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Abstract

Stem cell therapies for neurodegenerative disorders require accurate delivery of the transplanted cells to the sites of
damage. Numerous studies have established that fluid injections to the hippocampus can induce lesions in the dentate
gyrus (DG) that lead to cell death within the upper blade. Using a mouse model of temporal lobe epilepsy, we previously
observed that embryonic stem cell-derived neural progenitors (ESNPs) survive and differentiate within the granule cell layer
after stereotaxic delivery to the DG, replacing the endogenous cells of the upper blade. To investigate the mechanisms for
ESNP migration and repair in the DG, we examined the role of the chemokine CXCL12 in mice subjected to kainic acid-
induced seizures. We now show that ESNPs transplanted into the DG show extensive migration through the upper blade,
along the septotemporal axis of the hippocampus. Seizures upregulate CXCL12 and infusion of the CXCR4 antagonist
AMD3100 by osmotic minipump attenuated ESNP migration. We also demonstrate that seizures promote the differentiation
of transplanted ESNPs toward neuronal rather than astrocyte fates. These findings suggest that ESNPs transplanted into the
adult rodent hippocampus migrate in response to cytokine-mediated signals.
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Introduction

Stem cell-based treatments for neurodegenerative diseases and

central nervous system (CNS) injuries are currently in the pipeline.

Embryonic stem cell (ESC)-derived neural progenitors (ESNPs)

are among the most promising candidate neural cell types under

investigation for CNS repair because they retain the potential to

proliferate and differentiate into multiple neuronal and glial

subtypes following transplantation [1], with the specific outcome

dependent upon local environmental cues [2,3]. As these cells

differentiate, they form functional neurons capable of incorporat-

ing into the host brain [4].

For effective CNS repair, ESNPs must be directed to sites of

damage [5,6], but little is known about how these cells migrate

after transplantation. Effective therapies for widespread white

matter damage in diseases like multiple sclerosis may require long-

range dispersal of glial progenitors [7,8]. In contrast, conditions

such as spinal cord injury, Alzheimer’s disease, Parkinson’s disease,

stroke, or temporal lobe epilepsy (TLE), may need focal delivery of

replacement cells to denervated sites [9]. Therefore, a better

understanding of the molecular mechanisms involved in migration

and differentiation of ESNPs and their derivatives is essential for

successful stem cell-based CNS therapy design.

A number of studies have shown that neural stem cells (NSCs)

derived from either the adult CNS or ESCs incorporate into the

upper blade of the dentate gyrus (DG) granule cell layer (GCL)

and differentiate into dentate granule neurons (DGNs) after

transplantation into the adult hippocampus [10]. Previous analysis

suggests that transplanted cells disperse passively throughout the

site of a neurodegenerative lesion caused by fluid injections into

the upper blade of the DG [11,12]. Whether transplanted NSCs

actively migrate in this region has not been well studied. We

therefore examined the distribution of transplanted ESNPs after

they were deposited in the adult hippocampus in mice that had

been subjected to kainic acid (KA)-induced status epilepticus (SE).

Seizures may influence migration and/or differentiation through

upregulation of stromal derived factor-1a (CXCL12 or SDF-1a), a

potent chemokine produced by the meninges and DGNs both

during embryogenesis and in the adult hippocampus [13,14].

CXCL12 signaling via its primary receptor, CXCR4, guides

migrating granule neural precursors from the hilus into the DG

during development [15,16]. CXCL12 also acts as a chemoat-
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tractant for tangentially migrating GABAergic interneurons within

the developing cerebral cortex and hippocampus [17]. In addition,

new evidence suggests that CXCL12 is critical for the migration of

NSCs from the subventricular zone (SVZ) into the rostral

migratory stream (RMS) [18], as well as the migration and

proliferation of NSCs engrafted into the spinal cord in a rodent

model of multiple sclerosis [19]. Moreover, CXCL12 regulates the

migration of both endogenous and transplanted NSCs in stroke

models in adult rodents [20,21]. This chemokine pathway also

influences the differentiation of newborn DGNs in the adult

hippocampus [22,23].

We examined the extent and direction of migration of ESNPs

transplanted to the adult DG and observed significant movement

from the injection sites posteriorly along the upper blade of the

DG into sites where the endogenous DGNs degenerate. Expres-

sion of CXCR4 by ESNPs suggests that CXCL12 is involved in

this process. This hypothesis was supported by our finding that

seizures upregulated CXCL12 expression in the hippocampus

DG. Moreover, ESNPs showed a chemotactic response to

CXCL12, both in vitro and in vivo. These data suggest that a

localized source of CXCL12 may direct the migration of ESNPs

towards specific regions of neurodegeneration in the adult

hippocampus.

A second goal was to examine whether SE prior to

transplantation influenced migration or differentiation of trans-

planted ESNPs. Seizures have a profound influence on gene

expression, synaptic connectivity, and neuronal survival in the

hippocampus [24,25]. Patients with severe chronic TLE show

distinctive neuropathological changes including hippocampal

sclerosis and cell death throughout Ammon’s horn and the

dentate hilar region [26,27]. Similar patterns of neuronal loss are

apparent following SE in experimental models [28,29]. Seizures

also induce abnormal upregulation of neurogenesis in the

subgranular zone (SGZ) of the human and rodent DG

[30,31,32,33] and alter the fates of endogenous NSCs [34]. Our

results demonstrate that seizures induce a marked change in the

differentiation of ESNPs into neurons rather than astrocytes.

Materials and Methods

Cell Culture
YC5 mouse ESC cultures were maintained on a feeder layer of

STO fibroblasts, with DMEM (Sigma, St. Louis, MO) supple-

mented with leukemia inhibitory factor (LIF), 1-thioglycerol and

Knockout Serum Replacement (Gibco, Grand Island, NY). Neural

progenitors were derived using a modification of a previous

protocol [35]. ESCs were differentiated into embryoid bodies in

suspension culture in the presence of fetal bovine serum (Atlanta

Biologicals, Lawrenceville, GA) and the absence of LIF, then

grown in adherent culture using serum-free medium supplemented

with insulin, transferrin, selenium (ITS, Gibco), and fibronectin

(Sigma). ESNPs were expanded in neural expansion media

(DMEM/F12 [Sigma], putrescine [Sigma] and laminin [Sigma]),

containing fibroblast growth factor 2 (FGF2, Sigma) and

epidermal growth factor (EGF, Sigma) for 5–9 days. For in vitro

assays and ESNP characterization, cultures of ESNPs were grown

in Permanox chamber slides (Thermo Scientific, Rochester, NY).

Cells were fixed in 3.7% formaldehyde in 0.1 M phosphate buffer

and stained by immunocytochemistry for cell type-specific markers

and nuclear staining with Hoechst 33342 (Invitrogen, La Jolla,

CA). To test the effects of CXCL12 (Peprotech, Rocky Hill, NJ) or

AMD3100 (Sigma), ESNPs grown on Permanox were treated with

200 ng/mL CXCL12 and/or 5 mg/mL AMD3100 for three days

with media changes each day.

Surgical Procedures
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol was approved by the Wesleyan University Animal Care

and Use Committee (Protocol Number: 090093). Eight- to ten-

week-old male B6.CB17-Prkdc scid/SzJ mice (Jackson Laborato-

ries) were injected subcutaneously with KA (Sigma, 22.5 mg/kg in

saline) to induce SE. Control mice received injections of PBS.

Seizures were graded as described elsewhere and attenuated by

sodium pentobarbital (50 mg/kg, i.p., Abbott, North Chicago, IL),

10 min after reaching stage 5 seizures, as described previously

[28,36]. Cell death in the hippocampus from single systemic

injections of KA in this mouse line has been previously described

[2].

ESNPs were transplanted into the DG by means of stereotaxic

surgery, 7 days following the induction of seizures by the

chemoconvulsant KA. Surgical levels of anesthesia were induced

by inhalation of isoflurane (Sigma). The stereotaxic surgery was

performed in a rodent stereotaxic frame fitted with an isoflurane

gas mask adaptor for mice (Kopf, Tujunga, CA). Coordinates for

stereotaxic injections into the hippocampus were based on distance

from Bregma; 22.0 mm posterior, 21.95 mm lateral, and

21.9 mm ventral to the pial surface. Approximately 50,000 cells

in 1 ml of neural expansion media were injected over a period of

10 min. The needle was then removed and the incision sealed with

veterinary-grade tissue adhesive (Vetbond, 3 M). To test migra-

tion, osmotic minipumps (Alzet Model 1004, Cupertino, CA) were

placed subcutaneously in the intrascapular area one day prior to,

or 3 hours following, transplantation. Osmotic minipumps were

filled with either 0.1 M phosphate buffer or 50 mg/mL AMD3100

diluted in 0.1 M phosphate buffer. The incision was sealed with

veterinary-grade tissue adhesive and wound clips.

Histological Analyses
Mice were euthanized with a lethal dose of sodium pentobar-

bital (Nembutal, Abbott Labs, North Chicago, IL) followed by

transcardial perfusion with a heparinized phosphate (PO4) buffer

solution containing 10% sucrose, then 4% PFA in 0.1 M PO4.

Brains were cryogenically protected using graded sucrose solutions

to 30% in 0.1 M PO4. Brains were then embedded in tissue

freezing medium (Triangle Biomedical Sciences, Durham, NC)

and frozen at 280uC. Cryostat sections were cut at 12-mm

intervals along the coronal plane and mounted onto Superfrost

Plus slides, briefly dried on a slide warmer, and then stored at

280uC until immunohistochemical analyses were performed.

Immunostaining
ESNPs were cultured in chamber slides, fixed in 3.7%

formaldehyde for 10 minutes at room temperature, rinsed in

PBS, and permeabilized in 0.1% Triton X-100/PBS for 10

minutes at room temperature. After a blocking step (2% bovine

serum albumin in 0.1% Triton X-100/PBS) for 1 hour at room

temperature, primary antibodies were placed in each chamber

overnight at 4uC. For all immunostaining experiments, a negative

control experiment was performed in which the primary antibody

was omitted. For immunohistochemistry, brain sections were

briefly rehydrated in PBS. After blocking (2% bovine serum

albumin, 10% normal goat serum in 0.1% Triton X-100/PBS) for

1 hour at room temperature, primary antibodies were applied in

blocking buffer and incubated overnight at 4uC. Antibodies were

diluted as follows: mouse anti-nestin, 1:1,000 (Chemicon,

Temecula, CA); mouse anti-TuJ-1, 1:1,000 (Covance); rabbit

anti-doublecortin, 1:1,000 (Sigma); mouse anti-Prox1, 1:200

Migration of ESNPs in the Hippocampus

PLoS ONE | www.plosone.org 2 December 2010 | Volume 5 | Issue 12 | e15856



(Chemicon); rabbit anti-glutamine synthetase 1:1,000 (Sigma);

mouse anti-NeuN 1:500 (Chemicon); rabbit anti-CXCR4 1:200

(Torrey Pines, East Orange, NJ); rabbit anti-CXCL12 (Abcam,

Cambridge, MA). After rinsing, secondary antibodies were then

applied, diluted 1:1,000 (Alexa-Fluor 568- or 647-conjugated goat

anti-mouse IgG, Alexa-Fluor 568- or 647-conjugated goat anti-

rabbit IgG, Alexa-Fluor 568-conjugated goat anti-rat IgG;

Invitrogen, La Jolla, CA) in blocking buffer for 1 hour at room

temperature. Enhanced yellow fluorescent protein (EYFP)-positive

cells were visualized by using either rabbit anti-green fluorescent

protein (GFP) diluted 1:1,000 or mouse anti-GFP diluted 1:1,000

(Invitrogen), followed by Alexa-Fluor 488. Cell nuclei were then

labeled with Hoechst 33342 (Molecular Probes, Eugene, OR),

diluted 1:10,000, and sections were mounted in gelvatol.

In Vitro Migration Assay
The top surfaces of 8 mm-pore transwells (Corning, Corning, NY)

were coated with 2 mg/mL laminin and ESNPs were seeded in

DMEM/F12 medium at a density of 150,000 cells per transwell.

Transwells were inserted into 24-well culture plates on top of

0.5 mL of DMEM/F12 containing varying concentrations of

CXCL12 recombinant peptide (Peprotech, Rocky Hill, NJ). In

order to block CXCR4 receptors, ESNPs were first incubated in

varying amounts of AMD3100 (Sigma) for 30 min. at room

temperature, washed in PBS and then resuspended in DMEM/

F12. The transwells were allowed to incubate for 18 hours at 37uC,

washed three times in PBS, fixed in 3.7% formaldehyde and stained

for nuclei with Hoechst. Transwell membranes were removed and

the underside of the membrane was imaged and nuclei counted

using NIS-Elements (Nikon, Melville, NY) software.

Quantitative and Semi-Quantitative PCR
Reverse transcription (RT) and PCR reactions were performed

as previously described [37]. Briefly, total RNA was extracted

from ESCs, ESNPs, E14.5 whole brain and whole adult

hippocampal lysates using Ultraspec-RNA (Biotecx Laboratories,

Inc., Houston, TX). RNA was treated with RNAse free DNase I

(Invitrogen) and reverse-transcribed with MMLV-RT (Invitrogen).

cDNAs were amplified with various primers using Taq-ReadyMix

(Sigma). b-actin was used as a loading control. Primer sequences

for semi-quantitative PCR were as follows, b-actin: 59-

GGCCCAGCGCAAGCGAGGTATCC -39 and 59- ACGCAC-

GATTTCCCTCTCAGC -39, CXCL12: 59- GCTAAGGT-

TTGCCAGCATAAAGAC -39 and 59- ACAGCGGTGAGA-

AGCGGAAGTCAG -39, CXCR4: 59- ACAGGTACATCTGT-

GACCGCCTTT -39 and 59- TGCTCTCGAAGTCACATC-

CTTGCT -39, and CXCR7: 59- CTGAGGTCACTTGGTC -39

and 59- GATGGAGAGATAGCGGTCCAC -39. Cycle number

for each primer pair was determined individually so that

amplification was in the exponential range and had not reached

a plateau.

Real-time RT-PCR was performed using 100 ng of total cDNA

per reaction. cDNA was combined with primer/probe sets for

CXCL12 and GAPDH and TaqMan Gold RT-PCR Master Mix

and run on an ABI 7300 (all Applied Biosystems, Foster City, CA).

The RT-PCR profile consisted of one cycle at 50uC for 2 min and

95uC for 10 min, followed by 40 cycles at 95uC for 15 s and 60uC
for 1 min. Results of the real-time RT-PCR were normalized to

GAPDH. To assess the difference in mRNA levels, the data were

analyzed using the 2-CT method.

Quantification of Graft Size and Migration
Transplant grafts were measured by sampling brain sections

every 120 mm through the hippocampus and the injection site.

Area measurements of the grafts were calculated using NIS-

Elements software (Nikon Instruments Inc., Melville, NY).

Volumetric calculations of the grafts were calculated from the

cross-sectional areas of the grafts multiplied by the distance

between sampled sections. Statistical analysis was performed using

Student’s T-test and ANOVA using Microsoft Excel. Significance

was determined as having a p value less than 0.05.

Results

ESNP Differentiation In Vitro
YC5 mESCs were differentiated into ESNPs using a modifica-

tion of a standard embryoid body-based protocol, using defined

media [35]. At the time of transplantation, over 90% of the cells

expressed the NSC marker nestin, and less than 10% expressed

the immature neuronal marker b-III tubulin (Fig. S1A–C). The

transplant population also expressed additional markers for neural

precursors (Sox1) as well as anterior (Otx1) and ventral forebrain

markers (Mash1, Nkx2.1) and dorsal markers (Pax7), demonstrat-

ing the presence of broad regional identities in these cultures

(Figure S1D).

Injection Site Location Influences ESNP Dispersion in the
Adult Hippocampus

Previously, we reported that ESNPs survive and differentiate

into neurons in the DG of mice, following KA-induced seizures

[2]. To examine whether dispersion of ESNPs is affected by the

site of injection, we compared graft location following injections

into different locations. When the stereotaxic injection sites were

located closer to CA3 (green arrows, Figure 1A), ESNPs tended to

settle in the hippocampal fissure (HF) immediately following

injection (Figure 1B), and remain there up to 4 weeks following

transplantation (Figure 1C). ESNPs transplanted to the HF

survived but did not migrate into the hippocampus from the

fissure (Figure 1C). When the needle track was close to, or pierced

the DG (blue arrows, Figure 1A), the ESNPs were mainly localized

within the infragranular zone beneath the upper blade of the DG

shortly after transplantation (Figure 1D). After 4 weeks however,

the transplanted cells had dispersed through the upper blade of the

DG (Figure 1E). To determine whether the dispersion was linked

to neurodegeneration within the granule cell layer of the DG, we

examined NeuN+ neurons in the GCL at different times after

injections were made. Over the course of a week following ESNP

transplantation, we observed a prominent loss of NeuN+ cells in

the GCL, particularly in the upper blade (Figure S2). The ESNPs

infiltrated the upper blade by 3 days after transplantation and by 4

weeks had filled in the sites in the GCL where endogenous DGNs

underwent degeneration (Figure S2). These results show that

transplanted ESNPs incorporate into lesions in the DG of the

hippocampus, in agreement with previous studies using fetal NSCs

[10].

Migration of ESNPs in the DG
We next asked whether transplanted ESNPs showed directional

migration within the DG. To address this question, we

reconstructed graft locations in the DG at different time points.

When cells were transplanted into the upper blade in the dorsal

hippocampus (asterisks, Figure 2A), ESNPs dispersed posteriorly

over the course of one week, along the septotemporal axis of the

hippocampus (Figure 2A). Cells in these grafts rarely migrated

away from the upper blade. Conversely, ESNPs transplanted into

other regions of the hippocampus were never observed to disperse

into the infragranular zone (data not shown). The ESNP grafts in

the upper blade reached a maximum septotemporal extent by 7

Migration of ESNPs in the Hippocampus
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days following transplantation, with a small significant increase at

28 days (Figure 2B). During this period, ESNPs became more

evenly distributed (Figure 2C). These observations, demonstrating

that ESNPs transplanted into the SGZ or hilus dispersed within

the infragranular zone, suggest that an active process mediated by

local signals within the DG may regulate ESNP migration.

ESNPs Migrate in Response to a Source of CXCL12
To determine whether ESNP dispersion is an active process

guided by established chemoattractants, we investigated the role of

CXCL12, a known chemokine expressed in the adult brain [38].

In culture, ESNPs, as well as ESC-derived immature neurons,

expressed CXCR4, a receptor for CXCL12 required for

CXCL12-mediated chemotaxis (Figure 3A, B). Moreover, trans-

well migration assays demonstrated clearly that ESNPs migrated

in a dose-dependent manner towards a source of CXCL12

(Figure 3C). These results suggest an active migration process that

is dependent upon CXCL12.

To further investigate CXCL12-mediated guidance mecha-

nisms, we next examined expression of CXCR4 and CXCR7, the

two receptors that bind CXCL12 [39]. YC5 ESCs and ESNPs

express mRNA for both the chemokine and its receptors

(Figure 3D). To determine whether CXCL12-induced migration

is mediated via CXCR4 receptors, we blocked CXCR4 receptors

with a small pharmacological inhibitor, AMD3100 [40]. This

inhibitor effectively reduced ESNP migration towards an in vitro

source of CXCL12 (Figure 3E). These data suggest that CXCL12-

mediated migration of ESNPs requires the function of CXCR4.

This result, however, could be due to altered proliferation or

differentiation of ESNPs, so we next determined whether

CXCL12 affects these properties. In vitro treatment with CXCL12

did not increase phospho-histone H3 levels or alter nestin or b-III

Figure 1. Injection site affects ESNP dispersal in the hippocampus. (A) Schematic of 17 representative transplants shows both the needle
track (arrows) and placement of ESNPs 4 weeks following surgery in either the hippocampal fissure (HF, green arrows) or the upper blade of the DG
(DG, blue arrows). (B) ESNPs (green) injected into the hippocampus disperse through the HF and persist at 4 weeks following transplantation (C). (D)
When the injection site is closer to the DG, ESNPs are dispersed along the upper blade, where they persist at 4 weeks (E) and can send processes
contacting cells in the CA3 pyramidal layer (F). Cell nuclei are counterstained blue with Hoechst.
doi:10.1371/journal.pone.0015856.g001

Migration of ESNPs in the Hippocampus
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tubulin staining (Figure S3). We therefore conclude that CXCL12

is a candidate molecule for regulating ESNP migration in the adult

hippocampus.

CXCL12 is Upregulated Following KA-Induced Seizures
We next asked whether seizures impacted the expression of

CXCL12 in the hippocampus. At the time of injection of ESNPs

into the DG, post-seizure expression of CXCL12 was elevated in

the DG and CA3, compared to control mice that did not

experience prior seizures, based upon immunohistochemical

analysis (Figure 4A, B). The most pronounced increase in

CXCL12 expression over basal levels was observed in the SGZ

and hilus of the DG (arrows, Figure 4D). To further investigate the

role of seizures in induction of CXCL12, levels of mRNA were

measured after KA-induced seizures. CXCL12 mRNA levels from

whole hippocampal lysates increased approximately 3-fold within

one day following KA injection and remained elevated 7 days later

(Figure 4E). These data demonstrate that seizures augment

CXCL12 expression in the DG.

AMD3100 Inhibits the Migration of Transplanted ESNPs
Based on our in vitro migration data and the expression of

CXCL12 in the DG, we hypothesized that CXCL12 guides the

migration of ESNPs through the degenerating upper blade of the

DG following transplantation. To test this hypothesis, we blocked

CXCR4 activity by infusing mice with AMD3100 via osmotic

minipumps implanted subcutaneously. Previous studies showed

that AMD3100 crosses the blood-brain barrier and exerts

physiological effects in the CNS [41].

ESNPs were transplanted either into mice with no prior seizure

experience (PBS) or mice that had received systemic KA injection

(SE), and a subset of these mice also received infusions of

AMD3100 (SE+AMD). In both the PBS and SE groups not

treated with AMD3100, reconstructions of cells grafted to the DG

showed a large posterior extension along the upper blade in the

septotemporal axis. There was a slight increase in this extension in

the SE group versus the PBS group. These data suggest that the

upregulation of CXCL12 by seizures (Figure 4) in the adult

hippocampus can increase migration of transplanted ESNPs along

Figure 2. ESNPs disperse along the anterior-posterior axis of the DG upper blade following transplantation. (A) Horizontal and lateral
reconstructions of representative transplants to the upper blade show the initial dispersion of ESNPs (green) from the injection site (*). The graft then
extends along the upper blade in the posterior direction over the course of a week. (B) Quantification of the graft extent along the septotemporal axis
shows that the maximum distance is reached by one week following transplantation. (C) Analysis of graft distribution shows that transplanted cells
initially cluster close to the injection site and then are more evenly distributed as the graft extends to the posterior hippocampus over the course of 7
days. * and ** denote p values less than 0.05 and 0.01 by Student’s t-test, respectively.
doi:10.1371/journal.pone.0015856.g002

Migration of ESNPs in the Hippocampus
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the septotemporal axis. In SE mice treated with AMD3100, the

extent of the grafts was truncated along this axis (Figure 5A). In

addition, a significant portion of the grafts in the SE+AMD group

clustered near the injection site when compared with controls

(58.7% vs. 37.2%, Figure 5B). The AMD3100-induced reduction

in migration is consistent with a role for CXCL12 in vivo

(Figure 5D).

An alternative explanation of the data could be that AMD3100

infusion led to truncation of the total graft volume due to toxic

effects on the transplanted cells (Figure 5E). To evaluate this, we

next assessed whether treatment with AMD3100 affected ESNP

survival in culture. In vitro treatment with AMD3100 did not

increase apoptosis nor did it alter the extent of differentiation

(Figure S4). In addition, the average cell density of the transplants

in the SE+AMD group was significantly higher than controls

(p,0.01, Figure 5F), suggesting the cells remain clustered around

the injection site with AMD treatment, unable to migrate.

Consistent with this hypothesis, the largest difference in density

between the SE and AMD3100-treated groups was in the sections

closest to the injection site (Figure 5C). The observations that

Figure 3. CXCL12 induces migration through the CXCR4 pathway in ESNPs. ESNPs expressing nestin (green, A) and the immature neural
marker b-III tubulin (B, green) co-labeled with the CXCL12 receptor, CXCR4 (A and B, red). (C) In an in vitro trans-well migration assay, CXCL12 induced
migration across the membrane in a dose-dependent manner (p,0.01 ANOVA). (D) Expression of CXCL12 mRNA as well as mRNA for both CXCL12
receptors, CXCR4 and CXCR7, was present in ESCs (ES), E12.5 whole brain lysates (WB) and transplanted ESNPs (TX). (E) In an in vitro trans-well
migration assay, blockade of the CXCR4 receptor with a small pharmacological inhibitor, AMD3100, was sufficient to eliminate CXCL12-induced
migration (p,0.01, ANOVA). * denotes p values ,0.05 by Student’s t-test.
doi:10.1371/journal.pone.0015856.g003

Migration of ESNPs in the Hippocampus
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AMD3100 does not adversely affect ESNP survival in vitro, and

that ESNPs are more densely clustered near the injection site, are

consistent with the interpretation that AMD3100 infusion inhibits

ESNP migration in the DG, implicating a role for CXCL12 as a

chemoattractant for ESNP migration.

ESNPs Differentiate in the Upper Blade of the DG
Seizure activity leads to dynamic changes in the hippocampus,

resulting in a transient increase in neurogenesis in the DG [32].

These observations suggest that seizures might affect ESNP cell fates

after transplantation. We first examined the temporal pattern of

differentiation of ESNPs transplanted to the DG in animals that had

experienced prior seizures. Within one week following transplan-

tation into the DG, a majority of the transplanted ESNPs showed

loss of nestin expression, suggesting that they had differentiated

(Figure 6A, G). By 4 weeks after transplantation, little nestin

expression was observed in the grafted cells (Figure 6B). Concur-

rently, transplanted cells showed increased expression of double-

cortin (DCX), a marker for migrating neuroblasts, peaking 3 to 7

days following transplantation (Figure 6C, G). As observed for

nestin, DCX expression was downregulated with longer survival

periods of 4 weeks (Figure 6D), suggesting that ESNPs differentiate

in the adult DG and upregulate DCX, consistent with a migratory

phenotype (Figure 6G). Further differentiation of ESNPs towards

DGNs coincided with expression of Prox1 (Figure 6E), a marker of

endogenous neural precursors of the SGZ and of mature DGNs in

the GCL of the DG [42]. Prox1 expression in the ESNP-derived cell

population increased between 1 and 4 weeks (Figure 6H).

Concomitant with Prox1 expression, the mature pan-neural marker

NeuN begins to be expressed at 1 week after transplantation and

levels increased up to 4 weeks following transplantation (Figure 6F,

H). In addition, a portion of the grafted cells sent projections toward

the pyramidal cells of CA3, (Figure 1E, F). Taken together, these

data suggest that in mice subjected to SE, a high proportion of

ESNPs transplanted to the DG differentiate rapidly into migratory

neuroblasts, and subsequently give rise to DGNs.

Figure 4. CXCL12 expression increases in the DG following KA-induced seizures. Immunofluorescent staining revealed a low level of
CXCL12 expression in the hippocampus prior to seizures (red, A). Expression was markedly increased 7 days following KA-induced seizures (red, B).
Arrows denote examples of CXCL12-immunoreactive cells. (C, D) Confocal imaging of the boxed areas in A and B showed a dramatic increase of
CXCL12 staining of cells in the SGZ as well as the hilus of the DG and the CA3 pyramidal layer. (E) Quantitative RT-PCR analysis of whole hippocampal
lysates showed a 2.5 to 3.5-fold increase in CXCL12 message (three mice per time point, p,0.01 ANOVA).
doi:10.1371/journal.pone.0015856.g004

Migration of ESNPs in the Hippocampus
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Figure 5. AMD3100 blocks the migration of ESNPs along the upper blade of the DG. (A) Horizontal and lateral reconstructions of
representative grafts in the upper blade 4 weeks following transplantation to the DG revealed a truncated posterior extent of the grafts in mice with
prior seizure experience and minipumps infusion of AMD3100 (SE+AMD), as compared to mice that only received KA injections (SE). Additionally,
mice that did not experience seizures prior to transplantation (PBS) showed comparable graft migration in the posterior direction, compared to the
SE group. (B) The graft distribution in the SE+AMD group was less dispersed, and cells remained closer to the injection site compared with the
transplants in the SE group. (C) The density of grafted cells in the SE+AMD group was significantly greater near the injection site, compared with cell
densities in the SE group. Both the septotemporal extent (D) and average volume (E) of the grafts in both the PBS and SE groups were significantly
greater than that of the SE+AMD group. (F) Average cell density of the SE+AMD group was much greater in the SE+AMD groups than either the PBS
or SE groups. * and ** denote p values less than 0.05 and 0.01 by Student’s t-test, respectively.
doi:10.1371/journal.pone.0015856.g005
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Seizure Experience Alters the Differentiation of ESNPs in
the DG

Seizures upregulate a number of factors that increase endog-

enous neurogenesis in the DG [34,43]. While our data suggest that

elevated levels of CXCL12 following KA-induced seizures do not

alter the migration of transplanted cells, increased CXCL12 or

other seizure dependent changes may affect the differentiation of

transplanted cells. Therefore, we investigated whether prior

seizure experience affected the fates of transplanted ESNPs.

Expression of the NSC marker nestin in our ESNP grafts was not

Figure 6. ESNPs differentiate in the upper blade of the DG. ESNPs were transplanted into the upper blade of the DG and mice were sacrificed
immediately following transplantation, or 3, 7 (A, C, E) and 28 (B, D, F) days following transplantation. The NSC marker nestin (red, A, B) and the
migratory neuroblast marker doublecortin (DCX, red, C, D) showed reduced expression by 4 weeks following transplantation. (G) Quantification of
Nestin and DCX expression in transplanted cells revealed a decrease of the NSC marker Nestin following transplantation and a peak of DCX
expression at 3 days following transplantation. The dentate granule-specific marker Prox1 (red, E) and the pan-neural marker NeuN (red, F) showed
little to no expression initially (0 days), but expression increased up to 28 days following transplantation (H).
doi:10.1371/journal.pone.0015856.g006
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significantly altered by prior seizures (Figure 7A). However, there

was an increase in the expression of the dentate-specific marker

Prox1 in the SE group, as compared to the no seizure control

group (Figure 7B). In addition, the percent of transplant-derived

neurons increased by as much as 40% in mice that had prior

seizure experience (Figure 7C). More transplanted cells expressed

NeuN throughout the graft area in the SE group than in the PBS

group (Figure 7D, E). In addition, grafted cells in the control group

expressed a higher level of the astrocyte specific protein glutamine

synthetase than either the SE or SE+AMD groups, suggesting that

without prior seizures, grafted ESNPs are more likely to

differentiate into glial cells than neurons (Figure S5).

Discussion

The findings of the present study show that ESNPs transplanted

into the hippocampus have a stereotypical pattern of dispersion

when they are transplanted into the HF or infragranular zone of

the DG, in each case likely following paths of least resistance

established by injection under pressure. In contrast, we observed

that ESNPs generally avoided other subfields of the hippocampus.

Within the confines of the DG, transplanted ESNPs migrated

within the first week along the upper blade toward the posterior

hippocampus, replacing lesioned cells in the GCL over an expanse

of 2 mm. Numerous studies have documented the extensive

migration of SVZ neural progenitors through the RMS into the

olfactory bulb [44,45]. Recent analysis shows that the chemokine

CXCL12 plays a critical role for NSC entry into the RMS [46].

Within the DG, newly born endogenous neurons migrate short

distances from the SGZ into the GCL, where they mature into

DGNs [47]. Future studies will determine whether endogenous

SGZ progenitors can migrate in an anterior-posterior manner

along the DG, in the presence or absence of a localized lesion.

Our findings suggest that transplanted ESNPs incorporate into

sites where endogenous DGNs undergo degeneration in the upper

blade of the dorsal hippocampus. Because granule cells in the

septal/dorsal hippocampus receive synaptic information from the

entorhinal cortex, and play a crucial role in spatial memory [48],

patients with intractable TLE may suffer significant memory losses

after ablation of an epileptic focus in the DG. Young DGNs may

be especially important for memory consolidation [49]. Migration

of ESNPs following transplantation to the upper blade may

require the death of the endogenous DGNs, as the migration of

transplanted ESNPs through the upper blade correlates with the

degeneration of the endogenous DGNs.

Targeting ESNPs to specific zones along the septotemporal

axis of the hippocampus could provide an effective therapeutic

strategy for hippocampal repair. Our studies suggest that at least

part of the mechanism for guiding new cells to their final

position in the granule cell layer is the expression of CXCL12,

as ESNPs show a directional migration toward a source of this

chemokine in vitro, and their migration is truncated in vivo after

infusion with AMD3100, an inhibitor of CXCR4. Our data

demonstrate that this chemokine could originate from sources in

the hippocampus as well as the transplant population. Previous

studies have shown increases in inflammatory cytokines

following trauma that may contribute to the migration of

transplanted ESNPs [50]. Additionally, CXCL12 upregulation

following seizures may promote a slightly more robust migratory

event. Alternatively, seizures may exacerbate the damage from

Figure 7. Prior seizure experience increases neuronal differentiation of transplanted ESNPs in the DG. (A) No significant difference is
observed in the NSC marker nestin between either the PBS or SE groups. (B) An increase in the dentate specific marker Prox1 is also observed in cells
injected into mice with prior seizure experience. (C) Quantification of NeuN expression shows that prior seizure experience leads to a 40% increase in
NeuN expressing cells as compared to PBS controls. More grafted cells (green, arrowheads) express the pan-neuronal marker NeuN when
transplanted to the DG of mice that had experienced KA-induced seizures (E) than mice that had only received PBS injections (D). * and ** denote p
values less than 0.05 and 0.01 by Student’s t-test, respectively.
doi:10.1371/journal.pone.0015856.g007
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fluid injection to the GCL, allowing ESNPs to migrate more

extensively.

Differentiation of ESNPs
We previously reported that subsets of ESNPs grafted to the

neurogenic region of the DG expressed Prox1, a granule neuron-

specific marker; however, when transplanted to the fimbria, a fiber

tract of the hippocampus, ESNPs preferentially differentiated into

oligodendrocytes [2]. Others have reported that neural progeni-

tors from adult or fetal tissue can also differentiate into neurons

when transplanted into the DG [51,52]. The SGZ stem cell niche

is tightly controlled by growth factors, such as sonic hedgehog,

VEGF and BDNF [43,53,54,55]. Under homeostatic conditions,

radial NSCs slowly proliferate and give rise to a faster proliferating

intermediate astrocyte-like stem cell in the SGZ [56]. As these cells

differentiate and migrate into the GCL, they express the migrating

neuroblast marker DCX as well as Prox1 [57]. Once these

neuroblasts reach their final position in the GCL, they extend a

dendritic arbor to the molecular layer and mossy fiber axons to

targets in CA3.

Progression from astrocyte-like NSC to DGN during adult

neurogenesis in the SGZ takes approximately one month [58]. In

the transplanted population, we observed rapid differentiation,

with a decline in nestin-expressing ESNPs within 1 week following

injection into the DG. In addition, DCX labeled a majority of

grafted cells by 3 days following transplantation, and then was

rarely detected after 4 weeks. This pattern of expression is

consistent with our migration data that demonstrate little posterior

movement within three days, but significant migration at one week

(Figure 3B). While it takes weeks under normal conditions for

newborn cells to mature into neurons in the adult DG [59],

approximately 10% of our grafted cells express the pan-neural

marker NeuN by 7 days following transplantation. This may be

due to the presence of more differentiated cells in the transplant

population, of which 16% express DCX. Alternatively, the post

seizure environment may induce more rapid differentiation of

both endogenous and ESC-derived progenitors.

In addition to accelerated neurogenesis, KA-induced seizures

altered the differentiation of ESNPs by promoting neuronal, rather

than glial, phenotypes. It is well established that rodent models of

TLE initially augment the rate of neurogenesis in the hippocam-

pus [32,60]. Many factors that promote the proliferation and

neuronal differentiation of SGZ stem cells are upregulated

following seizures. For example, BDNF injection alone is sufficient

to increase hippocampal neurogenesis [61]. In addition, seizures

can lead to microglial invasion and reactive gliosis, a potential

source for inflammatory cytokines [62]. Moreover, microglia may

protect NSCs from factors such as interferon gamma, that

suppress proliferation [63]. Recent studies have shown that

microglial invasion coincides with the increased expression of

cytokines in the DG following pilocarpine administration [64].

Our data corroborate earlier studies demonstrating that CXCL12

expression is increased following status epilepticus, but this

increase may be transient without spontaneous recurrent seizures.

In addition to seizure-induced changes in the hippocampal

environment, the degeneration of the upper blade following fluid

injection may increase the expression of factors that may influence

the fates of transplanted cells. While previous studies have not

documented increases in neurogenesis following dorsal hippocam-

pal lesions in the DG, transient increases in NSC proliferation are

observed in similar models of traumatic brain injury [65]. These

factors may collectively instruct ESNP differentiation into neurons

following transplantation to the DG.

Here, we show that ESNPs transplanted into the DG of the

hippocampus migrate along the upper blade. This migration is

mediated by the chemokine CXCL12, which is upregulated by

seizures. Furthermore, prior seizure experience promotes the differen-

tiation of transplanted cells into neurons. These findings have

implications for cell-based therapies in patients with intractable severe

seizures. Our results show that ESNPS are recruited to sites of damage.

Improper migration of transplanted cells could lead to ineffective

treatment or exacerbation of the disease phenotype. Therefore,

identifying key regulatory molecules for guiding migration of

transplanted cells will lead to more effective stem cell-based therapies

for neurodegenerative diseases, traumatic brain injury, and epilepsy.

Supporting Information

Figure S1 Characterization of ESNPs. Prior to transplantation,

ESNPs expressed robust nestin (red, A) and b-III tubulin staining

(red, B). (C) Quantification of immunofluorescent staining showed

that over 92% of transplanted ESNPs expressed nestin, with fewer

than 10% of the cells adopting neural fates, as shown by

expression of the immature neuronal marker b-III tubulin. (D)

RT-PCR analysis of YC5 embryonic stem cells (ES), E12.5 whole

brain lysates (WB) and transplanted ESNPs (TX) showed that

transplanted cells expressed markers for early NSCs (Sox1, Otx2),

ventral NSCs (Mash1, Nkx2.1) and pluripotency (Oct4), albeit at a

lower levels than ES cells. Primer sequences were as follows: Oct4

59- CTCGAACCACATCCTTCTCT -39 and 59- GGCG-

TTCTCTTTGGAAAGGTGTTC -39, Sox1: 59- AATCC-

CCTCTCAGACGGTG -39 and 59- TTGATGCATTTTG-

GGGGTAT -39, Otx2: 59- AGGAGCTGAGTCGCCACCTC -

39 and 59- GTAGCCCAGGGAGGGATGCA -39, Emx1: 59-

AGCGACGTTCCCCAGGACGGGCTGC -39 and 59- CTG-

AGGTCACTTGGTC -39, Pax7: 59 – CCGTGTTTCTC-

ATGGTTGTG -39 and 59- GAGCACTCGGCTAATCGAAC -

39, Mash1: 59- CGACAGGACGCCCGCCTGAAAG -39 and 59-

CTCGTCCTCTCCGGAACTGATG -39, Nkx2.1 59- AAC-

AGCGGCCATGCAGCAGCAC -39 and 59- CCATGTTC-

TTGCTCACGTCC -39, and Lhx6: 59- CGACGACATCCAC-

TACTCTCCGT -39 and 59- CAAGCTGAATTCGCCAT-

TGCTCC -39.

(TIF)

Figure S2 Endogenous DGNs degenerated within one week

following ESNP transplantation to the upper blade. (A,B)

Immediately following transplantation, NeuN+ neurons (red) in

the upper blade were intact, and transplanted ESNPs (green)

were clustered at the site of injection. (C,D) Within three days,

significant degeneration of endogenous neurons in the upper

blade was observed. (E,F) By one week, transplanted ESNPs

began to express NeuN (arrows, inset) and degeneration of the

upper blade continued. (G,H) By four weeks following trans-

plantation, more engrafted cells were expressing NeuN (arrows,

inset), and no more degeneration was observed. Nuclei are

counterstained by Hoechst (blue).

(TIF)

Figure S3 CXCL12 did not alter the proliferation or differen-

tiation of YC5 ESNPs. YC5 ESNPs were treated with 200 ng/mL

CXCL12 for three days, fixed and stained for markers of

proliferation and differentiation. (A) Quantification of phospho-

histone H3 revealed no significant difference between CXCL12

treated and untreated ESNPs. (B) Quantification showed similar

levels of nestin and b–III tubulin staining after treatment with

CXCL12 as compared to controls.

(TIF)
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Figure S4 AMD3100 did not alter the differentiation or survival

of ESNPs. YC5 ESNPs were treated with 5 mg/mL AMD3100 for

three days, fixed and stained. (A) Quantification of nestin and b-III

tubulin staining showed no significant difference between

AMD3100 treated and untreated cultures. (B) Levels of activated

caspase 3, a marker for apoptosis, were similar between the two

groups, and there were no differences between the NSC and

immature neural populations as well.

(TIF)

Figure S5 Prior seizure experience leads to lower expression of

the astrocyte marker glutamine synthetase. Glutamine synthetase

(red, A-D) is expressed mainly by astrocytes. ESNPs (green, A-D)

transplanted into mice with no prior seizure experience (PBS, A-B)

show greater fluorescence intensity for glutamine synthetase than

ESNPs grafted into mice with prior seizure experience (SE, C-D).

(E) Normalizing fluorescence intensity of glutamine synthetase in

ESNP grafts (yellow) to the PBS group, both the SE and the

AMD3100 treated group (SE+AMD) had significantly lower

fluorescence intensity. (F) As seizures are known to induce the

activation and proliferation of astrocytes, the fluorescence intensity

of glutamine synthetase in graft and non-graft areas were

compared. Grafts of ESNPs showed greater average intensity of

glutamine synthetase staining than the area surrounding the graft,

and this ratio was significantly higher than both the SE and the

SE+AMD groups.

(TIF)
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Angélique Bordey, Yale University School of Medicine, New Haven, CT.

The authors would like to thank Erin Banda, Sandy Becker, Noélle

Germain, Daniel Primich, Sera Brown, Angela Lentini, and Jeff Gilarde of

Wesleyan University for their technical assistance.

Author Contributions

Conceived and designed the experiments: NWH JRN LG. Performed the

experiments: NWH JEC KL DEM. Analyzed the data: NWH JRN LG.

Contributed reagents/materials/analysis tools: JRN LG. Wrote the paper:

NWH JRN LG.

References

1. Tabar V, Panagiotakos G, Greenberg ED, Chan BK, Sadelain M, et al. (2005)

Migration and differentiation of neural precursors derived from human
embryonic stem cells in the rat brain. Nat Biotechnol 23: 601–606.

2. Carpentino JE, Hartman NW, Grabel LB, Naegele JR (2008) Region-specific

differentiation of embryonic stem cell-derived neural progenitor transplants into
the adult mouse hippocampus following seizures. J Neurosci Res 86: 512–

524.

3. Maisano X, Carpentino J, Becker S, Lanza R, Aaron G, et al. (2009) Embryonic

stem cell-derived neural precursor grafts for treatment of temporal lobe epilepsy.

Neurotherapeutics 6: 263–277.

4. Ruschenschmidt C, Koch PG, Brustle O, Beck H (2005) Functional properties of

ES cell-derived neurons engrafted into the hippocampus of adult normal and
chronically epileptic rats. Epilepsia 46(Suppl 5): 174–183.

5. Aharonowiz M, Einstein O, Fainstein N, Lassmann H, Reubinoff B, et al. (2008)

Neuroprotective effect of transplanted human embryonic stem cell-derived
neural precursors in an animal model of multiple sclerosis. PLoS One 3:

e3145.

6. Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O (2002) Neuronal

replacement from endogenous precursors in the adult brain after stroke. Nat

Med 8: 963–970.

7. Einstein O, Friedman-Levi Y, Grigoriadis N, Ben-Hur T (2009) Transplanted

neural precursors enhance host brain-derived myelin regeneration. J Neurosci
29: 15694–15702.

8. Kelly S, Bliss TM, Shah AK, Sun GH, Ma M, et al. (2004) Transplanted human
fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral

cortex. Proc Natl Acad Sci U S A 101: 11839–11844.

9. Naegele JR, Maisano X, Yang J, Royston S, Ribeiro E Recent advancements
in stem cell and gene therapies for neurological disorders and intractable

epilepsy. Neuropharmacology 58: 855–864.

10. Gage FH, Coates PW, Palmer TD, Kuhn HG, Fisher LJ, et al. (1995) Survival

and differentiation of adult neuronal progenitor cells transplanted to the adult

brain. Proc Natl Acad Sci U S A 92: 11879–11883.

11. Cassel JC, Ballough GP, Kelche C, Hofferer E, Cassel S, et al. (1993) Injections

of fluid or septal cell suspension grafts into the dentate gyrus of rats induce
granule cell degeneration. Neurosci Lett 150: 89–94.

12. Vietje BP, Wells J (1989) Selective lesions of granule cells by fluid injections into

the dentate gyrus. Exp Neurol 106: 275–282.

13. Tran PB, Banisadr G, Ren D, Chenn A, Miller RJ (2007) Chemokine receptor

expression by neural progenitor cells in neurogenic regions of mouse brain.
J Comp Neurol 500: 1007–1033.

14. Tham TN, Lazarini F, Franceschini IA, Lachapelle F, Amara A, et al. (2001)

Developmental pattern of expression of the alpha chemokine stromal cell-
derived factor 1 in the rat central nervous system. Eur J Neurosci 13: 845–856.

15. Bagri A, Gurney T, He X, Zou YR, Littman DR, et al. (2002) The chemokine
SDF1 regulates migration of dentate granule cells. Development 129:

4249–4260.

16. Belmadani A, Tran PB, Ren D, Assimacopoulos S, Grove EA, et al. (2005) The
chemokine stromal cell-derived factor-1 regulates the migration of sensory

neuron progenitors. J Neurosci 25: 3995–4003.

17. Stumm RK, Zhou C, Ara T, Lazarini F, Dubois-Dalcq M, et al. (2003) CXCR4

regulates interneuron migration in the developing neocortex. J Neurosci 23:
5123–5130.

18. Kokovay E, Goderie S, WangY , Lotz S, Lin G, et al. Adult SVZ lineage cells

home to and leave the vascular niche via differential responses to SDF1/

CXCR4 signaling. Cell Stem Cell 7: 163–173.

19. Carbajal KS, Schaumburg C, Strieter R, Kane J, Lane TE TE Migration of

engrafted neural stem cells is mediated by CXCL12 signaling through CXCR4

in a viral model of multiple sclerosis. Proc Natl Acad Sci U S A 107:

11068–11073.

20. Imitola J, Raddassi K, Park KI, Mueller FJ, Nieto M, et al. (2004) Directed

migration of neural stem cells to sites of CNS injury by the stromal cell-derived

factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci U S A

101: 18117–18122.

21. Thored P, Arvidsson A, Cacci E, Ahlenius H, Kallur T, et al. (2006) Persistent

production of neurons from adult brain stem cells during recovery after stroke.

Stem Cells 24: 739–747.

22. Kolodziej A, Schulz S, Guyon A, Wu DF, Pfeiffer M, et al. (2008) Tonic
activation of CXC chemokine receptor 4 in immature granule cells supports

neurogenesis in the adult dentate gyrus. J Neurosci 28: 4488–4500.

23. Stumm R, Kolodziej A, Schulz S, Kohtz JD, Hollt V (2007) Patterns of SDF-
1alpha and SDF-1gamma mRNAs, migration pathways, and phenotypes of

CXCR4-expressing neurons in the developing rat telencephalon. J Comp

Neurol 502: 382–399.

24. Elliott RC, Miles MF, Lowenstein DH (2003) Overlapping microarray profiles of
dentate gyrus gene expression during development- and epilepsy-associated

neurogenesis and axon outgrowth. J Neurosci 23: 2218–2227.

25. Pierce JP, Punsoni M, McCloskey DP, Scharfman HE (2007) Mossy cell axon

synaptic contacts on ectopic granule cells that are born following pilocarpine-
induced seizures. Neurosci Lett 422: 136–140.

26. Gabriel S, Njunting M, Pomper JK, Merschhemke M, Sanabria ER, et al. (2004)

Stimulus and potassium-induced epileptiform activity in the human dentate

gyrus from patients with and without hippocampal sclerosis. J Neurosci 24:
10416–10430.

27. Mathern GW, Adelson PD, Cahan LD, Leite JP (2002) Hippocampal neuron

damage in human epilepsy: Meyer’s hypothesis revisited. Prog Brain Res 135:
237–251.

28. Neema M, Navarro-Quiroga I, Chechlacz M, Gilliams-Francis K, Liu J, et al.

(2005) DNA damage and nonhomologous end joining in excitotoxicity:

neuroprotective role of DNA-PKcs in kainic acid-induced seizures. Hippocam-
pus 15: 1057–1071.

29. Zhang S, Khanna S, Tang FR (2009) Patterns of hippocampal neuronal loss and

axon reorganization of the dentate gyrus in the mouse pilocarpine model of

temporal lobe epilepsy. J Neurosci Res 87: 1135–1149.

30. Crespel A, Rigau V, Coubes P, Rousset MC, de Bock F, et al. (2005) Increased

number of neural progenitors in human temporal lobe epilepsy. Neurobiol Dis

19: 436–450.

31. Kuruba R, Hattiangady B, Shetty AK (2009) Hippocampal neurogenesis and

neural stem cells in temporal lobe epilepsy. Epilepsy Behav 14(Suppl 1): 65–73.

32. Parent JM, Yu TW, Leibowitz RT, Geschwind DH, Sloviter RS, et al. (1997)
Dentate granule cell neurogenesis is increased by seizures and contributes to

aberrant network reorganization in the adult rat hippocampus. J Neurosci 17:

3727–3738.

33. Scharfman HE, Goodman JH, Sollas AL (2000) Granule-like neurons at the
hilar/CA3 border after status epilepticus and their synchrony with area CA3

Migration of ESNPs in the Hippocampus

PLoS ONE | www.plosone.org 12 December 2010 | Volume 5 | Issue 12 | e15856



pyramidal cells: functional implications of seizure-induced neurogenesis.

J Neurosci 20: 6144–6158.
34. Jessberger S, Romer B, Babu H, Kempermann G (2005) Seizures induce

proliferation and dispersion of doublecortin-positive hippocampal progenitor

cells. Exp Neurol 196: 342–351.
35. Okabe S, Forsberg-Nilsson K, Spiro AC, Segal M, McKay RD (1996)

Development of neuronal precursor cells and functional postmitotic neurons
from embryonic stem cells in vitro. Mech Dev 59: 89–102.

36. Schauwecker PE (2003) Genetic basis of kainate-induced excitotoxicity in mice:

phenotypic modulation of seizure-induced cell death. Epilepsy Res 55: 201–210.
37. Cai C, Thorne J, Grabel L (2008) Hedgehog serves as a mitogen and survival

factor during embryonic stem cell neurogenesis. Stem Cells 26: 1097–1108.
38. Bhattacharyya BJ, Banisadr G, Jung H, Ren D, Cronshaw DG, et al. (2008) The

chemokine stromal cell-derived factor-1 regulates GABAergic inputs to neural
progenitors in the postnatal dentate gyrus. J Neurosci 28: 6720–6730.

39. Schonemeier B, Schulz S, Hoellt V, Stumm R (2008) Enhanced expression of

the CXCl12/SDF-1 chemokine receptor CXCR7 after cerebral ischemia in the
rat brain. J Neuroimmunol 198: 39–45.

40. Juarez J, Bradstock KF, Gottlieb DJ, Bendall LJ (2003) Effects of inhibitors of the
chemokine receptor CXCR4 on acute lymphoblastic leukemia cells in vitro.

Leukemia 17: 1294–1300.

41. Rubin JB, Kung AL, Klein RS, Chan JA, Sun Y, et al. (2003) A small-molecule
antagonist of CXCR4 inhibits intracranial growth of primary brain tumors. Proc

Natl Acad Sci U S A 100: 13513–13518.
42. Steiner B, Zurborg S, Horster H, Fabel K, Kempermann G (2008) Differential

24 h responsiveness of Prox1-expressing precursor cells in adult hippocampal
neurogenesis to physical activity, environmental enrichment, and kainic acid-

induced seizures. Neuroscience 154: 521–529.

43. Isackson PJ, Huntsman MM, Murray KD, Gall CM (1991) BDNF mRNA
expression is increased in adult rat forebrain after limbic seizures: temporal

patterns of induction distinct from NGF. Neuron 6: 937–948.
44. Conover JC, Doetsch F, Garcia-Verdugo JM, Gale NW, Yancopoulos GD, et al.

(2000) Disruption of Eph/ephrin signaling affects migration and proliferation in

the adult subventricular zone. Nat Neurosci 3: 1091–1097.
45. Lois C, Alvarez-Buylla A (1994) Long-distance neuronal migration in the adult

mammalian brain. Science 264: 1145–1148.
46. Kokovay E, Goderie S, Wang Y, Lotz S, Lin G, et al. Adult SVZ Lineage Cells

Home to and Leave the Vascular Niche via Differential Responses to SDF1/
CXCR4 Signaling. Cell Stem Cell 7: 163–173.

47. Gong C, Wang TW, Huang HS, Parent JM (2007) Reelin regulates neuronal

progenitor migration in intact and epileptic hippocampus. J Neurosci 27:
1803–1811.

48. Gilbert PE, Kesner RP, Lee I (2001) Dissociating hippocampal subregions:
double dissociation between dentate gyrus and CA1. Hippocampus 11:

626–636.

49. Deng W, Saxe MD, Gallina IS, Gage FH (2009) Adult-born hippocampal
dentate granule cells undergoing maturation modulate learning and memory in

the brain. J Neurosci 29: 13532–13542.

50. Pickering M, O’Connor JJ (2007) Pro-inflammatory cytokines and their effects in

the dentate gyrus. Prog Brain Res 163: 339–354.
51. Englund U, Bjorklund A, Wictorin K (2002) Migration patterns and phenotypic

differentiation of long-term expanded human neural progenitor cells after

transplantation into the adult rat brain. Brain Res Dev Brain Res 134: 123–141.
52. Suhonen JO, Peterson DA, Ray J, Gage FH (1996) Differentiation of adult

hippocampus-derived progenitors into olfactory neurons in vivo. Nature 383:
624–627.

53. Dugich-Djordjevic MM, Tocco G, Lapchak PA, Pasinetti GM, Najm I, et al.

(1992) Regionally specific and rapid increases in brain-derived neurotrophic
factor messenger RNA in the adult rat brain following seizures induced by

systemic administration of kainic acid. Neuroscience 47: 303–315.
54. Favaro R, Valotta M, Ferri AL, Latorre E, Mariani J, et al. (2009) Hippocampal

development and neural stem cell maintenance require Sox2-dependent
regulation of Shh. Nat Neurosci 12: 1248–1256.

55. Zhang H, Vutskits L, Pepper MS, Kiss JZ (2003) VEGF is a chemoattractant for

FGF-2-stimulated neural progenitors. J Cell Biol 163: 1375–1384.
56. Hodge RD, Kowalczyk TD, Wolf SA, Encinas JM, Rippey C, et al. (2008)

Intermediate progenitors in adult hippocampal neurogenesis: Tbr2 expression
and coordinate regulation of neuronal output. J Neurosci 28: 3707–3717.

57. Plumpe T, Ehninger D, Steiner B, Klempin F, Jessberger S, et al. (2006)

Variability of doublecortin-associated dendrite maturation in adult hippocampal
neurogenesis is independent of the regulation of precursor cell proliferation.

BMC Neurosci 7: 77.
58. Li Y, Mu Y, Gage FH (2009) Development of neural circuits in the adult

hippocampus. Curr Top Dev Biol 87: 149–174.
59. Overstreet-Wadiche LS, Bensen AL, Westbrook GL (2006) Delayed develop-

ment of adult-generated granule cells in dentate gyrus. J Neurosci 26:

2326–2334.
60. Overstreet-Wadiche LS, Bromberg DA, Bensen AL, Westbrook GL (2006)

Seizures accelerate functional integration of adult-generated granule cells.
J Neurosci 26: 4095–4103.

61. Scharfman H, Goodman J, Macleod A, Phani S, Antonelli C, et al. (2005)

Increased neurogenesis and the ectopic granule cells after intrahippocampal
BDNF infusion in adult rats. Exp Neurol 192: 348–356.

62. Morgan TE, Nichols NR, Pasinetti GM, Finch CE (1993) TGF-beta 1 mRNA
increases in macrophage/microglial cells of the hippocampus in response to

deafferentation and kainic acid-induced neurodegeneration. Exp Neurol 120:
291–301.

63. Li L, Walker TL, Zhang Y, Mackay EW, Bartlett PF () Endogenous interferon

gamma directly regulates neural precursors in the non-inflammatory brain.
J Neurosci 30: 9038–9050.

64. Jung KH, Chu K, Lee ST, Kim JH, Kang KM, et al. (2009) Region-specific
plasticity in the epileptic rat brain: a hippocampal and extrahippocampal

analysis. Epilepsia 50: 537–549.

65. Yu TS, Zhang G, Liebl DJ, Kernie SG (2008) Traumatic brain injury-induced
hippocampal neurogenesis requires activation of early nestin-expressing

progenitors. J Neurosci 28: 12901–12912.

Migration of ESNPs in the Hippocampus

PLoS ONE | www.plosone.org 13 December 2010 | Volume 5 | Issue 12 | e15856


