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Abstract

We have previously shown that genetic variability in CNR1 is associated with low HDL dyslipidemia in a multigenerational
obesity study cohort of Northern European descent (209 families, median = 10 individuals per pedigree). In order to assess
the impact of CNR1 variability on the development of dyslipidemia in the community, we genotyped this locus in all
subjects with class III obesity (body mass index .40 kg/m2) participating in a population-based biobank of similar ancestry.
Twenty-two haplotype tagging SNPs, capturing the entire CNR1 gene locus plus 15 kb upstream and 5 kb downstream,
were genotyped and tested for association with clinical lipid data. This biobank contains data from 645 morbidly obese
study subjects. In these subjects, a common CNR1 haplotype (H3, frequency 21.1%) is associated with fasting TG and HDL
cholesterol levels (p = 0.031 for logTG; p = 0.038 for HDL-C; p = 0.00376 for log[TG/HDL-C]). The strength of this relationship
increases when the data are adjusted for age, gender, body mass index, diet and physical activity. Mean TG levels were
160670, 155670, and 120660 mg/dL for subjects with 0, 1, and 2 copies of the H3 haplotype. Mean HDL-C levels were
45610, 47610, and 4869 mg/dL, respectively. The H3 CNR1 haplotype appears to exert a protective effect against
development of obesity-related dyslipidemia.
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Introduction

Clinical lipid disorders have enormous public health significance.

Circulating low density lipoprotein cholesterol (LDL-C) levels are

strongly correlated with cardiovascular disease, and pharmacolog-

ical intervention targeted at reducing LDL-C can markedly reduce

risk [1]. High density lipoprotein cholesterol (HDL-C) and fasting

triglyceride (TG) levels are also strong predictors of cardiovascular

disease [2,3]. Data obtained from many diverse sources suggest that

HDL-C may in fact be cardioprotective. Each 1 mg/dL increase in

HDL-C is associated with a 6% reduction in cardiovascular events

[2]. The decrease in HDL-C level that typically accompanies weight

gain is therefore of considerable importance, particularly in the

context of the growing obesity epidemic.

Body mass index (BMI) is inversely correlated with HDL-C

level, and genetic variability in endocannabinergic signaling

clearly influences both of these traits [4,5,6]. We have previously

shown that a functional variant (a nonsynonymous coding SNP) in

fatty acid amide hydrolase (FAAH) is associated with large changes

in circulating HDL-C levels (mean HDL-C = 40.5614.7 mg/dL,

39.1610.4 mg/dL and 34.868.1 mg/dL for subjects with 0, 1,

and 2 copies of the variant, p,0.01) [7]. This effect is partly

independent of BMI, and insulin responsiveness [7]. The FAAH

gene product enzymatically inactivates N-arachidonylethanola-

mine (AEA), the primary endogenous CB1 receptor ligand [8].

Genetic variability in the CB1 receptor itself (gene name CNR1)

is also associated with dyslipidemia [4,7]. Our group has

previously shown that a common CNR1 haplotype (15%

frequency in subjects of Northern European ancestry) is associated

with elevated fasting TG levels and reduced levels of HDL-C in

one of the most rigorously phenotyped family-based obesity

cohorts in the U.S. Again, this effect was partly independent of

BMI [4]. Because the relationship between BMI and HDL-C is

curvilinear [9], and because the correlation is most pronounced in

subjects who are extremely obese [9], we characterized the

relationship between dyslipidemia and genetic variability in CNR1

in study subjects with a very high BMI (class III obesity, defined as

BMI.40 kg/m2).

In the current study, we interrogated the comprehensive

electronic medical record of the Marshfield Clinic Personalized

Medicine Research Project (n = 20,000), identified all participants

with a BMI.40 kg/m2, and genotyped 645 of these individuals

PLoS ONE | www.plosone.org 1 December 2010 | Volume 5 | Issue 12 | e15779



using 22 haplotype tagging SNPs across the entire CNR1 gene

locus (plus 15 kb upstream and 5 kb downstream). To adjust for

the potential impact of diet and lifestyle, our analytical models

included previously archived data regarding nutrient intake

(percent calories from fat, alcohol intake) and physical activity

(sport, leisure and occupational activity). We report a CNR1

haplotype (21.1% frequency in subjects of Northern European

ancestry) that may protect against the development of low-HDL

dyslipidemia during weight gain.

Methods

Ethics Statement
The current study was conducted in accordance with the

Principles outlined within the Declaration of Helsinki, and all

participants have provided informed written consent. Approval

was obtained from the Institutional Review Board of the

Marshfield Clinic in Wisconsin, and the Institutional Review

Board of Vanderbilt University in Tennessee.

Study Population
This study was conducted using one of the largest population-

based biobank cohorts in the U.S., the Marshfield Clinic

Personalized Medicine Research Project (PMRP) [10,11]. The

PMRP biobank currently contains DNA and secure, encrypted,

electronic medical records for more than 20,000 participants

[9,12]. Subjects within the PMRP biobank were recruited from the

surrounding community, a rural population residing in Central

Wisconsin [13,14]. Like the surrounding community, the cohort is

97% non-Hispanic white. The primary ethnic groups include

German (78%), Irish (17%), English (16%), Norwegian (12%),

Polish (11%), and other Northern European groups. Weight trends

in this region closely mirror those of the non-Hispanic white

population in the National Health and Nutrition Examination

Survey (NHANES).

The gender-stratified distribution of BMI is illustrated in

Figure 1, for the entire PMRP biobank (n = 20,000). All biobank

participants with class III obesity (BMI.40 kg/m2) were identified

for the current study (n = 645). The current study population is

skewed toward females (i.e., 168 male and 477 female participants

with BMI.40 kg/m2). This female preponderance reflects two

factors. First, female patients opted to participate in the PMRP

biobank at a slightly higher rate than male patients (58% versus

42%) [10,15]. Second, within our target community, extreme

obesity is more prevalent in females than in males (7.8% versus

4.4%). General subject characteristics are summarized in Table 1.

Phenotyping
All clinical lipid data were electronically extracted from the

biobank database, for each of the 645 study subjects. These data

reflect longitudinal lipid data collected during the course of routine

clinical care, and imported from the comprehensive electronic

medical record into the PMRP database. Each lipid trait was then

expressed as a median baseline lipid value for every individual.

Median lipid levels (Cholesterol, LDL, HDL, and TG) represented

our primary endpoints, available on all 645 subjects included in

this study.

Because clinical lipid data can be markedly altered by co-

morbidity and/or medication use, we have also developed an

alternate phenotype, a modeled lipid trait constructed by

censoring the longitudinal lipid data for each individual at the

first medical record date linked to a relevant co-morbidity (e.g.,

diabetes mellitus) or lipid modifying medication (e.g., atorvastatin).

Our approach has been published [9]. Of the 645 subjects

included in the current study, 306 had been exposed to at least one

lipid medication during the course of their routine clinical care,

289 (44.8%) had been exposed to statins, 32 (5.0%) to fibric acid

derivatives, and 84 (13.0%) to prescription strength niacin. Thus,

our secondary traits (i.e., modeled lipid levels) were available for

slightly less than half of the cohort (n = 288 with modeled HDL,

n = 270 for modeled TGs, and n = 261 for modeled LDL).

Clinical Covariates
For each PMRP participant, BMI was accurately defined at the

time of study entry (Figure 1). Height was obtained for each

participant using a stadiometer according to standard methods.

Weights were also collected at entry, using a beam balance scale

according to standard methods. Measurements occurred after the

study participant had removed their shoes, hats, and bulky clothing,

such as coats and sweaters. Scales were placed in the ‘‘zero’’ position

prior to weighing. Weights were recorded to the nearest 1/4 pound

(100 grams). BMI was then calculated from the measured height

and weight data, by dividing weight in kilograms by height in meters

squared [16]. Weights are also available longitudinally, over the

course of many years in the clinical notes.

After enrollment, food frequency questionnaires (FFQs) were

used to assess dietary intake. Compared to other epidemiologic

methodologies (including weighed food records and 24-hour

dietary recalls), FFQs are more representative of usual intake

and less expensive to implement, as they are usually self-

administered [17,18]. The selected FFQ for the PMRP, the Diet

History Questionnaire (DHQ) (http://riskfactor.cancer.gov/

DHQ), was developed by researchers at the National Cancer

Institute and has been shown to be superior to the commonly used

Willet FFQ and similar to the Block FFQ for estimating absolute

nutrient intakes [19,20,21,22,23,24,25]. The DHQ comprises 124

separate food items and asks about portion sizes for most foods. In

addition, there are ten questions regarding nutrient supplement

intake. The DHQ was printed and scanned by Optimum

Solutions (CA, USA). After scanning, the data from the

questionnaires were stored in ASCII format and uploaded into a

nutrient analysis software package. Diet*Calc software, available

from the NIH, was used to convert DHQ data into macronutrient

intake [26]. The relationship between BMI and dietary fat intake

(% of daily calories due to fat) is shown in Figure 2.

Physical activity was also quantified for use in the current study.

Standardized surveys are the most practical approach for assessing

activity level in large populations. A self-administered physical

activity questionnaire, the ARIC/Baecke questionnaire, was

mailed to each biobank participant. The ARIC/Baecke question-

naire represents a modified version of the original Baecke

Questionnaire [27], comprised of 16 questions, generating three

indices of activity: 1) a work index, 2) a sport index, and 3) a

leisure-time index [28]. This questionnaire has previously been

validated with physiological methods [28].

Genotyping
Haplotype tagging SNPs were identified using our previously

published approach [4]. Chromosomal position of the CNR1 gene

was obtained from the UCSC human genome browser (http://

genome.cse.ucsc.edu/cgi-bin/hgGateway). SNPs within the region

of interest were downloaded from the International Human

Haplotype Map for the Centre d’Etude du Polymorphisms

Humain (CEPH) and entered into Haploview for an analysis of

linkage disequilibrium (LD) and tag SNP assignment. The extent

of LD across this region was quatified [29] and tag SNPs

were identified using Tagger [30]. Cladograms were constru-

cted applying the confidence interval method implemented in

CNR1 Gene Predicts Lipid Changes
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Figure 1. Gender stratified distribution of Body Mass Index (BMI) within the entire population-based PMRP biobank. All subjects with
BMI.40 kg/m2 (n = 477 female participants, and 168 male participants) were included in the current study cohort.
doi:10.1371/journal.pone.0015779.g001

Table 1. Patient characteristics.

Female (N = 477) Male (N = 168)

Mean ± SD Mean ± SD

Covariates Demographic Information:

Age (years) 48.6614.5 52.1615.1

Weight (lbs) 263.7636.6 303.4636.9

Height (inches) 63.963.1 69.462.9

BMI (kg/m2) 45.465.1 44.364.2

Dietary Intake:

Total cal. from food (Kcal) 1763.361018.8 2322.461281.2

Cal. from protein (Kcal) 71.8643.3 97.5659.6

Cal. from fat (Kcal) 65.7642.9 89.17655.95

Cal. from carbohydrate (Kcal) 225.46132.9 275.746153.69

Alcohol consumption (grams) 3.7623.2 9.9620.2

Physical Activity:

Work Index 2.660.7 2.860.8

Sport Index 1.860.5 1.960.5

Leisure Index 2.460.6 2.260.6

Endpoints Lipid Phenotypes:

Median T CHOL (mg/dL) 193.0631.2 192.3631.3

Median LDL-C (mg/dL) 116.7626.5 116.5627.5

Median HDL-C (mg/dL) 48.3610.5 40.967.8

Median TG (mg/dL) 151.4669.2 175.7675.7

T CHOL: total cholesterol; LDL-C: low density lipoprotein cholesterol; HDL-C: high density lipoprotein cholesterol; TG: triglyceride.
doi:10.1371/journal.pone.0015779.t001

CNR1 Gene Predicts Lipid Changes
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Haploview version 4.0 [31]. We have previously applied this

approach to successfully identify SNPs associated with dysplipide-

mia in familes of Northern European descent [4]. The block

structure for our region of interest is shown in Figure 3, based

upon pairwise correlation (D’) in our current cohort. This

structure is similar to the structure in our prior report [4].

Genotyping was conducted using commercial Taqman Allelic

discrimination assays available through Applied Biosystems, Inc.

(ABI, Foster City, CA, USA). This method allows direct detection

of a thermocycling product by the release of a fluorophor as a

result of the Taq polymerase’s 59 exonuclease activity [32]. The

individual allele specific oligonucleotide assays are shown in

Table 2. All assays were performed according to the manufac-

turer’s specifications (ABI): After a run-in period (50.0u for 2

minutes followed by 95.0u for 10 minutes), each reaction was

cycled forty times (92.0u for 15 seconds followed by 60.0u for 1

minute) then held at 4.0u until the fluorescence was read by an

ABI 7700 Sequence Detector. Each assay contained two different

Taqman probes, uniquely labeled to bind to separate (major versus

minor) alleles. Each probe consisted of an oligonucleotide with a 59

reporter dye and 39 quencher dye. When intact, the proximity of

the quencher to the reporter suppresses the fluorescence of the

fluorophor. If the probe binds the allele, then taq polymerase

cleaves the quencher from the probe, resulting in increased

fluorescence. The fluorescent signal was read and quantified by

the ABI 7700 Sequence Detector, and the manufacturer-supplied

software (ABI) interpreted the relative fluorescent levels of the dye

for each sample, calculating the final genotype.

Statistical Analyses
Genotype-phenotype association tests were conducted using

median lipid values as the primary endpoint. The following traits

were available on all 645 subjects included in this study: median

total cholesterol level, median LDL cholesterol level, median HDL

cholesterol level, median TG level, and median TG/HDL-C ratio.

Because the TG distribution was skewed, TGs were log trans-

formed. Statistical analyses included tests for association of lipids

with single SNPs and haplotypes. All tests involving our primary

endpoints were performed using PLINK, a free, open-source

genetic analysis toolset (http://pngu.mgh.harvard.edu/&purcell/

plink/) [33]. This platform was selected based on its efficiency,

flexibility and ease of application. The --freq option was used to

calculate minor allele frequency (MAF), and the --hardy option

was used to calculate Hardy Weinberg equilibrium (HWE). No

SNPs in this study significantly deviated from HWE.

A linear regression model was applied to test the relationship

between each SNP and the median lipid traits representing our

primary endpoint using the --linear option in PLINK. Asymp-

totic p-values were reported. Initially, 3 inheritance modes were

tested: additive, dominant and recessive. An additive model, which

is the default mode in PLINK, fit our data best, and an additive

model was therefore chosen for all subsequent analyses. We also

estimated the influence of environmental factors, dietary intake

and physical activity by including them as covariates in the linear

regression model using the --covar option.

As noted above, modeled lipid traits were also developed for a

set of secondary analyses. For these analyses, longitudinal lipid

data were right censored at the first mention of a relevant co-

morbidity or medication known to modify lipid homeostasis,

according to our previously published approach [9]. These

secondary traits were available for slightly less than half of the

cohort (n = 288 with modeled HDL, n = 270 for modeled TGs,

and n = 261 for modeled LDL). In a confirmatory series of tests,

they were analyzed for association with single SNPs using a non-

parametric approach (Kruskal-Wallis test). When these confirma-

tory tests localized all SNP associations to the single block of LD

Figure 2. Scatterplot showing the relationship between BMI and dietary fat intake for PMRP participants. Using the entire PMRP
biobank (n = 20,000), percentage of daily calories due to fat has been plotted against BMI at the time of study entry. Trend-line is added (r = 0.086).
doi:10.1371/journal.pone.0015779.g002
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characterized in our prior work [4], we proceeded with haplotypes

using only that locus.

Haplotypes were estimated using 6 tag SNPs contained within

our 15 kb locus of interest, by applying standard E-M algorithms

located in the --hap option of PLINK. A linear regression model

was applied to test each haplotype (vs all other haplotypes), using

the --hap-linear option. All haplotypes with frequency $5%

were included in these analyses. Permutation testing was applied to

reduce the likelihood that our reported associations were observed

simply by chance. Results are reported in both unadjusted and

adjusted format (adjusting for age, gender, BMI, physical activity

and dietary fat intake).

Results

A total of 168 male and 477 female biobank participants with

class III obesity (BMI.40 kg/m2) were included in this study. Of

these, 70 males and 162 females were diabetic. Participant

characteristics are summarized in Table 1, including lipid

phenotypes, dietary intake and physical activity. Mean age for

male and female participants were 52.1615.1 and 48.7614.6 years,

respectively. The PMRP claims 97% Northern European ancestry.

Genotyping was performed on 645 DNA samples using the 22

haplotype tagging SNPs listed in Table 2. All SNPs followed

Hardy-Weinberg (H-W) equilibrium in this cohort, and the

observed allele frequencies compared favorably with published

frequencies [34].

Original region of interest
The CNR1 gene is found on the reverse strand of chromosome

6. As mentioned above, and in our previous report [4], this locus

contains two discrete blocks of LD. The coding region is contained

in a single exon, located in the downstream block [4]. The second

block, proposed to contain additional noncoding exons [35], is

located further upstream.

Figure 3. Chromosomal location for CNR1, and linkage disequilibrium (LD) structure within the PMRP database. The chromosome
position of the CNR1 gene was obtained from the UCSC human genome browser for the entire gene plus 15 kb upstream and 5 kb downstream
(http://genome.ucsc.edu/). SNPs within the identified region were quantified within our study cohort (n = 645) and entered into Haploview for an
assessment of LD and tagSNP assignment. Applying the confidence interval method implemented in Haploview version 4.0, we observed two
haplotype blocks covering the entire region of interest. CNR1: Cannabinoid receptor 1; LD: Linkage disequilibrium; UCSC: University of California,
Santa Cruz.
doi:10.1371/journal.pone.0015779.g003

CNR1 Gene Predicts Lipid Changes
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We performed our primary analyses using tagging SNPs from

the downstream block and plasma TG level, the trait most strongly

associated with CNR1 in our prior work [4]. As illustrated in

Table 3, rs806372 (a SNP in the putative promoter region of

CNR1) shows suggestive association with logTG. As shown, the

strength of this association increases when the data are adjusted for

dietary intake and physical activity. The strength of the association

did not change when the data were further adjusted for age,

gender, BMI, carbohydrate intake and alcohol consumption

(p = 0.063, n = 578, data not shown). Three inheritance modes

were tested (not shown). As in our prior work, an additive mode

was the best predictor of association. All subsequent analyses used

this mode.

Expanded region of interest
The transcription start site for the CNR1 is thought to reside

within the block of LD tagged by the 8 SNPs analyzed above

(rs806372, rs806370, rs806369, rs1049353, rs12720071, rs806368,

rs806366, rs806365). However, at least one prior report has

suggested an alternate transcription start site approximately 15 kb

upstream [4,35]. We therefore also tested our traits of interest for

association with an additional 14 tagging SNPs capturing the LD

contained within a second haplotype block located upstream

(Figure 3). In these analyses, total cholesterol was tested, along

with LDL-C, HDL-C, logTG, and log[TG/HDL]. As shown in

Table 4, these additional SNPs do not provide any indication of

further association with lipid traits in the 15 kb upstream of

rs806372.

The magnitude of effect was calculated for all variants that

showed associations with lipid traits. Subjects with 0, 1 or 2 copies

of the G-allele at rs12720071 have an LDL level of 117.5627.0,

112.8623.6, and 102.7623.3 mg/dL, respectively. Subjects with

0, 1, or 2 copies of the C-allele at rs806368 have a mean TG level

of 153.7670.4, 163.1674.0, and 184.36100.9 mg/dL; and

subjects with 0, 1 or 2 copies of the C-allele of rs806372 have a

mean TG level of 154.1670.7, 171.4675.6, and 138.8647.8 mg/

dL.

To be certain that we were not missing any additional genetic

association upstream, we reanalyzed these data using a more

refined phenotype (i.e., modeled lipid traits, censored for co-

morbidity and lipid modifying medication use) and an alternate

statistical approach (i.e., non-parametric analyses using a Kruskal-

Wallis test). As shown in Table 5, these alternate approaches

failed to reveal any further association with lipids, for tagging

SNPs upstream to rs806372. This approach did, however, resolve

additional associations with HDL-C, located in our original region

of interest (i.e., tagged by the original SNPs) [4].

Haplotype analyses
Haplotypes often provide greater statistical power than single-

marker analyses, for genotype-phenotype association studies. We

have previously shown that tagging SNPs capturing the linkage

structure defined by physical position 88,901,306 to 88,916,775

are adequate to resolve an association with obesity-related

dylipidemia [4]. Our single SNP analyses outlined above indicate

that characterization of this region is sufficient to explain the entire

association between CNR1 and altered lipid homeostasis. We

therefore focused all subsequent analyses on the block of LD

containing those specific SNPs [4]. Those 6 SNPs are highlighted

in Table 2 and Figure 3. It should be noted that Tables 3–5
demonstrate univariate association between lipid traits and one

additional SNP slightly upstream, rs806372. This SNP is in

complete LD with haplotype H4, as shown below. Extending the

region haplotyped to include it would therefore have been

redundant.

Thus, haplotype designation followed Baye’s original report [4].

Haplotype frequencies observed in the current population were

again comparable to other cohorts of similar Northern European

ancestry. Table 6 demonstrates that a common CNR1 haplotype

(H3, frequency 21%), is associated with fasting TG and HDL-C

levels (p = 0.0307 for logTG; p = 0.0382 for HDL-C; p = 0.0038

for log[TG/HDL-C]). The results are presented in both

unadjusted and adjusted format (adjusting for age, gender, BMI,

physical activity and dietary fat intake). To correct for testing

multiple hypotheses, we also conducted permutation testing

(applying 1000 permutations) using software available in PLINK.

By preserving the correlational structure between tag SNPs, this

approach provides a less stringent correction than a Bonferroni

correction. Because the association between H3 and obesity

related dyslipidemia persists after permutation testing (empirical

p = 0.0180 for log[TG/HDL-C]), it is very unlikely that these

associations were observed by chance.

Table 7 suggests that these associations are clinically

significant. Mean TG levels were 160670 mg/dL, 155670 mg/

dL and 120660 mg/dL for subjects with 0, 1, and 2 copies of the

H3 haplotype. Mean HDL-C levels were 45610 mg/dL,

47610 mg/dL and 4869 mg/dL, respectively. Even a modest

1 mg/dL increase in HDL-C is associated with a 6% reduction in

vascular events [2]. Thus, our findings suggest that the H3

Table 2. Tag SNP minor allele frequencies.

SNP Assay (TaqMan) MAF1 reported MAF2 observed

806365 C__1652594 0.43 (T) 0.40 (T)

806366 C___1652593 0.48 (C) 0.48 (C)

806368 C___8943804 0.19(C) 0.20 (C)

12720071 C___30749291 0.11 (C) 0.09 (G)

1049353 C___1652590 0.26(A) 0.31 (A)

806369 C___8943784 0.32 (T) 0.27 (T)

806370 C___1652589 0.15 (T) 0.09 (T)

806372 C__8943783 0.15 (C) 0.12 (C)

806376 C__1652586 0.43 (C) 0.50 (C)

806377 C__1652585 0.48 (C) 0.48 (T)

2023239 C__11600616 0.17 (C) 0.17 (C)

806379 C__1652584 0.44 (T) 0.48 (T)

6928499 C__30749294 0.18 (C) 0.16 (C)

6928813 C__30749295 0.17 (G) 0.16 (G)

9444584 C__30598869 0.2 (T) 0.18 (T)

9450898 C__30274410 0.16 (T) 0.16 (T)

7752758 C__9863393 0.11 (G) 0.12 (G)

12528858 C__9863392 0.05 (G) 0.07 (G)

12205430 C__30749298 0.19 (C) 0.21 (C)

6454673 C__27392043 0.26 (A) 0.30 (A)

6454674 C__11418433 0.29 (G) 0.31 (G)

6454676 C__28979979 0.08 (A) 0.11 (A)

All SNPs used for haplotype construction are bold.
1anticipated MAF based on CEPH cohort (abstracted from ABI website/product
catalog).

2observed MAF within 645 PMRP study subjects with Class 3 Obesity
(BMI.40 kg/m2).

doi:10.1371/journal.pone.0015779.t002
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haplotype may exert a cardioprotective effect, a claim that warrants

further study during weight gain.

Discussion

The current study demonstrates that genetic variability in

CNR1 contributes to several derangements in lipid homeostasis

known to accompany weight gain. We report a CNR1 haplotype

(H3, frequency 21.1%) associated with fasting TG and HDL-C

levels in 645 study subjects with class III obesity, nested within one

of the largest population-based biobanks in the U.S. We localize

the genetic effect to a single block of LD containing the CNR1

coding region, and we demonstrate that this effect is only partly

dependent upon nutrient intake and physical activity. Our findings

Table 3. Replication and refinement of the model (p-values are shown, calculated using a linear regression model in PLINK).

Log TG [additive] p-value, adjusted by:

SNP MAF Without Adjustment BMI
Grams EtOH
consumption Percent of kCal from Fat Sport Index

RS806365 0.402 0.863 0.874 0.946 0.954 0.963

RS806366 0.48 0.109 0.108 0.116 0.107 0.066

RS806368 0.202 0.071 0.071 0.065 0.061 0.048

RS12720071 0.086 0.418 0.419 0.382 0.371 0.421

RS1049353 0.312 0.863 0.863 0.788 0.82 0.985

RS806369 0.271 0.447 0.447 0.449 0.46 0.614

RS806370 0.088 0.295 0.299 0.273 0.263 0.192

RS806372 0.122 0.045 0.044 0.037 0.035 0.027

doi:10.1371/journal.pone.0015779.t003

Table 4. Association between median lipid traits and single
SNPs, using an extended region of interest (p-values from a
linear regression model in PLINK).

Additive Mode p-value

SNP MAF T CHOL LDL-C HDL-C Log TG
Log (TG/
HDL-C)

RS806365 0.402 0.250 0.761 0.651 0.857 0.970

RS806366 0.480 0.741 0.430 0.452 0.061 0.060

RS806368 0.202 0.437 0.124 0.204 0.041 0.031

RS12720071 0.086 0.032 0.040 0.202 0.375 0.175

RS1049353 0.312 0.159 0.527 0.707 0.994 0.860

RS806369 0.271 0.503 0.203 0.467 0.633 0.569

RS806370 0.088 0.552 0.739 0.814 0.164 0.232

RS806372 0.122 0.889 0.615 0.219 0.020 0.023

RS806376 0.499 0.814 0.091 0.872 0.857 0.861

RS806377 0.483 0.848 0.083 0.692 0.831 0.899

RS2023239 0.166 0.879 0.583 0.910 0.918 0.922

RS806379 0.479 0.874 0.249 0.898 0.716 0.737

RS6928499 0.164 0.870 0.497 0.984 0.904 0.977

RS6928813 0.164 0.870 0.483 0.974 0.930 0.962

RS9444584 0.178 0.792 0.315 0.686 0.830 0.839

RS9450898 0.164 0.874 0.462 0.928 0.944 0.973

RS7752758 0.125 0.585 0.394 0.863 0.935 0.958

RS12528858 0.066 0.842 0.882 0.083 0.449 0.198

RS12205430 0.213 0.414 0.823 0.076 0.738 0.296

RS6454673 0.302 0.842 0.425 0.342 0.893 0.599

RS6454674 0.315 0.739 0.369 0.377 0.859 0.815

RS6454676 0.107 0.248 0.151 0.916 0.975 0.858

doi:10.1371/journal.pone.0015779.t004

Table 5. Association between modeled lipid trait and single
SNPs, over the same extended region of interest shown in
Table 4 (Kruskal-Wallis p-values are shown).

Kruskal-Wallis p-value

SNP T CHOL LDL-C HDL-C TG

RS806365 0.524 0.479 0.909 0.772

RS806366 0.731 0.213 0.847 0.250

RS806368 0.881 0.710 0.043 0.103

RS12720071 0.460 0.433 0.029 0.264

RS1049353 0.155 0.095 0.046 0.804

RS806369 0.892 0.215 0.615 0.352

RS806370 0.399 0.448 0.518 0.114

RS806372 0.076 0.375 0.218 0.028

RS806376 0.468 0.856 0.808 0.282

RS806377 0.480 0.671 0.962 0.491

RS2023239 0.846 0.207 0.192 0.906

RS806379 0.287 0.755 0.901 0.611

RS6928499 0.881 0.212 0.194 0.904

RS6928813 0.880 0.212 0.200 0.908

RS9444584 0.794 0.341 0.189 0.759

RS9450898 0.886 0.208 0.210 0.911

RS7752758 0.728 0.078 0.460 0.901

RS12528858 0.371 0.480 0.975 0.643

RS12205430 0.137 0.461 0.354 0.567

RS6454673 0.345 0.948 0.208 0.716

RS6454674 0.417 0.972 0.154 0.411

RS6454676 0.366 0.040 0.465 0.260

doi:10.1371/journal.pone.0015779.t005
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provide evidence in support of the growing claim that CNR1

directly modulates peripheral lipid homeostasis.

Mechanism
Endocannabinergic signaling plays a critical role in the

regulation of energy metabolism. Both animal studies and clinical

trials have suggested a relationship between CNR1 and body

composition [36,37,38]. However, studies characterizing this

relationship have yielded controversial observations from different

populations [39,40,41,42]. One of the most well-characterized

longitudinal cohort studies in the U.S, the Framingham Heart

Study, recently failed to observe any association between CNR1

and obesity [42]. In retrospect, the impact of variable endocanna-

binergic signaling on weight gain in some cohorts may have been

secondary to an underlying relationship between CNR1 and lipid

homeostasis, perhaps related to an alteration in the hepatic

efficiency of fatty acid beta oxidation, an alteration in fatty acid

biosynthesis, or a combination of both [37].

Recently, a number of lipid and lipoprotein phenotypes have

been associated with variability in CNR1, and the eCB signaling

pathway in general [4,7]. Our data are consistent with these

reports. Endocannabinoids clearly modulate lipid traits through

mechanisms other than enhanced food intake [43,44]. For

example, clinical trials conducted with CB1 blockers in subjects

of European ancestry have revealed a greater improvement in

metabolic parameters than anticipated based on weight loss alone

[38,45]. In an analysis of covariance, which corrected for weight

loss through standard regression methods, patients taking CB1

blockers developed an increase in HDL-C and a decrease in

fasting TG levels more than twice that anticipated based upon

change in weight [38,45]. Further, CNR1 knockout mice maintain

a favorable lipid profile during high-fat diet [36,37]. Altered

mRNA expression in animal models and cell culture systems

suggest an involvement of CNR1 in both lipogenesis and lipid

transportation [46,47,48]. While hepatocyte-specific CNR1

knockout mice gain weight at a rate similar to their wild type

littermates, they are resistant to dyslipidemia in a manner

comparable with a lean phenotype [37]. While some data indicate

that CB1 activation directly alters hepatic lipogenesis (increased

acetylCoA carboxylase activity, increased fatty acid synthase

activity, and decreased fatty acid b-oxidation) [37], other data

suggest a role for CB1 in the modulation of cholesterol uptake

and/or efflux [49]. The effect of CB1 activity on cholesterol

transport may be mediated through SRB1 or ABCG1 [46]

The role of environment
To date, common variants in biological candidate genes have

only explained a small fraction (typically less than 5%) of the

variance in complex traits such as dyslipidemia [50,51]. Although

it is reassuring to note that most associations identified in genome-

wide scanning efforts reflect biologically plausible mechanisms,

even highly heritable traits such as height (H2
[Height] ,0.8) would

require nearly 105 discrete variants to explain the phenotype based

on current statistical modeling [52]. Heritability for HDL-C level

is robust and comparable to height (H2
[HDL-C] ,0.7 [7]). Thus, it

is plausible (and in fact likely) that gene-environment (GxE)

interactions strongly influence this trait [53,54].

For CNR1 specifically, analyses based on GxE have improved

predictive power in the context of neuropsychiatric endpoints [55].

Nutrient intake is clearly a strong contributor to CNR1-

environment interactions. In hepatocyte specific CNR1 knock-

down animals, the metabolic effects are only present when animals

are fed with a high-fat diet, not a chow diet [37]. In the current

study, CNR1 interacts with dietary intake (percent calories due to

fat) and vigorous physical activity (the sport index from a

standardized survey instrument) to modulate lipid levels. Statistical

adjustment for diet and physical activity strongly influences the

association between CNR1 and TG level (as illustrated in

Table 7), while such an adjustment has little effect on the

relationship between CNR1 and HDL-C. This provides further

Table 6. Association between CNR1 haplotype and median lipid traits (p-values are shown, calculated using a linear regression
model in PLINK).

T Chol LDL-C HDL-C Log TG Log (TG/HDL-C)

Haplotype{ (59-39) 1 Freq. Unadj. Adj.* Unadj. Adj.* Unadj. Adj.* Unadj. Adj.* Unadj. Adj.*

H1 CCAATT 0.302 0.122 0.185 0.375 0.563 0.733 0.792 0.950 0.712 0.907 0.639

H2 CTGATC 0.267 0.766 0.659 0.315 0.187 0.277 0.471 0.864 0.878 0.428 0.778

H3 CCGATC 0.211 0.453 0.533 0.938 0.860 0.0382 0.036 0.0307 0.0093 0.00376 0.00349

H4 TCGACT 0.114 0.541 0.539 0.877 0.952 0.480 0.556 0.117 0.071 0.108 0.113

H5 CCGGCT 0.085 0.043 0.036 0.068 0.062 0.360 0.611 0.454 0.766 0.369 0.560

*adjusted by age, gender, BMI, calories from fat and sport index.
{Designation in Tes Baye paper (2008).
1SNPs that used for haplotype construction (59-39): rs806370, rs806369, rs1049353, rs12720071, rs806368, rs806366.
doi:10.1371/journal.pone.0015779.t006

Table 7. Effect of H3 haplocopy on lipid traits (mean 6 SD).

Haplotype Copies of Haplotype Freq. HDL-C (mg/dL) TG (mg/dL) BMI (kg/m2)

H3 0 0.63 45.9610.4 160.1671.7 45.265.1

1 0.33 47.6610.3 155.8670.1 45.164.7

2 0.04 48.269.9 120.4661.2 44.964.8

doi:10.1371/journal.pone.0015779.t007
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indirect support for the claim that genetic variation in CNR1 alters

fasting TG through a combination of central (appetite-related) and

peripheral (lipid homeostatic) mechanisms [4], while genetic

variation in CNR1 alters HDL-C level through a more direct

effect localized primarily to the liver [36,38].

Causative variants
Overall, we observed a number of similarities between our

current results, and findings reported previously in mutigenerational

families of Northern European descent [4]. For example, rs806368,

a SNP in the 39-UTR of CNR1, is associated with fasting TG level

in both cohorts. Further, the H4 haplotype was strongly associated

with TGs in the original cohort and marginally associated with TGs

in the current cohort (a cohort limited to the severely obese). Our

most notable dissimilarity would be the observation that a different

haplotype, H3, was associated with HDL-C in the current cohort

only. Because the relationship between BMI and HDL-C is

curvilinear [9], the protective effect of H3 against reduction in

HDL-C level may only be evident in subjects with an extremely high

BMI. It is important to note, however, that this relationship is not

driven by a direct effect of CNR1 on obesity. CNR1 haplotypes

were not associated with BMI in either cohort [4].

Our findings reveal that severely obese study subjects with 0, 1

and 2 copies of the H3 haplotype have mean HDL-C levels of

45610, 47610, and 4869 mg/dL, respectively. Conversely,

subjects with 0, 1 or 2 copies of H3 haplotype have mean TG

levels of 160670, 155670, and 120660 mg/dL, respectively.

Although H3 appears to represent a protective haplotype (high

HDL-C and low TG), the causative variants underlying the

relationship between CNR1 and obesity-related dyslipidemia

remain unknown. H3 is likely only in partial linkage (i.e.,

D’,1.0) with the causal variants, and the underlying functional

alleles are probably both common and rare [52,56]. One or more

structural variants may also be contributing [57]. Repeating

elements are quite common in CNR1.

It is becoming increasingly clear that the genetic control over

most complex traits is due to a combination of common and rare

variants, and that the rare variants contributing to these

interactions exhibit considerably larger effect sizes than most

common variants [52]. Thus, rare variants are likely to be

responsible for most of the missing heritability underlying complex

traits like circulating lipid levels. Future efforts must therefore be

directed toward sequencing the CNR1 gene in representative

subsets enriched for the traits of interest [58] and the marker(s)

most strongly associated with those traits.

Outlook
Human obesity is often co-morbid with metabolic disturbances

that are ultimately more debilitating and life-threatening than

obesity itself. Derangements in lipid homeostasis accompanying

weight gain are due in part to genetic variation in CNR1. Efforts

to re-sequence this gene in relevant cohorts will improve our

understanding of dyslipidemia.
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