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SUMMARY
Systematic characterization of cancer genomes has revealed a staggering number of diverse
aberrations that differ among individuals, such that the functional importance and physiological
impact of most tumor genetic alterations remains poorly defined. We developed a computational
framework that integrates chromosomal copy number and gene expression data for detecting
aberrations that promote cancer progression. We demonstrate the utility of this framework using a
melanoma dataset. Our analysis correctly identified known drivers of melanoma and predicted
multiple novel tumor dependencies. Two dependencies, TBC1D16 and RAB27A, confirmed
empirically, suggest that abnormal regulation of protein trafficking contributes to proliferation in
melanoma. Together, these results demonstrate the ability of integrative Bayesian approaches to
identify novel candidate drivers with biological, and possibly therapeutic, importance in cancer.

INTRODUCTION
Large-scale initiatives to map chromosomal aberrations, mutations and gene expression have
revealed a highly complex assortment of genetic and transcriptional changes within
individual tumors. For example, copy number aberrations (CNAs) occur frequently in cancer
due to genomic instability. Genomic data has been collected for thousands of tumors at high
resolution using array comparative genomic hybridization (aCGH) (Pinkel et al., 1998), high
density single nucleotide polymorphism (SNP) microarrays (Beroukhim et al., 2010; Lin et
al., 2008) and massively parallel sequencing (Pleasance et al., 2010). Although multiple new
genes have been implicated in cancer through sequencing and CNA analysis (Garraway et
al., 2005), these studies have also revealed enormous diversity in genomic aberrations in
tumors among individuals. Each tumor is unique and typically harbors a large number of
genetic lesions, of which only a few drive proliferation and metastasis. Thus, identifying
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driving mutations (genetic changes that promote cancer progression) and distinguishing
them from passengers (those with no selective advantage) has emerged as a major challenge
in the genomic characterization of cancer.

The most widely used approaches are based on the frequency an aberration occurs: if a
mutation provides a fitness advantage in a given tumor type, its persistence will be favored
and it is likely to be found in multiple tumors. For example, GISTIC identifies regions of the
genome that are aberrant more often than would be expected by chance, and has been used
to analyze a number of cancers (Beroukhim et al., 2009; Beroukhim et al., 2007; Lin et al.,
2008). However, there are limitations to analytical approaches based on CNA data alone:
CNA regions are typically large and contain many genes, most of which are passengers that
are indistinguishable in copy number from the drivers. CNA data has statistical power to
detect only the most frequently recurring drivers above the large number of unrelated
chromosomal aberrations that are typical in cancer. Finally, these approaches rarely
elucidate the functional importance or physiological impact of the genetic alteration on the
tumor. These limitations highlight the need for new approaches that can integrate additional
data to identify drivers of cancer. Gene expression is readily available for many tumors, but
how best to combine it with information on CNA is not obvious.

We postulate that driving mutations coincide with a “genomic footprint” in the form of a
gene expression signature (see Box 1). We developed an algorithm that integrates
chromosomal copy number and gene expression data to find these signatures and identify
likely driver genes located in regions that are amplified or deleted in tumors. Each potential
driver gene is altered in some, but not all tumors and, when altered, is considered likely to
play a contributing role in tumorgenesis. Unique to our approach, each driver is associated
with a gene module, which is assumed to be altered by the driver. We sometimes gain
insight into the likely role of a candidate driver, based on the annotation of the genes in the
associated module. We demonstrate the utility of our method using a dataset (Lin et al.,
2008) that includes paired measurements of gene expression and copy number from 62
melanoma samples. Our analysis correctly identified known drivers of melanoma and
connected them to many of their targets and biological functions. In addition, it predicted
novel melanoma tumor dependencies, two of which, TBC1D16 and RAB27A, were
confirmed experimentally. Both of these genes are involved in the regulation of vesicular
trafficking, which highlights this process as important for proliferation in melanoma.

RESULTS

BOX 1: The genomic signature of a driver (combined with Figure 1)

We define a “driving mutation” to be a genetic alteration that provides the tumor cell
with a growth advantage during carcinogenesis or tumor progression (Stratton et al.,
2009). We reasoned that driving mutations might leave a genomic ‘footprint’ that can
assist in distinguishing between driver and passenger mutations based on the following
assumptions:

1. A driving mutation should occur in multiple tumors more often than would be
expected by chance (Figure 1A).

2. A driving mutation may be associated (correlated) with the expression of a
group of genes that form a ‘module’ (Figure 1B).

3. Copy Number Aberrations often influence the expression of genes in the module
via changes in expression of the driver (Figure 1C).
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Driving mutations are frequently associated with the abnormal regulation of processes such
as proliferation, differentiation, motility and invasion. Given that many cancer phenotypes
are reflected in coordinated differences in the expression of multiple genes (a module)
(Golub et al., 1999; Segal et al., 2004), a driving mutation might be associated with a
characteristic gene expression signature or other phenotypic output representing a group of
genes whose expression is modulated by the driver. Additionally, CNAs do not typically
alter the coding sequence of the driver and so are expected to influence cellular phenotype
via changes in the driver’s expression. In consequence, changes in expression of the driver
are important and so approaches that measure association between the expression of a
candidate driver (as opposed to its copy number) and that of the genes in the corresponding
module are likely to promote the identification of drivers.

Gene expression is particularly useful for identifying candidate drivers within large
amplified or deleted regions of a chromosome: whereas genes located in a region of
genomic copy gain/loss are indistinguishable in copy number, expression permits the
ranking of genes based on how well they correspond with the phenotype (Figure 1D). CNA
data aids in determining the direction of influence, which cannot be derived based on
correlation in gene expression alone. This permits an unbiased approach for identifying
candidate drivers from any functional family, beyond transcription factors or signaling
proteins.

A Bayesian Network Based Algorithm to Identify Driver Genes
We developed a computational algorithm, COpy Number and EXpression In Cancer
(CONEXIC), that integrates matched copy number (amplifications and deletions) and gene
expression data from tumor samples to identify driving mutations and the processes they
influence. CONEXIC is inspired by Module Networks (Segal et al., 2003), but has been
augmented by a number of critical modifications that make it suitable for identifying drivers
(see Supplementary Methods). CONEXIC uses a score-guided search to identify the
combination of modulators that best explains the behavior of a gene expression module
across tumor samples and searches for those with the highest score within the amplified or
deleted region (Supplementary methods, Figure S1).

The resulting output is a ranked list of high scoring modulators that both correlate with
differences in gene expression modules across samples and are located in amplified or
deleted regions in a significant number of these samples. The fact that the modulators are
amplified or deleted indicates that they are likely to control the expression of the genes in
the corresponding modules (see Figure 3). Since the modulators are amplified or deleted in a
significant number of tumors, it is reasonable to assume that expression of the modulator
(altered by copy number) contributes a fitness advantage to the tumor. Therefore, the
modulators likely include genes whose alteration provides a fitness advantage to the tumor.

Identifying candidate driver genes in melanoma
We applied the CONEXIC algorithm to paired gene expression and CNA data from 62
cultured (long and short term) melanomas (Lin et al., 2008). A list of candidate drivers was
generated using copy number data available for 101 melanoma samples by applying a
modified version (Sanchez-Garcia et al., 2010) of GISTIC (Beroukhim et al., 2007) (see
Table S1). Next, we integrated copy number and gene expression data (available for 62
tumors) to identify the most likely drivers (Supplementary methods). Statistical power is
gained by integrating all data, and by combining statistical tests on thousands of genes to
support the selected modulators. This resulted in the identification of 64 modulators that
explain the behavior of 7869 genes. We consider the top 30 scoring modulators, presented in
Figure 2, as likely drivers (see Table S2 for the complete list).
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Many modulators are involved in pathways related to melanoma
The top 30 modulators (likely drivers) include 10 known oncogenes and tumor suppressors
(Figure 2). In many cases, CONEXIC chose the cancer related gene out of a large aberrant
region containing many genes. For example, DIXDC1, a gene known to be involved in the
induction of colon cancer (Wang et al., 2009b), was selected among 17 genes in an aberrant
region (Figure S3). CCNB2, a cell cycle regulator, was selected from a large amplified
region containing 33 genes. The modulators span diverse functional classes including: signal
transducers (TRAF3), transcription factors (KLF6), translation factors (EIF5) and genes
involved in vesicular trafficking (RAB27A).

Performing a comprehensive literature search for all genes is tedious and time consuming,
so we developed an automated procedure, LitVAn - Literature Vector Analysis, that
searches for over-represented terms in papers associated with genes in a gene set. LitVAn
uses a manually curated database (NCBI Gene) to connect genes with terms from the
complete text of more than 70,000 published scientific articles (Supplementary Methods).
LitVAN found a number of over represented terms (Figure S2E) among the top 30
modulators, including ‘PI3K’ and ‘MAPK’, which are known to be activated in
melanoma, ’cyclin’, representing proliferation which is common in all cancers and ‘RAB’.
Rabs regulate vesicular trafficking, a process not previously implicated in melanoma (Chin
et al., 2006).

The association between a modulator and the genes in a module
Beyond generating a list of likely drivers (modulators), the CONEXIC output includes
groups of genes that are associated with each modulator (modules). We tested how
reproducible the modulators and their associated modules are using gene expression data
from two other melanoma cohorts with 45 (Hoek et al., 2006) and 63 (Johansson et al.,
2007) samples (see Supplementary methods, Figure S2). We found that 51/64 (80%) of the
selected modulators are conserved across datasets in a statistically significant manner.
Modules (statistically associated genes) are likely enriched with genes whose expression is
biologically affected by the modulator (Figure 3). In consequence, the processes and
pathways represented by genes in a module can help us to gain insight into how an
aberration in the modulator might alter the cellular physiology and contribute to the
malignant phenotype.

Annotation of data-derived sets of genes is typically carried out based on gene set
enrichment using Gene Ontology (GO) annotation. Although this approach is useful, there
are modules for which GO annotation does not capture the known biology. For example, the
'TNF module' is enriched with the GO terms 'developmental process' and 'cell
differentiation' (q-value=0.0014 and 0.004 respectively). We used LitVAn to carry out a
systematic literature search and found 11/20 genes in the module related to the TNF
pathway, inflammation or both (Figure 3C, Table S3), although only 2 of these genes were
annotated for these processes in GO. TRAF3, the modulator chosen by CONEXIC, is known
to regulate the NF-kappa-B pathway (Vallabhapurapu et al., 2008), a major downstream
target of TNF. Although TRAF3 has not been previously implicated in melanoma, the
importance of the NF-kappa-B pathway in melanoma is well supported (Yukiko and Ann,
2006).

A known driver, MITF, is correctly associated with target genes
CONEXIC identified microphthalmia-associated transcription factor (MITF) as the highest
scoring modulator. MITF is a master regulator of melanocyte development, function and
survival (Levy et al., 2006; Steingrimsson et al., 2004) and the overexpression of MITF is
known to have an adverse effect on patient survival (Garraway et al., 2005).
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To test the association between modulator and module, we obtained an experimentally
derived list of MITF targets (Hoek et al., 2008b) and asked whether the modules identified
by CONEXIC associate MITF with its known targets. The MITF associated modules
contained 45/80 previously identified targets (p-value < 1.5e−45) supporting a match
between the transcription factor (TF) and its known targets. However, a few targets
(TBC1D16, ZFP106 and RAB27A) are both associated with MITF and are themselves
modulators of additional modules. CONEXIC limits each gene to a single module, so
association with an MITF target would preclude association with MITF. If we permit
indirect association to MITF through the modules of these additional modulators,
CONEXIC correctly identifies 76 of the 80 targets identified by Hoek et. al. (p-value <
1.5e−78). Similar target sets are not available for any other modulator, precluding a more
rigorous evaluation of our other predictions.

MITF expression correlates with targets better than copy number
Expression of MITF correlates with the expression of its targets better than MITF copy
number, though both correlations are statistically significant (p-value of 0.0001 versus 0.04,
Figures 4A and 4B). This relationship is unidirectional: MITF is significantly overexpressed
when its DNA is amplified (p-value 0.0004), but over-expressed MITF does not always
correspond with MITF amplification. We find that MITF is less correlated with its copy
number (rank 294th) than most other genes in aberrant regions (see Table S1C) and more
than half of the tumors that over-express MITF do not have a CNA that spans the MITF
gene. Comparison of MITF target expression between samples with and without MITF
amplification did not show an effect of DNA amplification on expression of the targets
(Supplementary methods).

MITF correctly annotated with its known role in melanoma
We used LitVAN to identify the biological processes and pathways represented in each
module associated with MITF. The module containing the genes most significantly
upregulated by MITF (Figure 4B, Figure S4A) is significantly enriched for the terms
'melanosome' and 'pigment granule' (q-value= 4.86e−6 for each). It includes targets involved
in proliferation such as CDK2, consistent with the observation that MITF can promote
proliferation via lineage specific regulation of CDK2 (Du et al., 2004). The module
containing genes most strongly inhibited by MITF (Figure 4B, Figure S4B) has a metastatic
signature strongly associated with invasion, angiogenesis, the extracellular matrix and NF-
kappa-B signaling. These modules and their annotation suggest that MITF serves as a
developmental switch between two types of melanoma, where high MITF expression
promotes proliferation and low MITF expression promotes invasion. Thus our automated,
computationally derived findings dissect a complex response and accurately recapitulate the
known literature, including the experimental characterization of MITF (Hoek et al., 2008a).

LitVAN annotated additional modulators with their known role (e.g., CCNB2 with cell cycle
and mitosis, data not shown). The detailed match between the CONEXIC output and
empirically derived knowledge of the role of known modulators in melanoma provides
confidence in CONEXIC’s predictions for modulators that are not well characterized.

Identification of TBC1D16 as a tumor dependency in melanoma
The second highest scoring modulator identified by CONEXIC is TBC1D16, a Rab GTPase-
activating protein of unknown biological function. Rabs are small monomeric GTPases,
involved in membrane transport and trafficking. TBC1D16 is well conserved and although
its targets are not known, a close paralog, TBC1D15, regulates RAB7A (also selected as a
modulator, Figure 2) (Itoh et al., 2006). We used a module associated with TBC1D16 to
infer its potential role in melanoma (Figure 5A), and discovered that diverse biological
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processes are represented by genes in the module and that more than half are annotated for
processes such as melanogenesis, vesicular trafficking and survival/proliferation (Table
S4A). This suggests that TBC1D16 plays a role in cell survival and proliferation.

TBC1D16 is an uncharacterized gene located in an amplified region that contains 23 other
genes, including CBX4, which is known to play a role in cancer (Satijn et al., 1997).
Expression of TBC1D16 is not highly correlated with TBC1D16 copy number, compared to
other genes in the region (ranked 7th out of 24) or to all candidate drivers (252th out of 428).
Nevertheless, TBC1D16 is the top scoring gene in the region and the 2nd highest scoring
modulator, so it was selected for experimental verification

The module exhibits a dose-response relationship between TBC1D16 expression and the
expression of genes in the module such that higher expression of TBC1D16 is correlated
with higher expression of genes in the module (correlation coefficient 0.76). We carried out
western blotting and RT-PCR on some of the short term cultures (STCs) used to generate the
Lin dataset and asked whether the TBC1D16 transcript correlates with protein levels. The
results confirmed that the expression of TBC1D16 corresponds well with the amount of the
45kD form of TBC1D16 (data not shown). These results suggest that knockdown of
TBC1D16 expression in tumors that have high levels of TBC1D16 will lead to a reduction in
proliferation.

TBC1D16 is required for proliferation
To test whether TBC1D16 is required for proliferation of melanoma cultures we carried out
a knockdown experiment. We selected two STCs with high levels of TBC1D16, WM1960
(16-fold greater expression than WM1346, DNA not amplified) and WM1976 (34-fold
greater expression, amplified DNA) and control STCs, WM262 and WM1346 that express
TBC1D16 at a lower level. We used two shRNAs to knock down TBC1D16 expression in
each of the four STCs and measured growth over 8 days (Supplementary methods). RT-PCR
was used to confirm that the reduction in the amount of the TBC1D16 transcript was similar
for all of the STCs (Figure S6). Knockdown of TBC1D16 expression reduced cell growth in
WM1960 and WM1976 to 16% and 40%, respectively, relative to controls infected with
GFP shRNA in the same STCs (Figures 5B, C and D). This result is specific for cultures
with high levels of TBC1D16, as the controls, WM262 and WM1346, grow at similar rates
to cultures infected with shGFP (75%–90%). As predicted, growth inhibition at day 8 is
proportional to the amount of the TBC1D16 transcript and is independent of TBC1D16 copy
number (Figures 5C and D). Taken together, these results support CONEXIC’s prediction
that TBC1D16 is required for proliferation in melanomas that over express the gene.

RAB27A identified and experimentally confirmed as a tumor dependency
The TBC1D16 module contains a second modulator, RAB27A, also known to be involved in
vesicular trafficking (Figure 5A). RAB27A functions, with RAB7A, to control melanosome
transport and secretion. RAB7A localises to early melanosomes, while RAB27A is found in
mature melanosomes (Jordens et al., 2006). CONEXIC selected both RAB27A and RAB7A
as modulators.

RAB27A is in an amplified region that did not pass the standard GISTIC q-value threshold
for significance and expression of the gene is not highly correlated with RAB27A copy
number, compared to other candidate drivers (323th out of 428). Nevertheless, CONEXIC
identified it as the top-scoring modulator out of the 33 genes in this region, and ranked it 8th

out of 64 modulators and it was therefore selected for empirical assessment.

To test the prediction that RAB27A is important for proliferation in tumors with high levels
of RAB27A, we tested the effect of shRNA knockdown of the RAB27A transcript on
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proliferation. We chose two STCs in which the gene is highly expressed WM1385 (28-fold
greater expression compared with A375, DNA amplified) and WM1960 (38-fold greater
expression, DNA not amplified) and two controls that express RAB27A at a lower level
(A375 and WM1930). Western blots show that expression of RAB27A correlates with
expression of the cognate gene in these cultures (data not shown).

Knockdown of RAB27A expression using shRNA was similar for all cultures (Figure S6),
but only reduced cell growth significantly in the STCs that overexpress RAB27A (18% or
35% in WM1385 or WM1960 relative to the same cultures infected with GFP shRNA).
RAB27A shRNA had less impact (growth rates of 65–80%) in the control STCs that have
low RAB27A (Figures 6A and B). Growth inhibition at 6 days is correlated with the amount
of the RAB27A transcript and is independent of RAB27A copy number (Figures 6B and C).
Taken together, these results support CONEXIC’s prediction that RAB27A is a tumor
dependency in melanomas that overexpress RAB27A.

RAB27A affects the expression of genes in associated modules
To test whether RAB27A affects the expression of genes in associated modules, as predicted
by CONEXIC, we carried out microarray profiling after knockdown of RAB27A in the test
STCs (WM1385, WM1960). We compared the expression profile after RAB27A knockdown
to a control profile generated by infecting the same STC with GFP shRNA. We used Gene
Set Enrichment Analysis (GSEA) (Subramanian et al., 2005) to test whether each of the 3
modules associated with RAB27A are enriched with genes that are differentially expressed
(DEG) after knockdown (see Supplementary Methods). We found that all 3 RAB27A
associated modules are significantly enriched for genes affected by RAB27A (p-values <
10−5 for all 3 modules, see Figure 7C), and that these modules responded in the direction
predicted by CONEXIC.

These results support our computational prediction that the expression of RAB27A affects
the expression of the genes in the associated modules. We note that RAB27A functions as
vesicular trafficking protein, suggesting that it influences gene expression through an
unknown, and likely indirect, mechanism. We used LitVAN to identify the biological
processes and pathways represented among the DEGs. Cell cycle related terms are
significant among the down-regulated genes, which might be expected given the reduced
growth after RAB27A knockdown. In addition, we found that genes annotated for the Erk
pathway are up-regulated (including MYC, FOSL1 and DUSP6). We used GSEA to measure
enrichment of an experimentally derived set of genes that respond to MEK inhibition in
melanoma (Pratilas et al., 2009). The resulting p-value < 4.7e−5 suggests that ERK signaling
is altered after RAB27A knockdown in these STCs.

TBC1D16 influences the expression of genes in associated modules
We carried out microarray profiling after knockdown of TBC1D16 to evaluate whether
expression of TBC1D16 affects the expression of genes in the 4 modules associated with it.
We used two shRNAs to knock down TBC1D16 in the test STCs (WM1960, WM1976) and
compared the gene expression to controls infected with GFP shRNA (in the same STCs).
GSEA analysis established that all 4 modules are significantly enriched for genes affected
by differences in TBC1D16 expression (p-values < 10−5, 0.0002, 0.008 and 0.009
respectively, see Figure 7). Two modules responded to TBC1D16 knockdown in the
direction predicted by CONEXIC. In addition, GSEA analysis ranked genes in the
TBC1D16 module (Module25) highest out of 177 (based on the GSEA p-value),
demonstrating that the genes in this module are the most highly differentially expressed
genes in the data set.
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The function of TBC1D16 is unknown, but it is predicted to be involved in vesicular
trafficking. In our knockdown analysis LitVAN annotated the up-regulated genes with terms
related to vesicular trafficking. These include RAB3C, RAB7A, CHMP1B, RAB18, SNX16,
COPB1 and CAV1 (see Table S6A). However, it is not clear how TBC1D16 affects gene
expression or how changes in expression impact vesicular trafficking.

DISCUSSION
We have demonstrated that combining tumor gene expression and copy number data into a
single framework increases our ability to identify likely drivers in cancer and the processes
affected by them. Gene expression allows us to distinguish between multiple genes in an
amplified or deleted region (many of which are indistinguishable based on copy number)
and to identify those that are likely to be drivers. The combination of data types allows us to
identify regions that would be overlooked using methods based on DNA copy number alone.

Expression of a driver, not its copy number, drives phenotype
The novelty of our method and the key to its success is our modeling paradigm: the
expression of a driver should correspond with the expression of genes in an associated
module. Examination of MITF and its targets supports our assumptions. Expression of MITF
best correlates with the expression of its targets, but MITF overexpression does not always
correspond with MITF amplification. A change in DNA copy number is only one of many
ways that gene expression can be altered. For example, MITF expression can be upregulated
via signaling from the Ras/Raf (oncogenic BRAF occurs frequently in melanoma)
(Wellbrock et al., 2008) and Frizzled/Wnt pathways (Chin et al., 2006).

Most methods for identifying drivers within aberrant regions focus on genes whose
expression is well correlated with the copy number of the cognate DNA (Lin et al., 2008;
Turner et al., 2010). The expression of many of the predicted drivers we identify is poorly
correlated with their copy number, relative to other genes in the region and to all other
candidate drivers MITF (294th), TBC1D16 (252th) and RAB27A (323th) (see Table S1C). We
believe the discrepancies between CNA and expression arise because there are multiple
ways to up or down-regulate a gene. For example, TBC1D16 and RAB27A were both
identified as transcriptional targets of MITF (Chiaverini et al., 2008; Hoek et al., 2008b),
and are therefore up-regulated when MITF is over-expressed. Moreover, we postulate that
many drivers are less correlated with their copy number than passengers due to selective
pressure; if there is a fitness advantage to up or down regulate expression, the tumor will
find a mechanism to do so.

TBC1D16 and RAB27A are required for proliferation
We tested two drivers predicted by CONEXIC with knockdown experiments, and showed
that tumors that express either TBC1D16 or RAB27A at high levels are dependent on the
corresponding gene for growth. Our results demonstrate that these dependencies are
determined by expression of the gene (in both cases), rather than DNA amplification status,
further supporting the assumptions underlying our approach. Thus, we not only identify
tumor dependencies, but also the tumors in which these genes are crucial for proliferation.
Identifying dependencies that are critical for tumor survival is needed for drug targeted
therapies. For example, FLT3 inhibitors in AML, which have had successful phase II trials
(Fischer et al., 2010). Our approach is unbiased with respect to protein function and does not
incorporate prior knowledge, thus enabling the identification of dependencies in genes
involved with vesicular trafficking. TBC1D16 and RAB27A validate the ability of our
approach to correctly identify tumor dependencies and the genes that they affect.
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Association between modulator and module
A key feature of our approach is that CONEXIC goes beyond identifying drivers. By
associating candidate drivers with gene modules and annotating them using information
from the literature, CONEXIC provides insight into the physiological roles of drivers and
associated genes. We used LitVAn to find biological processes and pathways
overrepresented in each module and to associate drivers with functions, accurately
identifying targets of MITF and annotating the functions of known drivers (MITF, CCBN2
and TRAF3).

The results of microarray profiling following knockdown further support the association
between modulator and module and confirm our ability to identify genes affected by
TBC1D16 and RAB27A. We successfully connected genes involved in vesicular trafficking
to their effects on gene expression, likely through a cascade of indirect influences. In
addition to profiling the STCs that highly express each of these genes (test STCs), we also
profiled two lower expressing STCs (control STCs), in which the effect of knockdown is
less detrimental to growth. For TBC1D16, there is substantial overlap in the DEGs in the test
STCs (p-value < 6.6e−22), but not in the DEGs between control and test STCs (p-value >
0.76). This reflects the complexity of the transformed state and demonstrates that genetic
context has a fundamental impact on the effect of a perturbation.

Genes involved in trafficking are important in melanoma
Of the top 30 drivers selected by CONEXIC, three genes (TBC1D16, RAB27A and RAB7A)
are known to be involved in vesicular trafficking (Itoh et al., 2006; Jordens et al., 2006). All
of these genes are amplified (DNA) and highly expressed (RNA) in multiple melanomas.
There is increasing evidence that genes controlling trafficking play a role in melanoma.
Germline variation in GOLgi PHosphoprotein 3 (GOLPH3), a gene involved in vesicular
trafficking, is associated with multiple cancers (Scott et al., 2009). Our data identifies two
novel dependencies that are encoded in somatic CNAs, demonstrates the dependency of
melanoma on TBC1D16 and RAB27A expression for proliferation and highlights the
potential role of vesicular trafficking in this malignancy.

The role of vesicular trafficking in melanoma has yet to be characterized. Vesicular
trafficking regulates many receptor tyrosine kinases (RTKs) both spatially and temporally
and thus determines both the duration and intensity of signaling (Ying et al., 2010). For
example, RAB7A is involved in the regulation of ERK signaling (Taub et al., 2007), and
ERK is known to play an important role in melanoma (Chin et al., 2006). Tight control of
ERK expression could potentially be important in melanocytes because of its influence on
MITF: ERK is required for the activation of MITF, but high levels of ERK lead to MITF
degradation (Wellbrock et al., 2008). It is possible that recurrent aberrations in vesicular
trafficking genes might involve control of ERK signaling intensity. This is further supported
by the up-regulation of an ERK signature (Pratilas et al., 2009) following RAB27A
knockdown in our data (p-value < 4.7e−5).

CONEXIC and other approaches
CONEXIC differs from other methods in a number of ways. First, it uses the gene
expression of a candidate driver, rather than its copy number as a proxy to report on the
status of the gene, e.g., two tumors that overexpress a driver are treated equivalently, even if
there is amplification in the DNA of only one of them. Second, it associates a candidate
driver with a module of genes whose expression corresponds with that of the predicted
driver, which was critical for identification of TBC1D16 as a modulator. Third, combining
copy number and gene expression provides greater sensitivity for identifying significantly
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aberrant regions that would not be selected based on DNA alone, this was critical for the
identification of RAB27A.

Methods based on copy number data are limited to detecting large regions containing
multiple genes, such that the driver cannot be readily identified among them. Recent efforts
have focused on integrating additional sources of information into the analysis. Some
methods use prior information, such as the role of a gene in other cancers (Beroukhim et al.,
2010). Others, like CONEXIC, integrate gene expression data (Adler et al., 2006), but the
results of these methods fall short of CONEXIC's. We systematically compared CONEXIC
to other methods using the same data and found that they did not identify MITF, or any other
known driver in melanoma (see Supplementary Methods).

Statistical dependencies in gene expression have been used to connect a regulator to its
target (Friedman et al., 2000; Lee et al., 2006; Segal et al., 2003) and for uncovering
important regulators in cancer (Adler et al., 2006; Carro et al., 2010; Wang et al., 2009a).
These approaches typically only detect transcription factors and signaling molecules and do
not connect the altered regulatory networks to upstream genetic aberrations.

Incorporating information on amplification or deletion status allows us to consider any
functional class of genes and thus permits detection of vesicular trafficking genes that would
not be identified using other methods. It also allows us to relate the malignant phenotype to
genetic aberrations from which it is likely to have originated.

We tuned our method towards reducing the selection of modulators that are not drivers. To
gain this specificity, we do not detect all genes and pathways that drive tumors. First, some
drivers in amplified and deleted regions do not pass the stringent statistical tests employed in
our method. Second, CONEXIC only identifies candidate drivers that are encoded in
amplified or deleted regions. In consequence, it would not detect drivers of melanoma such
as BRAF and NRAS that are typically associated with point mutations. Third, CONEXIC
detects drivers based on the assumptions delineated in Box 1; while these hold for many
drivers, it is likely that they are not appropriate for all drivers.

To meet the challenge of finding all driving alterations in cancer, a number of
complementary approaches are needed. Experimental approaches such as screening using
pooled short hairpin RNAs (shRNAs) (Bric et al., 2009; Zender et al., 2008) are likely to
detect a set of drivers different from those detected by CONEXIC. These screens are
dependent on the genetic background and are limited to drivers that influence processes that
can be readily measured, such as proliferation, whereas CONEXIC scans all the genetic data
together and can potentially identify drivers of any function across different genetic
backgrounds. In the future we envision that CONEXIC will be used to guide in vivo
screening initiatives and to assist in the choice of regions, functional assays and genetic
backgrounds probed.

Beyond Melanoma
The challenge of finding candidate drivers is considerable: tumors are heterogeneous, the
data are noisy and highly correlated and there are a large number of possible combinations
of drivers and genes in modules. Our approach is successful because it couples simple
modeling assumptions with powerful computational search techniques and rigorous
statistical evaluation of the results at each step.

Both the principles underlying CONEXIC and the software can be applied to any tumor
cohort containing matched data for copy number aberrations and gene expression. The
principle of associating any type of mutation (e.g., epigenetic alterations, coding sequence)
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with gene expression signatures or other phenotypic outputs that differ among samples will
be of increasing importance as sequence and epigenetic data accumulates. Not only does this
help to distinguish between driving and passenger mutations, but the genes in the associated
module can also provide insight into the role of the driver. This approach can be used to
identify the genetic aberrations responsible for tumorigenesis and to find those that relate to
any other measurable phenotype, such as the resistance of tumors to drugs. We anticipate
our approach will make an important contribution towards a basic mechanistic
understanding of cancer and in revealing associations of clinical significance. Cancer is a
heterogeneous disease in which we are only just beginning to appreciate the importance of
genetic background and the myriad ways in which the cellular machinery can be redirected
towards the transformed state. Methods that begin to dissect this complexity move us
another step closer to a world where personalized therapies are routine.

EXPERIMENTAL PROCEDURES
Statistical Methods

A detailed description of the statistical methods and computational algorithms used can be
found in the Supplementary Materials. The CONEXIC and LitVAN algorithms were
developed for this research, the software is available at:
www.c2b2.columbia.edu/danapeerlab/html/software.html

Experimental Methods
Cells were grown using standard culture conditions and knockdown was carried out by
infection with lentivirus using RNAi sequences designed by the RNAi Consortium. shRNA
lentivirus were prepared according to TRC protocols
(http://www.broadinstitute.org/rnai/trc), with minor modifications. Cell proliferation assays,
RT-PCR, microarrays and immunoblotting were carried out using standard techniques.
Primer sequences and detailed methods can be found in Supplementary Experimental
Procedures.

All primary data are available at the Gene Expression Omnibus (GSE23884).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Modeling assumptions
For all heat maps, each row represents a gene and each column represents a tumor sample.
A. The same chromosome in different tumors, orange represents amplified regions. The box
shows regions amplified in multiple tumors. B. An idealized signature in which the target
genes are up-regulated (red) when the DNA encoding the driver is amplified (orange). C. A
driver may be overexpressed due to amplification of the DNA encoding it, or due to the
action of other factors. The target genes correlate with driver gene expression (middle row),
rather than driver copy number (top row). D. Data representing amplified region on
chromosome 17. Heat maps of expression for 10/24 genes that passed initial expression
filtering (Supplementary methods). Samples are ordered according to amplification status of
the region (Orange amplified, blue deleted). These genes are identical in their amplification
status and while gene expression is correlated with amplification status to some degree, the
expression of each gene is unique. It is these differences that facilitate the identification of
the driver. See also Supplementary Methods, Figure S1, Table S1.
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Figure 2. The highest scoring modulators identified by CONEXIC
Gene names are color-coded based on the role of the gene in cancer, 10 genes have been
previously identified as oncogenes or tumor suppressors (peach), of these 3 in melanoma
(brown). Column 3 represents chromosomal location, where orange represents amplification
and blue represents deletion. These genes were identified within regions containing multiple
genes, the number of genes in each aberrant region is listed in column 4. Column 5 lists the
p-value for modulator validation in independent data (for a full list, see Table S2 and Figure
S2C). p-values are shown for the Johansson dataset, unless the modulator was missing from
this dataset, and then p-value from the Hoek dataset is shown. See also Supplementary
Methods, Table S2, Figure S2.
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Figure 3. Associating modulators to genes
A. Three scenarios could explain a correlation between a candidate driver (gene A) and its
target (gene B): A could influence B, B influence A, or both could be regulated by a
common third mechanism (Pearl, 2000). The availability of both gene expression and
chromosomal copy number data allows us to establish the likely direction of influence. If the
expression of gene A is correlated with its DNA copy number, and the copy number is
altered in a large number of tumors, it is likely that the copy number alteration results in a
change in expression of A in these tumors. So the model in which A influences the
expression of B and other correlated genes is the most likely. In this way, examination of
both copy number and gene expression in a single integrated computational framework
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facilitates identification of candidate drivers. B. Modulator influence on a module can go
beyond direct transcriptional cascades involving transcription factors or signaling proteins
and their targets. Genetic alteration of any gene (e.g., a metabolic enzyme) can alter cell
physiology, which is sensed by the cell and subsequently leads to a transcriptional response
through a cascade of indirect influences and mechanisms. While modules are typically
enriched for genes influenced by the modulator, they also contain genes that are coexpressed
with the modulator ('joint modulator'). Both types are helpful for annotating the module and
determining the functional role of the modulator. C. The TNF module. The modulators
include TRAF3 and MITF, where high TRAF3 and low MITF are required for upregulation
of the genes in the module. The annotation for each gene is represented in a color-coded
matrix. Blue and orange squares represent literature-based annotation (see Table S3); green
and brown are from GO. LitVAN associated the genes in this module with TNF and the
inflammatory response. See also Figure S3, Table S3.
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Figure 4. MITF expression correlates with expression of the genes in the associated module
A. Each row represents the gene expression of one of 78 MITF targets identified by Hoek
(Hoek et al., 2008b); the tumor samples are split into two groups based on the copy number
of MITF (Welch t-test p-value=0.04) B. The rows represent the same genes, in the same
order as in A, but here the tumor samples are split into a group of samples that express MITF
at high (n=46) or low levels (n=16) Welch t-test p-value=0.0001). C. Two modules
associated with MITF, showing a selected subset of genes. LitVAN annotation for the genes
in each module is shown below the heat map. The complete modules with all genes are
available in Figure S4.
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Figure 5. TBC1D16 is necessary for melanoma growth
A. A module associated with TBC1D16 and RAB27A, the genes in the module are involved
in melanogenesis, survival/proliferation, lysosome and protein trafficking (see Table S4A
for details). B. Representative growth curves for each of the 4 STCs infected with TBC1D16
shRNA, each curve represents 3 technical replicates. RT-PCR was used to confirm that the
reduction in the amount of the TBC1D16 transcript was similar for all of the STCs (Figure
S5). C. Change in growth over time, relative to the number of cells plated, averaged over all
replicates (Supplementary methods). Mean over 3 biological replicates X 3 technical
replicates for each STC, see Figure S5 and Table S4B for additional replicates and hairpins.
D. Growth inhibition at 8 days is directly proportional to the amount of the TBC1D16
transcript and is independent of the TBC1D16 copy number.
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Figure 6. RAB27A is necessary for melanoma growth
A. Representative growth curves for each of the 4 STCs infected with RAB27A shRNA, each
curve represents 3 technical replicates. RT-PCR was used to confirm that the reduction in
the amount of the RAB27A transcript was similar in all of the STCs (Figure S6). B. Change
in growth over time, relative to the number of cells plated, averaged over all replicates.
Knockdown of RAB27A expression in cells that express this gene at high levels reduces
proliferation. Data averaged over all replicates for each STC, see Figure S6 and Table S5 for
all data. C. Growth inhibition at 6 days is dependent on the amount of the RAB27A transcript
and is independent of RAB27A copy number.
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Figure 7. Results of knockdown microarrays for RAB27A and TBC1D16
A. To the left is one of the modules associated with RAB27A and to the right data generated
following knockdown (KD) of RAB27A for the same genes in the STCs indicated (pink and
blue). The expression of genes in the module goes down relative to shGFP as predicted, KD
expression heatmap shows Z-scores (see Supplementary Materials) showing that these are
some of the most differentially expressed genes (DEGs) in the genome. B. To the left is one
of the modules associated with TBC1D16 and to the right data generated following KD of
TBC1D16 in the STCs indicated. The expression of genes in the module goes up relative to
shGFP, as predicted. The test STCs (blue) and control STCs (pink) respond differently
demonstrating the importance of context (TBC1D16 over-expression status) in determining
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the response. C. GSEA p-value and ranking (relative to 177 CONEXIC modules) for
RAB27A and TBC1D16 associated modules (see Figure S7 for data). GSEA was calculated
using the median of 4 profiles (2 cell lines X 2 hairpins) on the test STCs. Significant p-
values indicate that knockdown of RAB27A and TBC1D16 each affect the subset of genes
predicted by CONEXIC (note that 10−5 is the smallest p-value possible given that 100,000
permutations are used). The color of the module name represents the predicted direction of
response to knockdown (red and green represent up and down regulated, respectively). The
arrow represents the observed response to knockdown. The direction of response was
correctly predicted for 2/4 TBC1D16 modules and for all RAB27A modules. See also Figure
S7, Table S6.
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