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Abstract
Functional neuroimaging techniques are used widely in cognitive neuroscience to investigate
aspects of functional specialization and functional integration in the human brain. Functional
integration can be characterized in two ways, functional connectivity and effective connectivity.
While functional connectivity describes statistical dependencies between data, effective
connectivity rests on a mechanistic model of the causal effects that generated the data. This review
addresses the conceptual and methodological basis of established techniques for characterizing
effective connectivity using functional magnetic resonance imaging (fMRI) data. In particular, we
focus on dynamic causal modeling (DCM) of fMRI data and emphasize the importance of model
selection procedures and nonlinear mechanisms for context-dependent changes in connection
strengths.
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Introduction
Functional integration in neuronal systems can be quantified in two ways, functional
connectivity and effective connectivity [1-3]. While functional connectivity only describes
statistical dependencies between spatially segregated neuronal events, effective connectivity
rests on a mechanistic model of how the data were caused. This article reviews established
techniques for characterizing effective connectivity on the basis of fMRI data, focusing on
dynamic causal models (DCMs; [4, 5]).

Effective connectivity
The term effective connectivity has been defined by various authors in convergent ways. A
general definition is that effective connectivity describes the causal influences that neural
units exert over another [1]. More specifically, other authors have proposed that “effective
connectivity should be understood as the experiment- and time-dependent, simplest possible
circuit diagram that would replicate the observed timing relationships between the recorded
neurons” [6]. Both definitions emphasize that determining effective connectivity requires a
causal model of the interactions between the elements of the neural system of interest.
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Such causal models can be defined within the general mathematical framework provided by
dynamic systems theory [7-9]. A system is characterised by time-variant properties xi (1 ≤ i
≤ n) or state variables, which interact with each other, i.e. the evolution of each state
variable depends on at least one other state variable. For example, the postsynaptic
membrane potential depends on which and how many ion channels are open; vice versa, the
probability of voltage-dependent ion channels opening depends on the membrane potential.
Such functional dependencies can be expressed quite naturally by a set of ordinary
differential equations in which a set of parameters θ determine the form and strength of the
causal influences between the state variables. In neural systems, these parameters usually
include time constants or synaptic strengths of the connections between the system elements.
Additionally, in the case of non-autonomous systems (i.e. systems that exchange matter,
energy or information with their environment) we need to consider the inputs into the
system, e.g. sensory information entering the brain. Representing the set of all m known
inputs by the m-vector function u(t), one can define a general state equation for non-
autonomous deterministic systems:

(1)

A model whose form follows this general state equation provides a causal description of
how system dynamics results from system structure, because it describes (i) when and where
external inputs enter the system and (ii) how the state changes induced by these inputs
evolve in time depending on the system's structure. Given a particular temporal sequence of
inputs u(t) and an initial state x(0), one obtains a complete description of how the dynamics
of the system (i.e. the trajectory of its state vector x in time) results from its structure by
integration of Equation 1:

(2)

Equation 2 therefore provides a general form for models of effective connectivity in neural
systems. (It assumes that all processes in the system are deterministic and occur
instantaneously, but can easily be extended, e.g. by using stochastic and delay differential
equations, respectively [10, 11]). The framework outlined here is concerned with dynamic
systems in continuous time and thus uses differential equations. The same basic ideas,
however, can also be applied to dynamic systems in discrete time (using difference
equations), e.g. multivariate/vector autoregressive models (MAR/VAR; [12-14], as well as
to “static” systems where the system is at equilibrium at each point of observation. The latter
perspective applies to regression-based system models for functional neuroimaging data, e.g.
psycho-physiological interactions (PPI; [15]), or structural equation modeling (SEM;
[16-19]). Readers interested in these classical approaches are referred to the original articles
referenced above and to reviews that have compared these approaches (e.g. [7, 20]). Here,
we focus on that framework for inferring effective connectivity from fMRI data that most
closely follows Equation 2 above, i.e. dynamic causal modeling ([4, 5]).

Dynamic Causal Modelling (DCM)
An important limitation of classical models of effective connectivity like PPI, SEM or VAR
is that they operate at the level of the measured signals. This is a serious problem because
the causal architecture of the system that we would like to identify is located at the neuronal
level which cannot be investigated directly using non-invasive techniques. In the case of
fMRI data, for example, PPI, SEM and VAR are fitted to measured time series which result
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from a haemodynamic convolution of the underlying neuronal activity. The absence of a
forward model linking neuronal activity to the measured haemodynamic data can render
analyses of inter-regional connectivity problematic. For example, different brain regions can
exhibit marked differences in neurovascular coupling. It has been shown that these inter-
regional differences can lead to false inference about effective connectivity [21]. A similar
problem exists for EEG data where changes in neural activity in different brain regions lead
to changes in electric potentials that superimpose linearly. The scalp electrodes therefore
record a mixture, with unknown weightings, of potentials generated by a number of different
sources.

Therefore, to enable inferences about connectivity between neural units we need models that
combine two things: (i) a parsimonious but neurobiologically plausible model of neural
population dynamics, and (ii) a biophysically plausible forward model that describes the
transformation from neural activity to the measured signal (c.f. [13, 22]). Such models make
it possible to fit jointly the parameters of the neural and of the forward model such that the
predicted time series are optimally similar to the observed time series. In principle, any of
the models described above could be combined with a modality-specific forward model, and
indeed, VAR models have previously been combined with linear forward models to explain
EEG data [23]. So far, however, DCM is the only approach where the marriage between
models of neural dynamics and biophysical forward models is a mandatory component.

Since its original inception for fMRI [4], a variety of DCM implementations have been
introduced for additional data modalities, including event-related potentials [11, 24] induced
responses [25, 26], auto- and cross-spectral densities [27, 28] and phase coupling [29] as
measured by local field potential recordings or EEG/MEG. These models, all formulated
under the same theoretical framework, have enjoyed considerable success in the practical
analysis of neuroimaging data, resulting in more than 100 published studies (as of August
2009). In this chapter, we focus on DCM for fMRI as originally described [4] and on some
recent nonlinear extensions of this model [30].

DCM for fMRI uses a simple model of neural dynamics in a system of n interacting brain
regions (see Figure 1 for a schematic summary). In its classical form [4], it models the
change of a neural state vector x in time, with each region in the system being represented
by a single state variable (representing mean regional activity), using the following bilinear
differential equation:

(3)

Note that this neural state equation follows the general form for deterministic system models
introduced by Equation 2, i.e. the modelled state changes are a function of the system state
itself, the inputs u and some parameters θ(n) that define the functional architecture and
interactions among brain regions at a neuronal level. The neural state variables represent a
summary index of neural population dynamics in the respective regions. The neural
dynamics are driven by experimentally controlled external inputs that can enter the model in
two different ways: they can elicit responses through direct influences on specific regions
(e.g. evoked responses in early sensory cortices; the C matrix) or they can modulate the
coupling among regions (e.g. during learning or attention; the B matrices). Note that Eq. 3
does not account for conduction delays in either inputs or inter-regional influences. This is
not necessary because, due to the large regional variability in hemodynamic response
latencies, fMRI data do not posses enough temporal information to enable estimation of
inter-regional axonal conduction delays which are typically in the order of 10-20 ms (note
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that the differential latencies of the hemodynamic response are accommodated by region-
specific biophysical parameters in the hemodynamic model described below). This was
verified by Friston et al. [4] who showed in simulations that DCM parameter estimates were
not affected by introducing artificial delays of up to ± 1 second. In contrast, conduction
delays are an important part of DCM for event-related potentials [11].

Given the bilinear state equation (Equation 3), the neural parameters θ(n) = {A, B, C} can be
expressed as partial derivatives of F:

(4)

As can be seen from these equations, the matrix A represents the endogenous (fixed)
connectivity among the regions in the absence of input, the matrices B(i) encode the change
in connectivity induced by the ith input ui, and C embodies the strength of exogenous
(direct) influences of inputs on neuronal activity. In most instances, the parameters of
primary interest are the modulatory ones (i.e. the matrices B(i)) since they encode how
experimentally controlled manipulations change the connection strengths in the system.

DCM for fMRI combines this model of neural dynamics with an experimentally validated
haemodynamic model that describes the transformation of neuronal activity into a BOLD
response. This haemodynamic model, which builds on the so-called “Balloon model” [31],
consists of a set of differential equations that describe, using a set of parameters θ(h), how
changes in neural activity elicit changes in a vasodilatory signal, blood flow, blood volume
and deoxyhemoglobin content [32]. The predicted BOLD signal is a non-linear function of
blood volume and deoxyhemoglobin content [33]. The most recent version of this
haemodynamic model is summarised by Figure 2 and described in detail by Stephan et al.
[33].

The combined neural and haemodynamic parameter set θ = {θ(n), θ(n)} is estimated from the
measured BOLD data, using a fully Bayesian approach with empirical priors for the
haemodynamic parameters and conservative shrinkage priors for the coupling parameters.
Details of the parameter estimation scheme, which rests on a fixed-form variational
Bayesian algorithm, using a Laplace (i.e. Gaussian) approximation to the true posterior, can
be found elsewhere [4, 34, 35].

Inference about neuronal mechanisms with DCM
Once the parameters of a DCM have been estimated from measured BOLD data, the
posterior distributions of the parameter estimates can be used to test hypotheses about
connection strengths. Due to the Laplace approximation, the posterior distributions are
defined by their maximum a posteriori (MAP) estimate and their posterior covariance.
Usually, the hypotheses to be tested concern context-dependent changes in coupling (i.e. the
matrices B(i) in Eq. 3). An example, originally reported in [36], is given by Figure 3. Here,
DCM was applied to fMRI data from a single subject, testing the hypothesis that in the
ventral stream of the visual system a letter decision task increased the strength of
interhemispheric connections, but only when the word stimuli were presented in the left
visual field and were thus initially received by the non-dominant right hemisphere,
necessitating transfer of stimulus information to the specialised left hemisphere. This

Stephan and Friston Page 4

Wiley Interdiscip Rev Cogn Sci. Author manuscript; available in PMC 2011 January 03.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



hypothesis was tested by constructing a four-area model of ventral stream areas, comprising
the lingual and fusiform gyri in both hemispheres (Figure 3A), and comparing the
modulatory influences of task, conditional on the visual field of stimulus presentation, for
interhemispheric connections in both directions. This comparison, based on the MAP
estimates and the posterior covariances of the modulatory parameters, indicated that for this
particular subject and for the connections between left and right lingual gyrus the
hypothesised asymmetry in interhemispheric transfer existed with a probability of 98.7%
(Figure 3B). Other examples of single-subject analyses can be found in [4, 20, 30, 37].

For statistical inference at the group level, various options exist. One commonly used
approach, corresponding to a random effects analysis, is to enter the conditional estimates of
interest into a classical second-level analysis, e.g. a t-test on the MAP estimates of a
particular parameter across subjects (for examples, see [38-41]). An alternative approach is
to use Bayesian statistics at the group level as well. This can be done by computing, for a
given parameter, one joint posterior density across all subjects, treating the posterior of one
subject as the prior for the next [42]. This approach can be more sensitive; its disadvantage,
however, is that it corresponds to a fixed effects analysis and thus does not allow for
inference beyond the particular group studied.

Bayesian model selection (BMS)
Model comparison and selection is central to the scientific process, in that it allows one to
evaluate different hypotheses about the way data are caused [43, 44]. Nearly all scientific
reporting rests upon some form of model comparison, which represents a probabilistic
statement about the beliefs in one hypothesis relative to some other(s), given some
observations or data. In other words: Given some observed data, which of several alternative
models is optimal? The decision cannot be made solely by comparing the relative fit of
competing models. One also needs to account for differences in complexity; i.e., the number
of free parameters and the degree of their inter-dependency. This is important because as
model complexity increases, fit increases monotonically, but at some point the model will
start fitting noise that is specific to the particular data (i.e., “over-fitting”) and thus becomes
less generalizable across multiple realizations of the same underlying generative process.
Therefore, the question “What is the optimal model?” can be reformulated as “What is the
model that represents the best balance between fit and complexity?” This is the model that
maximizes the model evidence:

(5)

Here, the numbers of free parameters (as well as the functional form of the generative model
that determines their interdependencies) are subsumed by the integration. Unfortunately, this
integral cannot usually be solved analytically; therefore an approximation to the (log of the)
model evidence is used instead. This approximation is usually a free energy bound on the
log evidence [35]; alternatively, simpler criteria like the Akaike Information Criterion [45]
or the Bayesian Information Criterion [46] can be used that are blind to parameter
interdependencies (see [47] for a detailed discussion). Given any of these approximations to
the log evidence of two models mi and mj, the difference in log evidence can be transformed
into a Bayes factor (BF):

(6)

BMS can be applied both to single subjects and whole groups. When the optimal model
structure is expected to vary across subjects (e.g., subject-specific cognitive strategies or
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different pathophysiological mechanisms in a group of patients), random effects BMS is
required. This method rests on a hierarchical model which is optimised to furnish a
probability density on the models themselves, using variational Bayes [47]. Specifically, it
estimates the parameters of a Dirichlet distribution describing the probabilities for all
models considered. These probabilities then define a multinomial distribution over model
space, allowing one to compute how likely it is that a specific model generated the data of a
randomly chosen subject as well as the exceedance probability of one model being more
likely than any other model.

BMS plays a central role for DCM. It is used routinely to select the most likely model
amongst a set of alternatives before making inferences about particular parameters, e.g., [33,
38, 42, 48-54]. An alternative use of model selection is to decide about the nature of
particular mechanisms without the need for any further inference about particular
parameters. For example, BMS has been used to compare DCMs with non-linear versus
linear BOLD equations in the haemodynamic forward model [33, 47] or to disambiguate
between different possibilities how anatomical connection strength constrains effective
connection strength [55]. A particularly interesting approach is to go beyond the comparison
of specific models and compare two (or more) partitions of model space [47]. These
partitions would typically reflect those components of model structure that one seeks
inference about, e.g. whether a specific connection should be included in the model or not,
whether a particular connection is modulated by one experimental condition or another, or
whether certain effects are linear or nonlinear. The advantage of this method is that
arbitrarily large set of models can be considered together, allowing one to integrate out
uncertainty over any aspect of model structure other than the component of interest.

Nonlinear DCM for fMRI
Since its first description [4], DCM for fMRI has been extended in several ways. For
example, an extension of the observation equation takes into account the slice-specific
sampling times in multi-slice MRI acquisitions [56]. This enables DCM to be applied to
fMRI data from any data acquisition scheme. Another variant represents each region in the
model by two state variables and distinguishes between population activity of excitatory and
inhibitory neurons [57]. Other work has augmented DCM with a spatial model of the
regional time series to which the model is fitted [58].

Here, we focus on what we consider to be a particularly important extension of DCM for
fMRI, namely the inclusion of nonlinear modulatory effects [30]. This extension was
motivated by two limitations of the original bilinear neuronal state equation in DCM. First,
the neuronal origin of the modulatory influence is not specified. Second, the bilinear
framework may not be the most appropriate choice for modelling fast changes in effective
connectivity, which are mediated by nonlinear effects at the level of single neurons. These
mechanisms are instances of “short-term synaptic plasticity” (STP), an umbrella term for a
range of processes which alter synaptic strengths with time constants in the range of
milliseconds to minutes; e.g. NMDA-controlled rapid trafficking or phosphorylation of
AMPA receptors, synaptic depression/facilitation or “early LTP”. All these processes are
driven by the history of prior synaptic activity and are thus nonlinear [59].

A particularly interesting mechanism, which relies on STP, is “neuronal gain control”.
Neuronal gain, i.e. the response of a given neuron N1 to presynaptic input from a second
neuron N2, depends on the history of inputs that N1 receives from other neurons, e.g. a third
neuron N3. Such a nonlinear modulation or “gating” of the N2→ N1 connection by N3 has
been shown to have the same mathematical form across a large number of experiments (for
review, see [60]): the change in the gain of N1 results from a multiplicative interaction
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among the synaptic inputs from N2 and N3, i.e. a second-order nonlinear effect.
Biophysically, neuronal gain control can arise through various mechanisms that mediate
interactions among synaptic inputs occurring close in time (see [30] for a discussion of these
mechanisms).

Critically, the bilinear framework precludes a representation, at the neuronal level, of the
mechanisms described above. As stated in the original DCM paper [4], in order to model
processes like neuronal gain control and synaptic plasticity properly, one needs “to go
beyond bilinear approximations to allow for interactions among the states. This is important
when trying to model modulatory or nonlinear connections such as those mediated by
backward afferents that terminate predominantly in the supragranular layers and possibly on
NMDA receptors.”

Therefore, to enable a realistic representation of how neuronal populations modulate the
gains of other populations, one needs to model nonlinear interactions amongst the n states of
a given DCM. For this purpose, one can use a two-dimensional Taylor series which is of
second order in the states [30]:

(7)

Setting  makes Eq. 7 equivalent to:

(8)

Here, the D(j) matrices encode which of the n regions gate which connections in the system.

Specifically, any non-zero entry  indicates that responses of region k to inputs from
region l depend on activity in region j. Figure 4 shows a simple example, with synthetic data
generated by a nonlinear DCM. This illustrates the sort of dynamics, both at the neuronal
and hemodynamic level which this sort of model exhibits.

The nonlinear extension enhances the kind of dynamics that DCM can capture and enables
the user to implement additional types of models. Beyond modelling how connection
strengths are modulated by external inputs, one can now model how connection strengths
are gated by the activity of one or several neuronal populations. This ability is critical for
various applications, e.g. for marrying reinforcement learning models with DCM [7], but
also for mechanistic accounts of the effects of attention. For example, nonlinear DCM was
applied to a single-subject data set from a blocked fMRI study of attention to visual motion
[17]. Four different models were compared [30], each of which embodied a different
explanation for the empirical finding that V5 responses increased during attention to motion,
compared to unattended motion. The most likely model was one in which the gain of the
V1→V5 connection depended on the activity in the posterior parietal cortex (PPC), a region
on which attention exerted a direct effect (this could result, for example, from cholinergic
inputs from the brainstem [61]). Analysis of the posterior density of the modulatory
parameter in this model indicated that nonlinear gating of the V1→V5 connection by
attention could be inferred with 99.1% confidence (see Figure 5). Figure 6 shows the
observed and fitted time-series of all areas and highlights the attentional gating effect on V5
activity, such that V5 activity was higher when subjects attended the moving stimuli.
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As a second example for the practical utility of nonlinear DCMs, we show the results from a
single subject analysis of fMRI data set acquired during an event-related binocular rivalry
paradigm [30]. While there is no clear consensus about the mechanisms that underlie
binocular rivalry, it has been suggested that it (i) depends on nonlinear mechanisms and (ii)
may arise from modulation of connections amongst neuronal representations of the
competing stimuli by feedback connections from higher areas [62].

The fMRI data were acquired during a factorial paradigm in which face and house stimuli
were presented either during binocular rivalry or during a matched non-rivalry (i.e. replay)
condition. For the subject studied here, the conventional SPM analysis showed a rivalry ×
percept interaction in both the right fusiform face area (FFA) and the right parahippocampal
place area (PPA): in FFA, the face vs. house contrast was higher during non-rivalry than
during rivalry; conversely, in PPA the house vs. face contrast was higher during non-rivalry
than during rivalry (both p<0.05, small-volume corrected). Additionally, testing for a main
effect of rivalry, we replicated previous findings that the right middle frontal gyrus (MFG)
showed higher activity during rivalry than during non-rivalry conditions [63].

These SPM results motivated a nonlinear DCM in which the connections between FFA and
PPA were modulated by the activity in the MFG (Figure 7). First, the fixed (endogenous)
connection strengths between FFA and PPA were negative in both directions, i.e. FFA and
PPA exerted a mutual negative influence on each other; this could be regarded as a “tonic”
or “baseline” reciprocal inhibition. More importantly, however, was that during the
presentation of visual stimuli this competitive interaction between FFA and PPA was
modulated by activity in the middle frontal gyrus (MFG), which showed higher activity
during rivalry vs. non-rivalry conditions. As shown in Figure 7, our confidence about the
presence of this nonlinear modulation was very high (99.9%) for both connections.

According to this model, activity levels in the MFG determine activity in FFA and PPA by
controlling the influence that face-elicited activations and house-elicited deactivations of
FFA have on PPA (and vice versa). For example, the positive nonlinear modulation of the
FFA→PPA connection by MFG activity (see Figure 7) means that during face-perception
under rivalry conditions (which elicit positive activity in the FFA and MFG, respectively)
there is a positive influence of FFA on PPA, overriding the “baseline” inhibition. This
means that during binocular rivalry FFA and PPA become more tightly coupled which
destroys their stimulus selectivity: their activity becomes very similar, regardless of whether
a face or a house is being perceived. In contrast, deactivation of MFG during non-rivalry
conditions decreases the influence that FFA has on PPA during house perception; therefore
responses in FFA and PPA become less coupled and their relative selectivity for face and
house percepts is restored. This dynamic coupling and uncoupling, leading to less selectivity
of FFA and PPA during rivalry and higher selectivity during non-rivalry, is clearly visible in
Figure 8 which plots the observed and fitted responses of all three areas. Here, the short
black arrows indicate blocks with binocular rivalry (when FFA and PPA show very similar
time courses) and the long grey arrows denote non-rivalry blocks (when FFA and PPA
activities evolve more independently). These changes in effective connectivity over time,
which are controlled by the activity level in MFG, provide a nice explanation for the rivalry
× percept interaction in FFA and PPA that was identified by the SPM analysis.

Conclusions
In this short review, we have outlined how effective connectivity can be inferred from fMRI
data using DCM. We expect that two application domains for DCM will prove to be
particularly exciting and fruitful in the near future. The first domain is the integration of the
neurophysiological and computational aspects of learning and decision making. For
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example, according to theoretical models of learning, the size of prediction errors should
control synaptic plasticity, i.e. changes in the strength of synaptic connections, encoding
stimulus-stimulus and stimulus-response links [64-66]. In other words, the necessity of
reconfiguring neuronal circuits during learning should be inversely proportional to how well
those neuronal circuits are capable of predicting sensory stimuli or outcomes of actions. This
notion can be tested formally by embedding prediction errors provided by computational
models of learning (such as Rescorla-Wagner or temporal difference learning models) into
DCMs. A first demonstration of this approach was given by a recent study which combined
DCM with a Rescorla-Wagner model and showed that during incidental audio-visual
associative learning the plasticity of connections from auditory to visual cortex depended on
trial-by-trial prediction errors [67]. A subsequent study extended this finding: combining
nonlinear DCM and a hierarchical Bayesian learner, it showed that the degree of trial-by-
trial prediction error activity in the putamen controlled the efficacy of visuomotor
connections, thus gating the transfer of sensory information depending on how unexpected
this information was (den Ouden et al., submitted).

The second application domain concerns the development of DCMs with clinical utility, for
example as diagnostic tools. Although DCM has already been applied to some clinical
questions (e.g., [39, 68, 69], the critical challenge for the future will be to develop DCMs
whose parameter estimates have sufficient sensitivity and specificity to delineate subgroups
of patients that are characterized by different pathophysiological mechanisms. This generic
framework of model-based inference about pathophysiological processes that cannot be
measured directly is likely to be particularly helpful for vaguely defined spectrum diseases.
For example, our own work focuses on schizophrenia, trying to establish DCMs, in
conjunction with pharmacological challenges and learning paradigms, that can detect
specific abnormalities in the regulation of NMDA-dependent synaptic plasticity by
neuromodulatory transmitters like dopamine or acetylcholine [70]. Hopefully,
neurocomputational models of specific learning and decision-making processes (such as the
work by den Ouden et al. described above) can be established whose parameters map onto
well-defined physiological mechanisms of synaptic plasticity and neuromodulation. These
models are not restricted to fMRI, but will also exploit electrophysiological measurements.
Careful validation of these models is crucial and will require pharmacological and invasive
recording studies in animals. For example, a recent rodent study demonstrated that DCM can
correctly infer experimentally induced changes in spike frequency adaptation and
postsynaptic efficacy of glutamatergic synapses [27].

Importantly, however, model-based inference on pathophysiology and disease status cannot
only proceed on the basis of neurophysiologically interpretable parameter estimates, but
could also employ BMS to compare entire models embodying different putative disease
mechanisms. This inference on model structure could be particularly useful when disease
subgroups differ along more than one pathophysiological dimension.
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Figure 1.
Schematic summary of the conceptual basis of DCM. The dynamics in a system of
interacting neuronal populations (left lower panel), which are not directly observable by
fMRI, is modeled using a bilinear state equation (right upper panel). Integrating the state
equation gives predicted neural dynamics (z) that enter a model of the hemodynamic
response (λ) to give predicted BOLD responses (y) (right lower panel). The parameters at
both neural and hemodynamic levels are adjusted such that the differences between
predicted and measured BOLD series are minimized. Critically, the neural dynamics are
determined by experimental manipulations. These enter the model in the form of external
inputs (left upper panel). Driving inputs (u1; e.g. sensory stimuli) elicit local responses
directly that are propagated through the system according to the intrinsic connections. The
strengths of these connections can be changed by modulatory inputs (u2; e.g. changes in
cognitive set, attention, or learning). In this figure, the structure of the system and the
scaling of the inputs are arbitrary. This figure was reproduced, with permission, from Figure
1 in [36].
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Figure 2.
Schematic summary of the neural state equation and the hemodynamic forward model in
DCM; reproduced, with permission, from Figure 1 in [33]. Experimentally controlled input
functions u evoke neural responses x, modeled by a bilinear differential state equation,
which trigger a hemodynamic cascade, modeled by 4 state equations with 5 parameters.
These hemodynamic parameters comprise the rate constant of the vasodilatory signal decay
(κ), the rate constant for auto-regulatory feedback by blood flow (γ), transit time (τ),
Grubb's vessel stiffness exponent (α), and capillary resting net oxygen extraction (ρ). The
so-called Balloon model consists of the two equations describing the dynamics of blood
volume (v) and deoxyhemoglobin content (q) (light grey boxes). Integrating the state
equations for a given set of inputs and parameters produces predicted time-series for v and q
which enter a BOLD signal equation λ (dark grey box) to give a predicted BOLD response.
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Figure 3.
This figure was adapted, with permission, from Figures 5 and 6 in [36]. It shows an example
of a single subject DCM that was used to study asymmetries in interhemispheric connections
during a letter decision task. LG = lingual gyrus, FG = fusiform gyrus, LD = letter decisions,
LD|VF = letter decisions conditional on the visual field of stimulus presentation.
A. The values denote the maximum a posteriori (MAP) estimates of the parameters (±
square root of the posterior variances; units: 1/s=Hz). For clarity, only the parameters of
interest, i.e. the modulatory parameters of inter- and intra-hemispheric connections, are
shown.
B. Asymmetry of callosal connections with regard to contextual modulation. The plots show
the probability (98.7%) that the modulation of the right LG → left LG connection is
stronger than the modulation of the left LG → right LG connection.
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Figure 4.
An example of the neuronal and haemodynamic dynamics that can be accounted for by
nonlinear DCMs. The figure is reproduced, with permission, from Figure 2 in [30]. The right
panel shows synthetic neuronal and BOLD time-series that were generated using the
nonlinear DCM shown on the left. In this model, neuronal population activity x1 (blue) is
driven by irregularly spaced random events (delta-functions). Activity in x2 (green) is driven
through a connection from x1; critically, the strength of this connection depends on activity
in a third population, x3 (red), which receives a connection from x2 but also receives a direct
input from a box-car input. The effect of nonlinear modulation can be seen easily: responses
of x2 to x1 become negligible when x3 activity is low. Conversely, x2 responds vigorously to
x1 inputs when the x1→x2 connection is gated by x3 activity. Strengths of connections are
indicated by symbols (−: negative; +: weakly positive; +++: strongly positive).
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Figure 5.
Application of nonlinear DCM to single subject fMRI data from an attention to motion
paradigm [17]. The figure is reproduced, with permission, from Figure 7 in [30].
A. Maximum a posteriori estimates of all parameters. PPC = posterior parietal cortex.
B. Posterior density of the estimate for the nonlinear modulation parameter for the V1→V5
connection. Given the mean and variance of this posterior density, we have 99.1%
confidence that the true parameter value is larger than zero or, in other words, that there is
an increase in gain of V5 responses to V1 inputs that is mediated by PPC activity.
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Figure 6.
Fit of the nonlinear model to the attention to motion data in Figure 5. Dotted lines represent
the observed data, solid lines the responses predicted by the nonlinear DCM. The increase in
the gain of V5 responses to V1 inputs during attention is clearly visible. The figure is
reproduced, with permission, from Figure 8 in [30].
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Figure 7.
Application of nonlinear DCM to single subject fMRI data from a binocular rivalry
paradigm. The figure is reproduced, with permission, from Figure 9 in [30].
A. The structure of the nonlinear DCM fitted to the binocular rivalry data, along with the
maximum a posteriori estimates of all parameters. The intrinsic connections between FFA
and PPA are negative in both directions; i.e. FFA and PPA mutually inhibited each other.
This may be seen as an expression, at the neurophysiological level, of the perceptual
competition between the face and house stimuli. This competitive interaction between FFA
and PPA is modulated nonlinearly by activity in the middle frontal gyrus (MFG), which
showed higher activity during rivalry vs. non-rivalry conditions.
B. Our confidence about the presence of this nonlinear modulation is very high (99.9%), for
both connections.
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Figure 8.
Fit of the nonlinear model in Figure 7 to the binocular rivalry data. Dotted lines represent the
observed data, solid lines the responses predicted by the nonlinear DCM. The upper panel
shows the entire time series. The lower panel zooms in on the first half of the data (dotted
box). One can see that the functional coupling between FFA (blue) and PPA (green) depends
on the activity level in MFG (red): when MFG activity is high during binocular rivalry
blocks (BR; short black arrows), FFA and PPA are strongly coupled and their responses are
difficult to disambiguate. In contrast, when MFG activity is low, during non-rivalry blocks
(nBR; long grey arrows), FFA and PPA are less coupled, and their activities evolve more
independently. The figure is reproduced, with permission, from Figure 10 in [30].
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