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Abstract
Our goal is to optimize regularized image reconstruction for emission tomography with respect to
lesion detectability in the reconstructed images. We consider model observers whose decision
variable is the maximum value of a local test statistic within a search area. Previous approaches
have used simulations to evaluate the performance of such observers. We propose an alternative
approach, where approximations of tail probabilities for the maximum of correlated Gaussian
random fields facilitate analytical evaluation of detection performance. We illustrate how these
approximations, which are reasonably accurate at low probability of false alarm operating points,
can be used to optimize regularization with respect to lesion detectability.

1. INTRODUCTION
Several applications of emission tomography involve the detection of a spatially localized
target signal in an image reconstructed from noisy data. When choosing among different
reconstruction methods or tuning the parameters of individual methods, a reasonable
approach is to seek the choice that leads to optimal performance in such detection tasks. In
this work we focus on penalized-likelihood reconstruction methods for emission
tomography. These methods involve one or more regularization parameters that control the
noise-resolution trade-off in the reconstructed images. Instead of choosing the regularization
parameters by numerical criteria, such as cross validation or L-curves [1,2], we would like to
optimize these parameters analytically with respect to signal detectability.

In clinical practice, detection tasks are usually performed by human observers. The
performance of humans can be evaluated empirically by tracing their receiver operating
characteristic (ROC) in simple detection tasks [3–5], or their localization ROC (LROC) in
tasks that involve both detection and localization [6]. However, the experiments required for
such an evaluation are too time-consuming to perform for many values of a reconstruction
parameter or to repeat every time that some aspect of the imaging process changes. Thus we
turn to the mathematical observers that have been proposed in the literature to model human
performance [7] and that allow analytical treatment.

Detection tasks where the observer knows the possible location of the target signal a priori
have been analyzed with respect to optimal regularization methods [8–12]. Known-location
tasks are also the ones for which model and human observer correlation has been
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investigated most extensively. In these tasks human observers appear to be effective in
compensating for second-order image statistics. As a result, they are modeled well by
mathematical observers that perform prewhitening, such as the channelized Hotelling
observer (CHO) [13–18]. However, optimizing regularization parameters has less of an
effect on the detection performance of such observer models, as has been concluded both
experimentally [17] and analytically [19]. Thus it is of interest to optimize such parameters
with respect to detection performance in tasks where the prewhitening capabilities of
humans degrade. Such a degradation seems to occur in tasks where the location of the target
signal is not known a priori [20,21].

Location uncertainty complicates the analysis of detectability. Observer models that have
been compared to humans in unknown-location tasks usually base their decisions on the
maximum value of a local test statistic over all possible signal locations. The exact
distribution of the maximum of a correlated random field has the form of a multiple integral
that is intensive to compute. A “brute-force” approach to evaluating the performance of such
an observer model would be to perform a large number of time-consuming tomographic
reconstructions of Monte Carlo–simulated projection data and produce realizations of the
maximum test statistic from the reconstructed images. When optimizing some reconstruction
parameter with respect to detection performance, this simulation would have to be repeated
for every value of the parameter of interest.

To avoid performing multiple reconstructions, investigators have proposed analytical
approximations of the moments of the local test statistics and used them to produce Monte
Carlo–simulated realizations of the maximum test statistic directly [22,23]. This approach
results in very significant time savings when compared to the brute-force method, but it still
requires performing multiple simulations when the evaluation of detection performance
needs to be repeated for various values of one or more parameters of interest.

We propose an alternative approach that does not require simulations. Although the exact
expression for the distribution of the maximum is complicated, simple approximations of
this distribution at high thresholds for correlated Gaussian random fields have been
proposed by Adler [24]. These approximations assume (local) stationarity, so they are more
accurate under the signal-absent than the signal-present hypothesis. The latter requires a
different treatment, and we adopt the approach of Siegmund and Worsley to analyze it [25].
We illustrate how these analytical results, which are accurate at low probability of false
alarm operating points, can be combined to approximate the performance of the observer
models of interest as a function of regularization parameters.

This paper is structured as follows: Section 2 establishes the models that we will consider
for the object, imaging system, reconstruction method, and observer. Section 3 reviews the
tail probability approximations that we apply in Section 4 to analyze the detection
performance of the observer models of interest in unknown-location tasks. Section 5
illustrates how these analyses can be used to optimize regularized reconstruction methods
with respect to detection performance, and Section 6 discusses these results.

2. DETECTION TASK
A. Object Model

Let f denote the true object being imaged (or its approximation in , where np is the
number of coefficients in a discrete representation of f). The object f consists of a
background fb and it may or may not also contain a spatially localized signal of interest fs.
We assume that, when the target signal is present within the object, it is centered at one of a
finite set of locations ℓ = 1, …, nL. We denote the target signal centered at location ℓ by fs,ℓ.
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In emission tomography, where the object f is a radioactivity distribution, the background
could represent the distribution of radioactivity in the absence of disease and the signal
could represent the additional radioactivity absorbed in the area of a lesion. Thus an additive
model for the background and signal is reasonable. The detection/localization task at hand is
then a decision among the following nL +1 hypotheses:

(1)

The background fb and the signal fs,ℓ are random due to patient variability. We assume that
they are statistically independent under any of the signal-present hypotheses Hℓ, ℓ = 1, …,
nL. We denote the expectations of fb and fs,ℓ by f ̄b ≜ E[fb] and f ̄s,ℓ ≜ E[fs,ℓ] = E[fs|Hℓ],
respectively. We denote their covariances by  = Cov{fb} and  ≜ Cov{fs,ℓ} = Cov{fs|
Hℓ}, respectively. The covariances , ℓ = 1, …, nL express variability in the shape of the
target signal and not in its location.

B. Image Reconstruction
To reflect medical practice, we assume that the decision is made by an observer applied on a
reconstructed image f ̂. The image f ̂ is reconstructed from a measurement y that is acquired
by a tomographic imaging system. For a given object f, y is random due to imaging noise.
Specifically, the entries in y are statistically independent and Poisson-distributed
conditionally on f with moments

(2)

(3)

where the linear operator  models the tomographic imaging system and the vector r
models scatter and/or random coincidences. We assume that the reconstructed image is
given by

(4)

for some linear reconstructor . The linearity assumption holds either exactly or
approximately for several common tomographic reconstruction techniques.

Here we are interested in regularized image reconstructors. A simple example that satisfies
the linearity assumption is the quadratically penalized weighted least squares (QPWLS)
family of reconstructors:

(5)

where “′” denotes the adjoint of an operator (or the transpose of a matrix),  is a (linear)
regularization operator,  ≜ Π−1 , and Π ≜ diag{ E[f]+r} ≈ diag{ f ̄b+r}. (Since we
are interested in detecting small perturbations on the object background, we can assume that
the signal intensity is weak with respect to the background intensity.) The QPWLS
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reconstruction strategy [Eq. (5)] yields an estimated image that satisfies f ̂(y) =arg maxf[− (y
− f)′Π−1(y− f) −f′ f]. Note that, when the measurement likelihood is Poisson, QPWLS
does not correspond to maximum a posteriori (penalized-likelihood) reconstruction.
Although in the following we consider the QP-WLS reconstructor for simplicity, it is
straightforward to extend our analysis to more general penalized-likelihood reconstructors
using linearization approximations [12].

A commonly used form for the regularizer  is that of a quadratic roughness penalty, such
that

(6)

where fj is the intensity of the object f at the jth pixel,  is a neighborhood of pixels around
the jth pixel, and β ≥ 0 is a regularization parameter. Regularizers of the form of Eq. (6)
penalize differences between neighboring image pixels, thus favoring smoother images. For
simplicity, we consider a first-order neighborhood , consisting of the four closest (top,
bottom, left, and right) neighboring pixels. Then β is the only free parameter in .

C. Observer Model
Following the literature, we consider observers whose decision rule relies on computing
some scalar local test statistic tℓ =tℓ(f ̂(y)) for each of the candidate locations and then
comparing the maximum test statistic,

(7)

to a data-independent threshold τ. If tmax > τ, it is decided that the signal is present;
otherwise, it is decided that the signal is absent.

Local test statistics that have been used to model the suboptimality of human observers are
linear, and they involve a set of M bandpass filters, attempting to mimic the visual system
[13]. These test statistics sample the output of the M bandpass filters at a location of interest
ℓ, to obtain a local feature vector ĉℓ ∈ , to which a local template wℓ ∈  is then applied:

(8)

where  = [ , …, ] consists of M operators. The mth of these operators applies the
impulse response of the mth bandpass filter and samples the output at location ℓ. The
internal noise vector εℓ ∈  models inherent uncertainty in the observer’s decisions and is
typically assumed to contain independent, zero-mean, Gaussian-distributed entries. The
mean of the reconstructed background, f ̂b ≜ ( fb+r), is subtracted from the reconstructed
image in Eq. (8) to signify that the observer determines the most suspicious location by
comparing intensities relative to the background, rather than absolute intensities [22,23].

Two such models have been proposed in the literature to model the performance of human
observers in detecting unknown-location lesions in tomographic images: The maximum
channelized Hotelling observer (MaCHO), which includes both the first- and second-order
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statistics of the channel outputs in its template, and the maximum channelized
nonprewhitening observer (MaCNPW) observer, which includes the first-order statistics
only. In particular, the MaCNPW observer has been found to be well correlated with
humans in simple unknown-location tasks [20,21]. This indicates that humans may not be
effective at compensating for correlations in the images when they have to search for a
lesion in more than one location.

Here we consider a generalization of these models that allows for an intermediate degree of
prewhitening accuracy. For lack of a better term, we call this generalized model a maximum
channelized partially prewhitening (MaCPPW) observer and define its local template at
some location ℓ as

(9)

where “†” denotes the pseudoinverse and γ ∈ [0,1]. For γ = 0 and γ = 1, the above becomes
equal to the well-known MaCNPW and MaCHO models respectively. An intermediate value
of γ yields an observer with intermediate prewhitening accuracy. The expression in Eq. (9) is
only one of several ways in which a prewhitening deficiency could be introduced in the
channelized observer’s template. We use Eq. (9) here simply to evaluate our performance
approximations, without making any claims about correlation with human observers.

D. Detection Performance
Our goal is to optimize the reconstructor  in general, or β in the particular case of QPWLS,
with respect to the detection performance a specific observer. Since we are ultimately
interested in optimizing reconstruction parameters locally, we focus on an ROC curve as a
metric of the observer’s signal detection performance within a search area around a given
location ℓ ∈ {1, …, nL}. Specifically, we consider the ROC curve that is obtained by
plotting the probability of detection (deciding that the signal is present when it is actually
present at ℓ),

(10)

versus the probability of false alarm (deciding that the signal is present when it is actually
absent),

(11)

The curve is traced by varying the threshold τ. To trace an ROC or LROC curve for the test
statistic tmax in Eq. (7), we need the cummulative distribution function (CDF) of tmax, from
which we can compute the threshold-exceeding probabilities (10) and (11).

We are interested in an observer model that searches for the signal within an area consisting
of nL voxels around some voxel of interest ℓ. As seen in Eq. (10), we use the probability of
detection at the voxel ℓ to quantify detection performance. Our motivation for this analysis
is optimizing the regularization parameter for some voxel ℓ to maximize detectability at that
voxel, an optimization that is to be repeated for each voxel in the image. An alternative
approach would be to consider the overall probability of detection within the search area,
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which would require defining a priori probabilities of the signal presence at each location in
the search area, but this is not the approach that we follow here.

If the local test statistics tℓ, ℓ = 1, …, nL, were statistically independent, then the CDF of
their maximum would be simply equal to the product of their individual CDFs. Thus, under
the assumption of independent, Gaussian-distributed local test statistics, it is possible to
derive the area under the LROC curve for observer models of the form of Eqs. (7) and (8)
[26]. Furthermore, even with a somewhat weaker statistical independence assumption, one
can show that maximizing the area under the ROC curve (AUC) of tmax would be equivalent
to maximizing the area under its LROC curve [6].

Typical image reconstruction methods, and regularized ones in particular, produce images
where the intensities at neighboring locations are correlated. Thus local test statistics at
neighboring locations are also correlated, with more regularization leading to wider
autocorrelation functions. Analyses that use independence assumptions can be applied to
tasks where the candidate locations are at a distance from each other that is greater than the
autocorrelation width. For tasks where all the pixels within some search area are candidate
locations, correlations between the local test statistics must be taken into account.

Threshold-exceeding probabilities such as (10) and (11) are difficult to obtain in closed form
when the tℓ’s are correlated, even if their joint distribution is available, since the exact
distribution of the maximum of correlated random variables has the form of a multiple
integral. As a result, investigators have proposed to trace the LROC of tmax for images
reconstructed from tomographic data using regularized methods via simulations [22,23]. We
propose an alternative approach to evaluating the performance of the tmax observer in the
presence of correlations. Although closed-form expressions for the threshold-exceeding
probabilities of tmax are generally not available for correlated Gaussian random fields,
approximations of these probabilities for high values of the threshold τ have been developed.
We use them here to trace a portion of the ROC curve.

3. THRESHOLD-EXCEEDING PROBABILITIES OF THE MAXIMUM TEST
STATISTIC

By analyzing the Euler characteristic of excursion sets, Adler has derived approximations
for the distribution tails of the maximum of a correlated random field [24,27]. In particular,
if tmax = maxx∈ST(x) is the maximum value of a 2-D stationary random field T(x) = T(x1, x2)
over a set S, then the probability of tmax exceeding a high threshold τ is approximately

(12)

where the factors Rd(S), d=0,1,2, depend on the geometry of the search area S and the
functions ρd(τ), d =0,1,2, depend on the distribution of T(x).

Approximation (12) is most accurate for search areas that are convex with sufficiently
smooth boundaries [24]. If the search area S is a disk of radius r, then R0(S) = 1, R1(S) = πr,

R2(S) = πr2. If the stationary field T(x) is Gaussian-distributed with zero mean, variance ,
and autocovariance function RT(x) = RT(x1, x2), then we can denote the dependence of ρd(·)
on the moments of the field by writing ρd(τ) = ρd(τ; σT, ΛT), where ΛT is the 2 × 2 matrix
with the ijth element equal to {ΛT}ij = −∂2RT(0, 0)/∂xi∂xj, i,j = 1, 2. In particular, we have
[28]
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(13)

(14)

(15)

where Φ(·) is the standard normal CDF. Approximations of the form of (12) have been
applied to the problem of detecting activation in functional neuroimaging [28,29].
According to Worsley et al., they lead to satisfactory accuracy for tail probabilities as high
as 0.2 [28].

The analysis leading to approximation (12) assumes a continuous random field. When the
field is defined on a lattice, the results hold asymptotically as the lattice becomes finer [24].
Thus, expression (12) can be applied to approximate the tail distribution of the maximum
test statistic in Eq. (7) when the discrete local test statistics tℓ, ℓ = 1, …, nL can be
considered stationary and their mean and autocovariance is known.

Under the signal-absent hypothesis, the tℓ’s may be considered stationary to within the
accuracy of some local shift-invariance approximations discussed in the following section.
The same can be said in terms of the second-order statistics of the tℓ’s under the signal-
present hypothesis, assuming that the contribution of the signal profile variability to the
covariance of the tℓ’s is insignificant. However, the mean of the tℓ’s cannot be considered
constant throughout the search area in the presence of a spatially localized target signal such
as the ones that we are interested in. Thus, expression (12) is not appropriate for the signal-
present hypothesis.

An alternative approach for approximating threshold-exceeding probabilities in the signal-
present case follows an argument by Siegmund and Worsley [25]. This approach
decomposes the probability of detection at some location xℓ as

(16)

where Φ(·) and φ(·) are the standard normal CDF and probability distribution function
(PDF), respectively, and μT(x) ≜ E[T(x)|Hℓ]. Assuming that the maximum is most likely to
occur near xℓ, i.e., near the center of the target signal, the integrand in Eq. (16) will be
nonnegligible only for small values of s.

To derive an expression for the conditional probability inside the integral, Siegmund and
Worsley also assume that the field T(x), in the signal-present case and in the immediate
neighborhood of the target signal, can be approximated as quadratic in x. Under these
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assumptions, they show that the conditional probability in the integrand of Eq. (16) is
approximately

(17)

where Ṫ(·) and T ̈(·) denote the gradient and Hessian with respect to x, respectively,
evaluated at xℓ. For Gaussian random fields, the conditional expectation in Eq. (17) can be
obtained using

(18)

and the linearity of derivatives. Approximating the field around the center of the target
signal as quadratic and circularly symmetric yields a conditional expectation in Eq. (18) that
is proportional to the identity matrix, and thus Eq. (17) corresponds to a χ2 CDF.
Substituting this CDF in Eq. (16) results in the following approximation for the probability
of detection:

(19)

In the following, we will combine expressions (12) and (19) with locally shift-invariant
approximations to compute, respectively, the probabilities of false alarm and detection for
observers of the form of Eq. (8).

4. APPROXIMATIONS OF DETECTION PERFORMANCE
A. Moments of the Local Test Statistics

Let t ∈  be a vector whose components are the local test statistics tℓ, ℓ = 1, …, nL. Let 
= [v1, …, vnL] be a matrix whose columns consist of the image-domain templates vℓ ≜ wℓ.
The latter are vectors in the same space as the reconstructed object f ̂ and are formed by
linear combinations of the channel responses.

To derive the moments of the test statistic vector t under each of the hypotheses in Eq. (1),
we combine Eq. (8) with the moments of the tomographic data y from Eqs. (2) and (3), the
linear reconstructor of Eq. (4), and the assumption that fb and fs,ℓ are independent. This
yields the following expressions for the mean μt and covariance Πt of the test statistic vector
under each of the signal-absent and signal-present hypotheses:

(20)

(21)
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(22)

where Πεℓ is the M × M covariance matrix of the internal noise vector εℓ and Πℓ ≜ Cov{y|
Hℓ}, i.e.,

(23)

(24)

For typical problem sizes, applying the operators  and Πℓ  explicitly to compute the
moments of t in Eqs. (21) and (22) is time-consuming for common statistical image
reconstruction methods. Therefore, this approach would be impractical when one needs
these moments to compute measures of detectability for many values of some reconstruction
parameter that is to be optimized.

We use locally shift-invariant analysis to derive Fourier-domain approximations to the
moments in Eqs. (21) and (22). A similar approach to computing the moments of the local
test statistics has been followed and evaluated by others [22,23]. In this work we will
combine such moment approximations with expressions (12) and (19) to speed up the
computation of the ROC-related probabilities (11) and (10), respectively.

B. Locally Shift-Invariant Moment Approximations
For the Fourier analysis that follows, we will assume that we have a discrete representation
of the object f ∈ . Let  be a discrete Fourier operator, mapping an object in  to some
vector in  known as the spectrum of the object. The Fourier operator  is linear and, due
to the shift property of the Fourier transform, it can be defined through its action on an
object e0 that consists of an impulse centered at the origin:

(25)

where 1 is the vector of np ones. Without loss of generality, we choose the origin of the
Fourier transform to coincide with the location where the signal f ̄s is centered. (The 
factor ensures orthonormality.)

We consider tasks where the mean target signal f ̄s,ℓ has the same shape at all candidate
locations ℓ = 1, …, nL. Then f ̄s,ℓ is a copy of a common mean signal profile f ̄s shifted to
location ℓ. We also assume that the observer’s channel responses at different image
locations are shifted copies of each other. Thus we write

(26)
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(27)

where  consists of the complex exponential that corresponds to a
circular shift from the origin (0,0) to location ℓ, and eℓ is an impulse centered at location ℓ.
Finally, X0 is the spectrum of f ̄s, when the latter is assumed centered at (0,0), and the M
columns of T0 contain the frequency responses of the observer’s M channels, when their
impulse responses are assumed centered at (0,0).

We now assume that the mean target signal profile f ̄s is localized in space. In general, the
operator  is shift-variant for typical tomographic systems. However, if  is applied to an
object that is contained within a small spatial extent around the origin, we can approximate

 as shift-invariant within the spatial extent of this object. The closer the object comes to
resembling an impulse, the greater the accuracy of this approximation. Thus we approximate
the operator  (and similarly ) within a small spatial extent as

(28)

(29)

where Λ ≜ diag{λk, k = 1, …, np} and Ω ≜ diag{ωk, k = 1, …, np}. The λk’s and ωk’s contain
the local frequency response of  and , respectively, computed at the location of the
signal. Such local diagonalization approximations have been used by other investigators to
analyze observer performance with penalized-likelihood reconstruction [9,10,22,23].

Similarly, we assume that under any single hypothesis the object can be approximated as
locally stationary around each of the locations ℓ = 1, …, nL. This is more likely to be
accurate when the signal profile is deterministic under all signal present hypotheses (i.e., 
= 0, ℓ = 1, …, nL) or when the signal profile variability is negligible when compared to the
background variability. Thus we approximate the object covariance within some small
spatial extent by

(30)

(31)

where . The ’s contain the local power spectrum of f for
hypothesis Hℓ.

We take Λ, Ω, and Nℓ to contain the local frequency responses of the respective operators at
location ℓc, where ℓc ∈ {1, …, nL} corresponds to the center of the observer’s search area.
Thus we assume that these frequency responses capture the approximate behavior of the
respective operators throughout the search area, if the latter is not too big.
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We present here only the final expressions and refer the reader elsewhere for step-by-step
derivations [19, Section 4.C]. Substituting the Fourier representations (26)–(31) into the
MaCPPW local template in Eq. (9) yields

(32)

where . By using the same Λ, Ω, and Nℓ (i.e., the ones computed at the
center ℓc) for every wℓ, ℓ = 1, …, nL, we are approximating the templates as locally shift-
invariant within the search area, i.e., wℓ ≈ wℓc, ℓ = 1, …, nL. Then we can write

(33)

where V0 ≜ T0wℓ is a linear combination of the channel responses and  ≜ [e1|…|enL] has
as its columns the impulses eℓ, ℓ= 1, …, nL, corresponding to the nL locations in the search
area.

Finally, substituting the frequency-domain representations (26)–(33) into the moments of the
test statistic vector from Eqs. (21) and (22) yields the following locally shift-invariant
approximations of these moments:

(34)

(35)

where

and Vk, Xk are the kth elements of V0, X0, respectively.

C. Approximations of PFA and PD
Regardless of the exact distribution of the data y, the term of tℓ in Eq. (8) that is linear in f ̂
can be considered approximately Gaussian due to the central limit theorem. Thus the local
test statistics can be considered approximately Gaussian. Assuming that the tℓ’s form a
correlated Gaussian random field, we will use the approximations in (12) and (19) to
evaluate the probabilities of false alarm and detection in Eqs. (11) and (10).

Approximation (12) assumes stationarity. For a typical shift-variant tomographic system, the
tℓ’s are not globally stationary. However, as discussed above, we will consider the system to
be locally shift-invariant and the object to be locally stationary over a small area around
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each of the candidate locations ℓ = 1, …, nL. This implies that the tℓ’s are approximately
stationary locally around each candidate location.

We use approximation (12) to calculate the probability of false alarm in Eq. (11) for
channelized linear local test statistics and high detection thresholds τ. In particular, we write

(36)

where we use the notation σT|ℓ, ΛT|ℓ to refer to moments under hypothesis Hℓ. These
moments can be computed fast from the Fourier approximation (35). In particular,

(37)

It would be possible to use an approximation like (36) for the probability of detection (10) as
well, simply replacing ρd(τ; σT|0, ΛT|0) with ρd(τ−μT|ℓc; σT|ℓc, ΛT|ℓc) [30]. This would be
satisfactory if the mean of the test statistic field, μT(x) ≜ E[T(x)|Hℓ], were constant
throughout the search area under each of the signal-present hypotheses. However, the mean
cannot be considered constant throughout the search area in the presence of a spatially
localized target signal. In this case, using a constant μT(x) =μT(xℓc) would lead to an
overestimation of the probability of detection. Instead, we will use the signal-present
approximation (19) for the probability of detection, combining it with Fourier
approximations of the local test statistic moments:

(38)

We compute μT|ℓc and σT|ℓc from the locally shift-invariant approximations (34) and (35),
respectively:

(39)

(40)

In the special case where the target signal is variable in its location only and not in its shape,

i.e.,  =0, we have , which implies σT|ℓc = σT|0 and ΛT|ℓc = ΛT|0. Finally, we obtain
the two derivatives in approximation (38) by applying finite differences to approximations
(34) and (35).
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In the following, we will use the approximations of the probability of false alarm and
detection given in (36) and (38), respectively, to compute high-threshold points of the ROC
curves corresponding to various observer models of interest.

5. SIMULATION RESULTS
We present an example of using the above approximations to evaluate the effect of
regularization on the detection performance of channelized observers applied to QPWLS-
reconstructed images. In this example,  corresponds to a 2-D PET system model with the
characteristics of a CTI ECAT 931 scanner (matrix size 128 × 128, pixel size 4.7 mm, 192
radial samples with 3.1 mm spacing, 160 projection angles over 180°), as implemented in
the ASPIRE software package [31]. We scale  to produce measurements with a total of
106 counts. We simulate the background events r by adding 10% of the total counts
uniformly distributed over all measurement bins. The object background fb has a Gaussian
autocorrelation function with a full width at half-maximum (FWHM) of 12 pixels and a
standard deviation of 0.075. The mean background f ̄b is the anthropomorphic phantom
shown in Fig. 1, which corresponds to a slice of the Zubal phantom [32]. The target signal
fs,ℓ has a known Gaussian profile with a FWHM of 4 pixels and an amplitude of 0.3, but
unknown location ℓ. The search area is assumed to be a disk. Any pixel inside the disk is a
candidate location for the target signal. Figure 1 shows the mean background, the signal
profile, and the largest of the concentric disk search areas that we consider in this example.

We assume a channelized observer model that involves four circularly symmetric, square-
profile channels, as defined by Abbey et al. [17]. We consider local templates of the form of
Eq. (9), where the CHO or CNPW templates are limiting cases. We evaluate detection
performance for QPWLS reconstruction with the uniform quadratic regularizer in Eq. (6)
and various values of the regularization parameter β. We compare results obtained from the
proposed analytical approximations to results obtained from simulations.

(i) Proposed analytical approach
Using the analytical approximations (38) and (36), respectively, we calculate the
probabilities of detection and false alarm for different values of the threshold τ. We repeat
this for each value of β. Then we apply interpolation to these results to find the probability
of detection at a fixed value of the probability of false alarm (0.02 in this example) for every
β.

(ii) Empirical approach
We obtain the moments of the local test statistics for a range of different β’s from the local
shift-invariant approximations (34) and (35). We then produce 5 × 105 realizations of the
local test statistics, tℓ, ℓ = 1, …, nL, under each of the signal-present and signal-absent
hypotheses, drawing from a Gaussian distribution with the respective moments. This yields
multiple realizations of tmax under each hypothesis. For each β, we compare the realizations
of tmax to a range of different thresholds τ to estimate the probabilities of detection and false
alarm at every threshold. We then compute, as with the analytical approach, the probability
of detection at a fixed value of the probability of false alarm for every β. We also compute
the AUC for each β by numerical integration of the empirical probability of detection versus
the empirical probability of false alarm.

Both the analytical and empirical methods perform a fast computation of the moments of the
local test statistics based on local shift-invariance approximations. Khurd and Gindi
followed a similar approach to compute the area under the LROC curve, using local shift-
invariant moment approximations for CHO and CNPW local templates [22]. They compared
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the results to those produced by applying the observer templates to reconstructions of
multiple noisy data sets. They reported very good agreement (for a range of signal contrasts)
and a 103-fold reduction in computation time when using local shift-invariant analysis.
Thus, we do not repeat such an evaluation of local shift-invariance approximations. The
comparison herein focuses on the approximation introduced by (38) and (36), rather than the
approximation introduced by assuming a shift-variant system to be locally shift-invariant.

We compute the above analytical and empirical metrics for MaCPPW observers, including
the MaCHO (γ = 1), MaCNPW (γ = 0), and three intermediate values of γ. Figure 2 shows
results for these observers with a search area diameter of 9 pixels and QPWLS
reconstruction with the roughness penalty in Eq. (6) and various values of β. The abscissa of
the plots shows the resolution of the QPWLS reconstruction at the center of the search area,
defined as the FWHM (in pixels) of the local impulse response [33] at that location. This
local FWHM is a measure of the amount of smoothing imposed by QPWLS. It equals 1
pixel for β = 0, which corresponds to unregularized WLS, and it increases as β increases.

Figure 3(a) shows how the optimal QPWLS resolution varies with the size of the search
area. Figure 3(b) shows the maximum increase in the AUC of the MaCNPW observer versus
the diameter of the search area. The increase is defined as the ratio (AUC*−AUC0)/AUC0,
where AUC* and AUC0 denote the AUC achieved by the observer when regularized
QPWLS with optimal β and unregularized WLS is used, respectively.

As seen in Fig. 3(a), the optimal QPWLS resolutions for different search area sizes are
around 4 pixels in this example. For reference, Fig. 4 shows QPWLS-reconstructed images
with resolutions of 3, 4, and 5 pixels, all from the same data set with Poisson noise and the
signal present in the center of the search area.

Figure 5 compares the analytical and empirical probabilities of detection and false alarm for
the MaCNPW observer with two different search area sizes. Figures 5(a) and 5(b) show the
probabilities of false alarm and detection, respectively, for a search diameter of 7 pixels and
a fixed QPWLS resolution of 3 pixels. Figures 5(d) and 5(e) show the same probabilities for
a search diameter of 15 pixels and a fixed QPWLS resolution of 3 pixels. The interpolated
probability of detection at a fixed probability of false alarm (PFA=0.02), with varying
QPWLS resolution, is shown in Figs. 5(c) and 5(f) for a search diameter of 7 and 15 pixels,
respectively.

6. DISCUSSION
The plots of Fig. 2 show that for the MaCHO observer, the peak detection performance
achieved with regularized QPWLS is very close to the performance achieved with
unregularized WLS. However, as the prewhitening capabilities of the observer deteriorate,
the improvement achieved at the optimal amount of regularization becomes more and more
significant. The MaCNPW observer is the most affected by the amount of regularization.
The same trend is captured by all metrics, i.e., the analytical and empirical probability of
detection at a fixed low probability of false alarm, as well as the empirical AUC. The
optimal resolution was slightly lower for the AUC.

As indicated by these results, the observer’s prewhitening capabilities are important in
determining whether optimized regularization can improve detectability significantly over
unregularized reconstruction. This is in agreement with some prior results from the analysis
of known-location tasks. In particular, we have shown that the gains in known-location
detectability between optimized regularization and no regularization increase as the
prewhitening deficiency of the observer increases [19, Section 3.4]. This occurs because, for
an intermediate amount of regularization, the observer’s channel outputs are closest to
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white; hence prewhitening is less crucial for achieving good detection performance. Results
by Qi also show that optimizing regularization parameters with respect to known-location
detection performance has a more dramatic effect for a nonprewhitening (“maximum-
constrast”) observer than the CHO [10]. Thus it seems that the effect of regularization
depends less on whether the signal location is known or unknown to the observer and more
on whether the observer can perform prewhitening. However, these two aspects of the
observer model are not entirely unrelated in practice, since experimental results indicate that
the prewhitening capabilities of human observers may deteriorate in unknown-location tasks
[20,21]. In the simulations presented here, the size of the search area also played a role, with
regularization being somewhat less beneficial for observers with very small or very large
search areas. Although we show plots only for observers with square-profile channels, we
obtain similar results with the difference-of-Gaussians channel sets from Abbey et al. [17]

Considering the range of QPWLS resolutions that achieve near-peak AUC for the MaCNPW
observer, as seen in Fig. 2, the variation in optimal QPWLS resolution versus search
diameter, as seen in Fig. 3(a), is small. Thus, a moderate uncertainty about the observer’s
search area would not result in a significantly different conclusion about the optimal amount
of regularization.

As seen in Fig. 3(b), the improvement in the AUC of the MaCNPW observer afforded by
optimal regularization varies somewhat with the size of the search area. The maximum
improvement is achieved for an intermediate search diameter (in this case, 9 pixels).

Approximation (38) for the probability of detection assumes that the test statistic field is
quadratic around the target signal location. This quadratic approximation is more accurate
for a search diameter of 7 pixels, as shown in Fig. 5(b), since this search area size is
comparable to the support of the target signal. For a larger search area, however, this
approximation breaks down, as shown in Fig. 5(e).

Even if the analytical approximations are not always accurate at predicting the value of the
probability of detection, they follow the trends of the empirical curves and are maximized at
the same or nearly the same QPWLS resolution. Thus, analytically computed plots like the
ones in Figs. 2(a), 5(b), and 5(e) can be useful for choosing the regularization parameter β to
optimize the probability of detection for a given low probability of false alarm within a
small search area around some pixel.

For the small search diameter of 7 pixels, the analytical approach offers a tenfold reduction
in computation, when compared to the empirical approach of simulating the local test
statistics from the Fourier approximations of their moments. The computational savings
increase with the size of the search area. They also increase with the number of realizations
produced for the empirical approach. This tenfold reduction in computation augments the
103-fold reduction, which is afforded by the use of locally shift-invariant approximations
instead of image reconstructions and which was reported by Khurd and Ghindi [22]. The
additional savings can be important when detectability needs to be evaluated at every voxel
in the image to optimize regularization parameters locally.

The limitation of the proposed method is that analytical approximations (36) and (38) apply
only to high thresholds τ. Thus these approximations are useful when a partial area under the
curve or a single point on the curve (at low false-positive rates) is the desired figure of merit
for observer performance. However, they cannot be used to trace the entire ROC and find
the AUC. In the example of Section 5, the probability of detection at a low probability of
false alarm behaved similarly to the AUC with respect to the regularization parameter (see
Fig. 2). In general, however, the ranking of ROC curves at low probabilities of false alarm
may not predict their ranking at high probabilities of false alarm, as ROC curves for
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different regularization parameters may cross. If one is interested in optimizing
regularization with respect to performance at high probabilities of false alarm, one should
check for crossing ROC curves by applying the simulation method for at least one voxel in
the image before applying the analytical method to optimize regularization for the rest of the
image. The analytical approach could also complement the empirical approach by providing
an initial estimate of the optimal resolution, around which simulations can then be
performed if more accuracy is needed.

We have considered observers that search for the target signal within a local search area,
rather than within the entire image. We have made this choice for two reasons. First, locally
shift-invariant approximations to the moments of the local test statistics are accurate within a
local region. If the system is shift-variant and/or the object background is not stationary,
these approximations are not accurate within the entire image. Second, our ultimate goal is
to use the analyses above to optimize the amount of regularization locally at each pixel in
the image. It seems reasonable for the optimal amount of regularization at some pixel to be
determined by the image statistics within a local area around that pixel.

For the example presented above, we did not include internal noise in the observer model.
The reason is that internal noise would manifest itself as an impulse at the center RT(0) of
the autocovariance function. In this case, the analytical approximations would break down,
because they require the autocovariance function to be smooth so that its second derivative
can be computed. In particular, the analytical approximations would deteriorate for large β,
where the internal noise dominates. This issue arises because the observer models with
internal noise that have been proposed in the literature assume that this noise is uncorrelated
between different candidate locations. Whether this assumption is crucial, however, must
ultimately be validated by human observer studies. In general, internal noise is intended to
model the phenomenon that a human observer may make different decisions when presented
with the same image on different occasions. An alternative way to express this uncertainty
that would make the model more amenable to analysis would be to add noise to the
maximum test statistic itself instead of adding noise to the local test statistics individually.
Once again, the usefulness of such a model would have to be tested by studies with human
observers.

The analytical approximations can also be applied to optimize anisotropic regularization,
which has been reported to yield greater performance improvement than isotropic
regularization in known-location tasks [12]. In addition to lesion detectability, the proposed
method can be applied to the optimization of regularization with respect to the detectability
of activations in functional neuroimaging. Improving the accuracy of the approximations for
a wider range of search area sizes and for nonzero internal noise, as well as relaxing the
assumption of a circularly symmetric signal shape, are topics for future investigation.
Furthermore, since the threshold-exceeding probability approximations used here have been
derived for continuous random fields, the analysis can be applied naturally to tomographic
reconstruction methods that yield continuous-space images f ̂.

Finally, it would be of interest to extend the analysis of the probability of detection to the
probability of correct localization, thus considering a LROC instead of a ROC curve. Under
certain assumptions of statistical independence on the local test statistics, it has been shown
that maximizing the AUC is equivalent to maximizing the area under its LROC curve [6].
However, further investigation is needed to analyze the probability of correct localization for
the correlated local test statistics considered here.
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Fig. 1.
PSfrag replacements. Mean background f ̄b with the target signal fs superimposed (a) and a
profile through them (b). The largest of the search areas considered (diameter of 23 pixels)
is indicated as a black circle in (a).
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Fig. 2.
Detection performance of MaCPPW observers versus QPWLS reconstruction resolution: PD
obtained analytically (a), PD obtained empirically (b), and AUC obtained empirically (c).
Results are shown for five different degrees of prewhitening accuracy. The search area is a
disk with a diameter of 9 pixels.
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Fig. 3.
QPWLS resolution that maximizes the PD (obtained analytically and empirically) or AUC
(obtained empirically) versus search area diameter (a). AUC improvement with optimally
regularized QPWLS over unregularized WLS versus search area diameter (b). Results are
shown for the MaCNPW observer.
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Fig. 4.
QPWLS reconstructions of a noisy Poisson data set with a resolution of 3 pixels (a), 4 pixels
(b), or 5 pixels (c), and profiles through the three images (d). The signal is present in the
center of the search area.
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Fig. 5.
Empirical and analytical probabilities of false alarm and detection for the MaCNPW
observer with a search area diameter of 7 pixels [(a)–(c)] and 15 pixels [(d)–(f)]. The plots
show the PFA versus detection threshold [(a),(d)], the PD versus detection threshold [(b),(e)],
and the PD (with error bars) versus QPWLS resolution for a fixed PFA=0.02 [(c),(f)]. (The
error bars are small enough to fit in the plot markers.)
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