusoidal wall integrity and avoided 
liver microcirculatory failure induced by I/R[64]. Together 
these actions preserved aerobic ATP synthesis maintain-
ing the hepatic energy status during re-oxygenation. 

During reperfusion, preconditioned livers also showed 
a significant reduction in oxidative damage[66,67]. This effect 
could be ascribed to the increased content of  antioxidant 
enzymes such as SOD, CAT and GSPx[49,50], as well as the 
reduced generation of  reactive oxygen species by mito-
chondria and inflammatory cells. In the latter context, sev-
eral studies have outlined the capacity of  liver precondi-
tioning to reduce inflammatory responses associated with 
reperfusion. IP decreased leukocyte adhesion to sinusoidal 
endothelial cells, lowering post-ischemic neutrophil infiltra-
tion[68,69]. IP also attenuated the production of  pro-inflam-
matory cytokines/chemokines during reperfusion[10,68,69]. 
Finally, pharmacological stimulation of  A2aR inhibited the 
activation of  hepatic natural killer T lymphocytes, a pro-

cess that was causally associated with the protective action 
of  IP against hepatic reperfusion damage[70]. 

An important consequence of  IP was the prevention 
of  hepatocyte and sinusoidal endothelial cell apopto-
sis[3]. Such an effect can be ascribed to the amelioration 
of  oxidative damage, to the reduced production of  pro-
apoptotic cytokines as well as to a direct interference with 
apoptotic mechanisms. Indeed, the increase in PKB/Akt 
observed in preconditioned hepatocytes[32] represents an 
important anti-apoptotic signal, since PKB/Akt blocks 
apoptosis by interfering with Bad, caspase-9 and cFLIP 
functions[71]. NF-κB might also be implicated in the regu-
lation of  hepatocyte response to pro-apoptotic stimuli 
and the increase in NF-κB nuclear binding observed as 
early as 30 min after liver IP[29] should be considered in 
this context. It cannot be excluded that NO-mediated 
signals might also contribute to the anti-apoptotic action 
of  preconditioning by preventing loss of  mitochondrial 
potential, cytochrome c release and caspase activation[72]. 

In conclusion, the combined effects of  liver precondi-
tioning on energy status, ion homeostasis, oxidative stress, 
pro-apoptotic responses and inflammation could explain 
the reduction in hepatocyte and sinusoidal endothelial cell 
death observed in preconditioned livers exposed to I/R[3,51].

Induction of hepatic regeneration
One of  the key issues in the possible exploitation of  pre-
conditioning on LDTL is related to its effects on hepato-
cyte proliferation. The mechanisms involved in the pro-
regenerative effects of  liver preconditioning are beginning 
to be elucidated. Hepatocyte growth factor (HGF) and 
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transforming growth factor (TGF)-β are two cytokines 
that have opposite actions on liver regeneration, and pro-
mote and inhibit hepatocyte proliferation, respectively[73]. 
The capacity of  IP to enhance liver regeneration after 
reduced-for-size transplantation was associated with in-
creased HGF levels[15] and a lowering of  TGF-β produc-
tion[16]. These effects were causally related to a reduction 
in IL-1a and an increase in heat shock protein (HSP) 70 
expression, respectively[15,16]. Furthermore, a recent study 
also associated the capacity of  IP to attenuate injury in 
small-for-size liver grafts with the prevention of  free radi-
cal production and mitochondrial dysfunction, through an 
increased expression of  HSP90, a molecular chaperone 
that facilitates the mitochondrial import of  Mn-SOD[74].

ISCHEMIC POST-CONDITIONING
The term ischemic post-conditioning refers to the capac-
ity to prevent myocardial I/R injury by the application 
of  brief  cycles of  ischemia during the reperfusion period 
after a sustained ischemic episode[75-77]. To date, the effects 
of  post-conditioning in the liver have been reported in 
two studies. These studies showed that the application of  
brief  ischemia in the early phase of  reperfusion after rat 
liver transplantation, was associated with an amelioration 
of  transaminase release and prevention of  hepatocyte 
apoptosis[78-80]. These observations have new important 
clinical implications as these mechanisms may also act 
when hepatic damage has already started. In relation to 
the mechanisms involved in liver post-conditioning, pre-
liminary results in our laboratory indicated that pharma-
cological post-conditioning with A2aR agonists induced 
PI3K activation and prevented post-ischemic damage in 
hepatocytes[81]. 

CLINICAL APPLICATIONS OF LIVER 
PRECONDITIONING
The clinical efficacy of  hepatic preconditioning was clearly 
demonstrated in clinical trials performed in patients un-
dergoing hemi-hepatectomy[4,82,83]. In these patients, IP ob-
tained by 10 min of  ischemia and 10 min of  reperfusion 
before 30 min of  inflow occlusion, significantly reduced 
transaminase release and ameliorated sinusoid endothelial 
cell apoptosis as compared to liver exposed to Pringle’s 
manoeuvre only[82,83]. These effects were particularly evi-
dent in patients with mild or moderate steatosis, but were 
not observed in subjects older that 60 years[82]. Consider-
ing the possible impact that preconditioning may have 
in attenuating the effects of  long-term graft exposure to 
cold and warm ischemia during liver transplantation pro-
cedures[2,4], the therapeutic use of  IP in this setting should 
have important outcomes. The application of  IP in human 
liver transplantation from deceased donors has, however, 
demonstrated conflicting results[44,84-88]. Indeed, some stud-
ies have shown the efficacy of  IP in ameliorating transami-
nase release and in reducing primary graft malfunctions, 
whereas others have not observed significant differ-
ences[44,84-87]. In an attempt to gain some insight into the 

possible reasons for the failure of  IP to protect liver grafts 
against reperfusion injury, we investigated the intracellular 
signals activated by IP in transplanted livers from heart-
beating deceased donors. The data obtained indicated that 
IP stimulated PI3K-mediated signals in only half  of  the 
grafts and such variability correlated with the clinical ef-
fectiveness of  IP. Our data also suggested that it was the 
failure of  PTEN down-modulation that likely contributed 
to the lack of  PI3K response to IP[35]. These observations 
indicated the necessity to explore alternative procedures 
to surgical IP to overcome the variability of  human grafts 
in activating preconditioning responses. In this regard, the 
pharmacological induction of  liver preconditioning likely 
represents a more reliable technique for stimulating the 
intrinsic systems of  cytoprotection in humans. 

PHARMACOLOGICAL INDUCTION OF 
HUMAN LIVER PRECONDITIONING
The clinical potential of  pharmacological liver precon-
ditioning is clearly suggested by animal studies, however, 
only two trials have so far addressed this aspect. In one 
study, Lang and co-workers reported that patients receiv-
ing volatile NO during orthotopic liver transplantation 
displayed an accelerated restoration of  liver function as 
compared to the control group[89]. In the other report, 
Beck-Schimmer and co-workers showed that precondi-
tioning with the halogenated anaesthetic, sevoflurane, in 
64 patients undergoing liver surgery significantly amel-
iorated transaminase release and the incidence of  severe 
post-operative complications[90]. These observations are 
consistent with increasing data regarding the efficacy of  
sevoflurane preconditioning in preventing myocardial 
ischemia/reperfusion injury[90]. Nonetheless, the avail-
ability of  several liver specific NO donors and of  a variety 
of  effective adenosine A2A receptor agonists[91-93] offers 
the possibility of  extending the number of  studies aimed 
at directly evaluating new approaches to pharmacological 
liver preconditioning in humans. 

CONCLUSION
In spite of  a large number of  studies on liver precondi-
tioning, general knowledge on this phenomenon is far 
from complete. The available data give some insight into 
the signalling pathways responsible for both the early 
and late responses of  IP, as well as some of  the cellular 
modifications involved in the hepatoprotective effects of  
preconditioning. Additional extracellular inductors and 
constitutive or newly synthesized mediators are, however, 
likely to be involved. Little is known about the proteomic 
changes associated with inhibition of  the inflammatory 
responses and the promotion of  hepatic regeneration. 
Further research is thus needed to clarify these aspects. 
In particular, preclinical studies are necessary to identify a 
panel of  the most suitable targets of  liver precondition-
ing whose modulation by means of  pharmacological or 
genetic therapies will allow effective activation of  endog-
enous hepatoprotective systems in patients.
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