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  Introduction 
 Phospholemman (PLM) was initially identified by Larry 
Jones in 1985  1   as a 15-kDa sarcolemmal (SL) protein that is 
phosphorylated in response to isoproterenol and is distinct 
from phospholamban (PLB).  1   Follow-up studies indicated 
that this 15-kDa SL protein is also phosphorylated by protein 
kinase C  2   and α-adrenergic agonists.  3   In 1991, this 15-kDa SL 
phosphoprotein was purifi ed, the complete protein sequence 
determined by the Edman degradation, the cDNA cloned, and 
the name “phospholemman” was coined.  4   In 1997, the human 
PLM gene is localized to chromosome 19q13.1.  5   

 PLM is synthesized as a 92 amino acid peptide containing at 
its N-terminus a 20 amino acid signal peptide that is cleaved off  
during processing. Th e mature protein contains 72 amino acid 
residues with a calculated molecular weight of 8,409, but a mobility 
of approximately15 kDa in sodium dodecyl sulfate polyacrylamide 
gel electrophoresis (SDS-PAGE) gels  . Th e fi rst 17 amino acid 
residues lie in the extracellular domain. Th e transmembrane 
(TM) region contains 20 amino acids (residues 18–37) while the 
remaining 35 amino acids (residues 38–72) at the C-terminus are 
in the cytoplasm. Palmer et al.  4   also noted sequence homology 
between PLM and γ-subunit of Na + -K + -ATPase, as well as a short 
region of sequence similarity between PLM (at its C-terminus 
facing the cytoplasm) and PLB (at its N-terminus also facing the 
cytoplasm). Th is region of sequence similarity (RSSIRRLST 69  in 
PLM and RSAIRRAST 17  in PLB) contains serines and threonines 
that are potential phosphorylation sites. Indeed, serine 68  in PLM and 
serine 16  in PLB are phosphorylated by protein kinase A (PKA).    6,7   

 Th e extracellular N-terminus of PLM contains an FXYD motif, 
and the cytoplasmic tail of dog, human, and rat PLM contains three 
serines (at residues 62, 63, and 68) and one threonine (at residue 
69) but threonine 69  is replaced by serine in mouse PLM. By nuclear 
magnetic resonance (NMR)  8   and infrared spectroscopy,  9   the TM 
domain of PLM reconstituted in liposomes is an α-helix with a 
maximum tilt of 15–17°. Specifi cally, NMR spectroscopic studies of 
highly purifi ed PLM in model micelles indicate that the molecule 
consists of four α-helices: H1 (residues 12–17) is in the extracellular 

N-terminus, H2 (residues 22–38) is the main TM helix followed 
by the short H3 (residues 39–45), and H4 (residues 60–68) in the 
C-terminus is connected to H3 by a fl exible linker (  Figure 1  ).  10    In 
vivo , PKA phosphorylates serine 68  while protein kinase C (PKC) 
phosphorylates serine 63  and serine 68  of PLM.    7    In vitro  studies using 
PLM fragments suggest that PKA also phosphorylates serine 63  
while PKC phosphorylates threonine 69 .  11   In adult rat myocytes, 
approximately 46% of serine 68  and approximately16% of serine 63  
are estimated to be phosphorylated in the resting state.  12   Using 
phospho-specifi c anti-PLM antibodies,  11,13   approximately 30–
40% of PLM in adult rat myocytes  11,14   and approximately 25% of 
PLM in guinea pig myocytes  15   are phosphorylated under basal 
conditions. In transfected human embryonic kidney (HEK)293 
cells, approximately 30–45% of exogenous PLM is phosphorylated 
under resting conditions.    16   

 Based on observations on Xenopus oocytes in which PLM 
is overexpressed, Randall Moorman suggested that PLM is a 
hyperpolarization-activated anion-selective channel.  17   When 
reconstituted in lipid bilayers, PLM forms a channel that is highly 
selective for taurine  18   and is thought to be involved in regulation of 
cell volume in noncardiac tissues.  19,20   Th e function of PLM in the 
heart remains unknown until the dawning of the 21st century.   

 PLM: Founding Member of the FXYD Family of Regulators 
of Ion Transport 
 In 2000, Kathy Sweadner described the FXYD family of regulators of 
ion transport,  21   of which PLM is the fi rst cloned member (FXYD1). 
At present, there are at least 12 known FXYD proteins, including 
γ-subunit of Na + -K + -ATPase (FXYD2), mammary-associated 
tumor 8 kDa (MAT-8 or FXYD3), channel-inducing factor 
(CHIF or FXYD4), dysadherin (FXYD5; also known as related 
to ion channel [RIC]), phosphohippolin (FXYD6), FXYD7, and 
phospholemman-shark (PLM-S) (FXYD10; the shark homolog 
of PLM)  . As a family, FXYD proteins are found predominantly 
in tissues involved in solute and fl uid transport (kidney, colon, 
pancreas, mammary gland, liver, lung, prostate, and placenta) or 
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crystal structure in the E 1 ATP-bound conformation suggests that 
the single TM segment of FXYD proteins docks into the groove 
between TM segments 2, 6, and 9 of the α-subunit of Na + -K + -
ATPase.  34   High resolution crystal structure (2.4 Angstrom) of shark 
rectal gland Na + -K + -ATPase in the E2.2K + .P i  state indicates that 
FXYD proteins interact almost exclusively with the outside of TM9 
of the α-subunit (journal cover fi gure).  35   Th e role of the signature 
FXYD(Y) motif is to stabilize interactions between α- and β-subunits 
of Na + -K + -ATPase and residue D (in the FXYD motif) caps the helix 
and defi nes the membrane border.  35   In transfected HEK293 cells, 
PLM interacts with either α1- or α2-subunit of Na + -K + -ATPase 
in a 1:1 stoichiometry.  24   Phosphorylation of PLM-S causes it to 
dissociate from shark Na + -K + -ATPase.  36   However, phosphorylation 
of PLM does not cause it to dissociate from the α-subunit of Na + -
K + -ATPase.  15,24     Despite NMR studies of PLM in micelles showing 
no major conformational changes on phosphorylation of serine 68      in 
intact cells examined with fl uorescence resonance energy transfer, 
interaction between PLM and Na + -K + -ATPase is decreased on 
phosphorylation of PLM  .  24,37,38   

 Th ere are four isoforms of the catalytic α-subunits of Na + -K + -
ATPase and expression of a particular α-isoform is both tissue and 
species dependent.  39   Human  40,41   and rabbit  42   hearts are known to 
express α1-, α2-, and α3-isoforms while rodent hearts express only 
α1- (ouabain-resistant) and α2-isoforms of Na + -K + -ATPase.  15,32,43,44   
In both adult rat and mouse ventricles, the ouabain-sensitive α2-
subunit is preferentially localized to the t-tubules  43,45   and its activity 
represents <25% of total Na + -K + -ATPase activities.  32,43,44   PLM co-
immunoprecipitates all three α-subunits of Na + -K + -ATPase in 
human and rabbit,  42   α1- and α2-subunits in mouse  32   and bovine,  23   
but only α1-subunit in rat  28   and guinea pig  15   hearts. In both wild-
type (WT) mouse  32   and guinea pig  15   ventricular myocytes, PLM 
regulates the activity of α1-but not α2-isoform of Na + -K + -ATPase. 
Th is conclusion must be tempered with the recent fi nding that in 
“SWAP” mouse  46   in which the ouabain affi  nities of the α-subunits 
are reversed, PLM regulates the apparent affi  nities for Na +  of 
both α1- and α2-subunits of Na + -K + -ATPase.  24   Together with 
observations made on Xenopus oocytes heterologously expressing 
PLM and Na + -K + -ATPase,  23,47   it is likely the PLM regulates both 
α1- and α2-subunits of Na + -K + -ATPase.   

 Cardiac Excitation–Contraction (EC) Coupling 
 Both α1-  46   and α2-subunits  45   of Na + -K + -ATPase have been 
implicated in the control of cardiac contractility. Th erefore, 
modulation of Na + -K + -ATPase activity suggests an important role 
for PLM in regulation of inotropy. We will give a brief overview 
of cardiac EC coupling (  Figure 3  ) that has previously been 

are electrically excitable (heart, skeletal, and neural tissues). All 
FXYD members have the signature FXYD motif in the N-terminus 
and a single TM domain. Except for γ-subunit of Na + -K + -ATPase, 
all other known members of the FXYD gene family have at least 
one serine or threonine within the cytoplasmic tail, indicating 
potential phosphorylation sites. PLM is unique among FXYD 
proteins in that it has consensus sequence for phosphorylation by 
PKA (RRXS), PKC (RXXSXR), and never-in-mitosis aspergillus 
(NIMA) kinase (FRXS/T). PLM is also a substrate for myotonic 
dystrophy protein kinase.  22   Th e γ-subunit of Na + -K + -ATPase is the 
only member in the FXYD family boasting two alternative splice 
variants (FXYD2a and FXYD2b).   

 PLM: Regulator of Cardiac Na + -K + -ATPase 
 In 2002, Kaethi Geering demonstrated that PLM co-
immunoprecipitates with α-subunits of Na + -K + -ATPase in 
bovine sarcolemma.  23   In isolated adult rat cardiac myocytes, 
PLM co-localizes with α-subunits of Na + -K + -ATPase (  Figure 2  ). 
When co-expressed with α- and β-subunits of Na + -K + -ATPase 
in Xenopus oocytes, PLM modulates Na + -K + -ATPase activity 
primarily by decreasing K m  for Na +  and K +  without aff ecting V max.   23   
Data obtained from cardiac myocytes or homogenates indicate 
that PLM inhibits Na + -K + -ATPase by reducing its apparent 
affi  nities for intracellular Na +   24,25   and external K +   26   or decreasing 
V max .  11,14,    15,27–32   When phosphorylated at serine 68 , PLM relieves its 
inhibition on Na + -K + -ATPase by decreasing its apparent K m  for 
Na +   25,32   but not for K +   26   and increasing V max .  15,28,32   

 In terms of molecular interactions between PLM and Na + -
K + -ATPase, mutational analysis suggests that FXYD proteins 
(FXYD2, 4 and 7) interact with TM9 segment of Na+-K+ -ATPase.  33   
Co-immunoprecipitation and covalent cross-linking studies 
demonstrate that the TM segment of PLM is close to TM2 segment 
of Na + -K + -ATPase.  34   Molecular modeling based on Ca 2+ -ATPase 

  Figure 1.      Molecular model of phospholemman . Nuclear magnetic resonance 
studies of highly purifi ed phospholemman in micelles revealed four helices of the 
protein with a single transmembrane domain (after Francesca Marassi).  8,10   The 
FXYD motif is in the extracellular domain and the important serine 63  and serine 68  
are in the cytoplasm.    

  Figure 2.      Phospholemman co-localizes with �1-subunit of Na + -K + -ATPase.  
Indirect immunofl uorescence of adult rat ventricular myocytes doubly labeled with 
mouse monoclonal antibody against �1-subunit of Na + -K + -ATPase (A) and rabbit 
polyclonal anti-PLM antibody (B) are shown. Primary antibodies are visualized with 
Alexa Fluor 488-labeled goat anti-mouse IgG (A) and Alexa Fluor 594- labeled goat 
anti-rabbit IgG (B). Note the orange color in the merged image (C), indicating co-
localization of PLM and Na + -K + -ATPase. Bar = 5 µm.    
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reviewed by Don Bers in detail.  48   During the upstroke of the action 
potential, Na +  enters via Na +  channels and further depolarizes 
the sarcolemma. Depolarization activates the voltage-dependent 
L-type Ca 2+  channels, allowing extracellular Ca 2+  to enter as an 
inward current (I Ca ), which contributes to the plateau phase of the 
action potential. Some Ca 2+  also enters via the Na + /Ca 2+  exchanger 
(NCX1) operating in the reverse mode (3 Na +  out: 1 Ca 2+  in) 
during this phase of the action potential, although the amount and 
duration of Ca 2+  infl ux via reverse Na + /Ca 2+  exchange vary among 
species. Ca 2+  entry triggers release of approximately two-thirds of 
Ca 2+  stored in the sarcoplasmic reticulum (SR) via the ryanodine 
receptor. Th e combination of Ca 2+  infl ux and SR Ca 2+  release 
abruptly raises the free intracellular Ca 2+  concentration ([Ca 2+ ] i ), 
allowing Ca 2+  to bind to troponin C and activate the contractile 
apparatus. Relaxation requires termination of SR Ca 2+  release, and
[Ca 2+ ] i  to decline so that Ca 2+  can dissociate from troponin C. 
About 70–92% of myoplasmic Ca 2+  is resequestered into the SR 
by sarco(endo)plasmic reticulum Ca 2+ -ATPase (SERCA2) that is 
under the control of PLB. To maintain steady-state Ca 2+  balance, 
Ca 2+  that has entered during systole is mainly extruded by NCX1 
operating in the forward mode (3 Na +  in: 1 Ca 2+  out), with the SL 
Ca 2+ -ATPase playing a smaller role. Likewise, the small amount 
of Na +  that has entered during depolarization is extruded by 
Na + -K + -ATPase during diastole. In this way, the cardiac myocyte 
maintains beat-to-beat Ca 2+  and Na +  balance. Outward K +  currents 
contribute to repolarization phase of the action potential. 

 Among the many transporters and ion channels involved 
in cardiac Ca 2+  fl uxes, NCX1 is unique in that during an action 
potential, it participates in Ca 2+  infl ux, [Ca 2+ ] i  transient buff ering, 

and Ca 2+  effl  ux.  48   Th e direction of Ca 2+  fl ux (in or out) depends on 
the thermodynamic driving force determined by the membrane 
potential (E m ) and the concentrations of Na +  and Ca 2+  ions sensed by 
NCX1. Other than the determinants of its thermodynamic driving 
force, remarkably little is known about the regulation of NCX1. 

 In the heart, inhibition of Na + -K + -ATPase by PLM is expected 
to raise intracellular Na +  concentration ([Na + ] i ), thereby decreasing 
the thermodynamic driving force for forward Na + /Ca 2+  exchange 
(Ca 2+  effl  ux) and increasing the driving force for reverse Na + /Ca 2+  
exchange (Ca 2+  infl ux). Both these actions are expected to increase 
[Ca 2+ ] i  and SR Ca 2+  load, thereby enhancing cardiac contractility. 
Indeed, inhibition of Na + -K + -ATPase with secondary eff ects on 
NCX1 has long been proposed to be the mechanism of positive 
inotropy of digitalis glycosides.  49     

 PLM: First Endogenous Regulator of Cardiac NCX1 
 When PLM is overexpressed (1.4- to 3.5-fold) in adult rat 
left ventricular (LV) myocytes by adenovirus-mediated gene 
transfer,  14,50,51   expression of SERCA2, α1- and α2-subunits of 
Na + -K + -ATPase, NCX1, and calsequestrin remains unchanged. 
As expected, Na + -K + -ATPase current (I pump ) is decreased in rat 
myocytes overexpressing PLM, primarily as a result of decrease 
in V max  rather than changes in apparent K m  for Na +  or K + .  14   A 
totally unexpected fi nding is that both contraction and [Ca 2+ ] i  
transient amplitudes (5.0 mM [Ca 2+ ] o , 1 Hz, 37°C) in myocytes 
overexpressing PLM are lower, rather than higher, when compared 
to control rat myocytes overexpressing green fl uorescent protein 
(GFP).  50   Th is serendipitous but critical observation is inconsistent 
with the theoretical prediction that inhibition of Na + -K + -ATPase 
by PLM leads to enhanced cardiac contractility. Because the 
contractile phenotype of myocytes overexpressing PLM is similar 
to that observed in myocytes in which NCX1 is downregulated,  52   
and opposite to that in which NCX1 is overexpressed,  53   we were the 
fi rst to propose in 2002 that PLM directly regulates NCX1 activity, 
independent of its eff ects on Na + -K + -ATPase.  50   Follow-up studies in 
adult rat myocytes demonstrate that PLM co-localizes with NCX1 to 
the sarcolemma and t-tubules,  51   that PLM co-immunoprecipitates 
with NCX1,  54,55   that overexpression of PLM inhibits Na + /Ca 2+  
exchange current (I NaCa ),  12,51   and that downregulation of PLM by 
antisense increases I NaCa .  55   Using HEK293 cells that are devoid of 
NCX1 and PLM, we demonstrated that cells transfected with NCX1 
display the characteristic I NaCa , and that cells co-transfected with 
PLM demonstrate inhibition of I NaCa  as well as Na + -dependent Ca 2+  
uptake.  54   In addition, PLM co-immunoprecipitates with NCX1 
in transfected HEK293 cells,  54   pig SL vesicles,  54   and guinea pig 
ventricular myocyte membranes.  56   In cardiac myocytes isolated 
from PLM-null mice, I NaCa  was higher in PLM-null myocytes  57   
despite no diff erences in NCX1 protein levels.  58   Th e cumulative 
evidence obtained from three model systems: adult rat myocytes, 
HEK293 cells, and PLM-null mice are all consistent with our 
hypothesis that PLM directly regulates NCX1.  59   

 NCX1 is a 938 amino acid (939 amino acid in the rat) peptide 
consisting of an extracellular N-terminal domain comprising 
the fi rst fi ve TM segments, a large intracellular loop (residues 
218–764), and an intracellular C-terminal domain consisting 
of the last four TM segments.  60,61   Th e α-repeats of TM segments 
2, 3, and 7 of NCX1 are important in ion transport activity  62,63   
while the large intracellular loop contains the regulatory domains 
of the exchanger.  64–66   Using glutathione S-transferase pulldown 
assay, we demonstrated that neither the N- nor the C-terminal 
TM domains of NCX1 associates with PLM.  67   Rather, the 

  Figure 3.      Cardiac excitation–contraction coupling.  Membrane depolarization 
is initiated by opening of the Na +  channel (not shown) with Na +  entry. Extracellular 
Ca 2+  enters via L-type Ca 2+  channel (I Ca ) and Na + /Ca 2+  exchanger (NCX1), causing 
Ca 2+  release from the ryanodine receptor (RyR) in the sarcoplasmic reticulum (SR). 
Ca 2+  binds to troponin and initiates myofi lament contraction. During diastole, Ca 2+  is 
pumped back to the SR by SR Ca 2+ -ATPase (SERCA) under the control of phospho-
lamban (PLB). A small amount of Ca 2+  is also taken up by the mitochondrial Ca 2+  
uniporter. The amount of Ca 2+  that has entered during systole is extruded by Na + /
Ca 2+  exchanger and to a lesser extent by sarcolemmal Ca 2+ -ATPase. Na +  that has 
entered via Na +  channel and Na + /Ca 2+  exchanger is pumped out by Na + -K + -ATPase. 
Repolarization is mediated by opening of K +  channels (only the transient outward K +  
current I to  responsible for early repolarization is shown). Phospholemman (PLM) as-
sociates with and is an endogenous regulator of Na + /Ca 2+  exchanger, Na + -K + -ATPase, 
and possibly L-type Ca 2+  channel. Na + /Ca 2+  exchanger is depicted as operating in the 
forward mode (Ca 2+  effl ux) in the sarcolemma and reverse mode (Ca 2+  infl ux) in the 
t-tubules. Broken arrows point to ion transporters, ion channels, and myofi laments 
that are altered after myocardial infarction.    
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not at 1.8 mM [Ca 2+ ] o : the phenotype that we observed when 
NCX1 is downregulated  52   or when PLM is overexpressed.  50   
By contrast, when cultured PLM-null myocytes overexpress 
the nonphosphorylable PLM S68A mutant, I pump  but not I NaCa  
is inhibited.  31   This is associated with no changes in [Ca 2+ ] i  
transient and contraction amplitudes at both [Ca 2+ ] o . Th erefore, 
under conditions in which [Ca 2+ ] o  is varied to manipulate the 
thermodynamic driving force for NCX1, regulation of single 
cardiac myocyte contractility by PLM is mediated by its inhibitory 
eff ects on NCX1 rather than Na + -K + -ATPase. 

 When myocytes are subjected to rapid pacing (2 Hz) and 
isoproterenol (1 μM) stimulation, [Na + ] i  initially increases but 
then starts to decline in WT but not in PLM-null myocytes.  32,71   
[Ca 2+ ] i  transient and contraction amplitudes follow the time 
course of [Na + ] i : initially increase followed by decline in WT 
but not PLM-null myocytes. When pacing was slowed to 0.5 
Hz to minimize the steep rise in [Na + ] i , both [Ca 2+ ] i  transient 
and contraction amplitudes increase to a lower steady-state level 
without any time-dependent decline in both WT and PLM-null 
myocytes.  32   Th ese observations suggest that under conditions 
of high [Na + ] i , phosphorylated PLM activates Na + -K + -ATPase 
to limit intracellular Na +  overload at the expense of reduced 
inotropy. Th erefore, at the level of a single myocyte, PLM can be 
shown to regulate Na +  and Ca 2+  fl uxes (and hence [Ca 2+ ] i  transients 
and contractility), by either NCX1 or Na + -K + -ATPase, depending 
on experimental manipulations.   

 Regulation of  In Vivo  Contractility by PLM: Studies with 
PLM-Null Mice 
 In 2005, Amy Tucker made a major contribution to the 
understanding of PLM and cardiac function by successfully 
engineering the PLM-null mouse.  72   There is mild cardiac 
hypertrophy,  27,32,72   at least partly due to increased fi brosis in 
PLM-null hearts  32   since neither LV myocyte length and width  58   
nor whole cell membrane capacitance (a measure of cell surface 
area)  25,58   is diff erent between WT and PLM-null myocytes. Th ere 
are no diff erences in protein levels of α1-, α2-, β1-, and β2-subunits 
of Na + -K + -ATPase, SERCA2, PLB, NCX1, and calsequestrin 
between WT and congenic PLM-null hearts.  27,58   Th e majority of 
proteins that are diff erentially expressed between WT and PLM-
null hearts are involved in cell metabolism.  27   Na + -K + -ATPase 
enzymatic activity,  27   I pump ,  25,31   and I NaCa   31,57   are higher in PLM-null 
hearts, as expected from the relief of inhibition of Na + -K + -ATPase 
and NCX1. Th ere are no changes in I Ca  amplitudes but action 
potential duration is prolonged in PLM-null myocytes.  58   

 The effects of PLM on cardiac contractility  in vivo  are 
complicated and controversial. Using magnetic resonance 
imaging, Amy Tucker  72   initially reported cardiac hypertrophy 
and increased ejection fraction in PLM-null hearts of mice with 
mixed genetic background (C57BL/6 and 129/SvJ). By contrast, 
 in vivo  hemodynamic measurements made by Mike Shattock with 
conductance catheter introduced by LV puncture in open-chest 
mice demonstrate no signifi cant diff erences in measured cardiac 
indices between WT and PLM-null mice of congenic (C57BL/6) 
background.  27   Our own data in closed-chest catheterized mice 
show slightly increased baseline +dP/dt in congenic PLM-null 
hearts.  32   Diff erent genetic backgrounds, noninvasive imaging 
versus invasive catheterization, diff erent anesthesia, blood loss 
associated with opening the chest and LV puncture, and heat 
dissipation in an open-chest mouse, may account for these 
discrepancies. Th e weight of current evidence, however, indicates 

cytoplasmic tail of PLM both physically and functionally interacts 
with the intracellular loop (residues 218–358) of NCX1.  67   Using 
overlapping NCX1 loop deletion mutants, we further showed that 
PLM interacts with NCX1 at two distinct regions encompassing 
residues 238–270 and 300–328.  16   

 Th ere are signifi cant diff erences between the mechanisms by 
which PLM regulates the activities of NCX1 and Na + -K + -ATPase. 
First, phosphorylation of PLM at serine 68  relieves its inhibition 
of Na + -K + -ATPase.  15,25,28   By contrast, PLM phosphorylated at 
serine 68  is the active species that inhibits NCX1.  12,57   Second, the 
TM segment of FXYD proteins (and by inference PLM) interacts 
with TM segments 2, 6, and 9 of α-subunit of Na + -K + -ATPase.  33–35   
By contrast, TM43, a PLM mutant with its cytoplasmic tail 
truncated, targets correctly to the sarcolemma  12   but does not 
co-immunoprecipitate NCX1  67   and has no eff ect on myocyte 
contractility,  12     suggesting little-to-no association between the 
TM domains of PLM and NCX1.   

 PLM: Regulator of Cardiac L-Type Calcium Channel 
 In guinea pig cardiac myocytes, Blaise Peterson recently 
demonstrated that PLM co-immunoprecipitates not only NCX1 
but also L-type Ca 2+  channels (Ca v 1.2).  56   In transfected HEK293 
cells and using Ba 2+  as charge carrier, PLM modulates gating 
kinetics of Ca v 1.2 but not Ca v 2.1 (P/Q-type) or Ca v 2.2 (N-type) 
Ca 2+  channels.  56   Specifi cally, PLM was found to modulate four 
important gating processes of Ca v 1.2 channels: (i) activation 
kinetics were slowed at voltages near the threshold for channel 
activation; (ii) deactivation kinetics were slowed following 
voltage commands mimicking human cardiac action potential; 
(iii) voltage-dependent inactivation was enhanced at voltages 
corresponding to the plateau phase of the cardiac action 
potential; and (iv) increased number of channels enter a deep 
inactivated state from which recovery is slow. When a human 
cardiac action potential is imposed on HEK293 cells transfected 
with Ca v 1.2 channels, PLM increases Ca 2+  infl ux during the 
repolarization phase of the cardiac action potential.  56   Th e role of 
PLM phosphorylation in the regulation of Ca v 1.2 gating kinetics 
remains to be elucidated. 

 Th e possibility that in cardiac myocytes, PLM may potentially 
modulate gating kinetics of L-type Ca 2+  channels, in addition 
to its known eff ects on Na + -K + -ATPase and NCX1, renders the 
interpretation of the eff ects of PLM expression/phosphorylation 
on cardiac contractility extremely complex. However, heterologous 
expression systems oft en do not reproduce a protein’s native 
milieu and may distort the stoichiometry of interaction between 
proteins. A good example is the potentiation of I Ca  by adrenergic 
agonists, so readily observed in cardiac myocytes,  68,69   has yet to 
be reproduced in heterologous expression systems.  70   In addition, 
using Ca 2+  as charge carrier, we did not detect any diff erences in 
maximal I Ca  amplitude, fast and slow inactivation time constants, 
slope conductance, and test potential at which maximal I Ca  
occurs between WT and PLM-null myocytes.  58   Th erefore, the 
physiological signifi cance of regulation of Ca v 1.2 by PLM, while 
intriguing, remains to be established in cardiac myocytes.   

 Regulation of Single Myocyte Contraction by PLM: 
Na + -K + -ATPase versus NCX1 
 In cultured myocytes isolated from PLM-null mice and expressing 
the phosphomimetic PLM S68E mutant, I NaCa  but not I pump  is 
inhibited.  31   Th is is associated with decreased [Ca 2+ ] i  transient 
and contraction amplitudes (1 Hz, 37°C) measured at 5.0 but 
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that PLM-null hearts contract just as well, if not better, than WT 
hearts. Th is is inconsistent with the expectation that with relief 
of inhibition of Na + -K + -ATPase, PLM-null hearts should exhibit 
lower contractility when compared to WT hearts.   

 PLM: A Novel Cardiac Stress Protein 
 When PLM is overexpressed in adult rat LV myocytes, contractility 
and [Ca 2+ ] i  transient amplitudes measured under physiological 
conditions (1.8 mM [Ca 2+ ] o , 1 Hz, 37°C) are only slightly less than 
those measured in control myocytes expressing GFP.  50   Likewise, 
contractility and [Ca 2+ ] i  transient amplitudes (1.8 mM [Ca 2+ ] o , 
1 Hz, 37°C) are similar between WT and PLM-null myocytes.  58   
Only when the thermodynamic driving force for NCX1 is altered 
by varying [Ca 2+ ] o  (0.6 or 5.0 mM) are the eff ects of PLM on 
myocyte contractility and [Ca 2+ ] i  transients evident.  12,50,51,55,58   
Th e eff ects of PLM on Na + -K + -ATPase are also not apparent 
in myocytes under resting conditions: basal [Na + ] i  is similar 
between WT and PLM-null myocytes.  25,32   Th erefore, under resting 
conditions, PLM is functionally quiescent. 

 In the intact heart, β-adrenergic stimulation increases 
chronotropy leading to more frequent depolarizations and increased 
Na +  entry. In addition, I Ca  and SERCA2 activity are also increased 
in response to β-adrenergic stimulation, resulting in increased Ca 2+  
entry and SR Ca 2+  loading. Elevated SR Ca 2+  content available for 
release largely accounts for the enhanced inotropy associated with 
β-adrenergic stimulation. Increased Ca 2+  entry must be balanced 
by greater Ca 2+  effl  ux mediated by forward NCX1, thereby bringing 
more Na +  into the myocyte. Th is, if unchecked, will lead to cellular 
Na +  and Ca 2+  overload. Don Bers  71   hypothesized that β-adrenergic 
agonists increase PLM phosphorylation at serine 68 , thereby 
activating Na + -K + -ATPase and resulting in lower [Na + ] i . Th e lower 
[Na + ] i  promotes Ca 2+  effl  ux via NCX1, resulting in lower [Ca 2+ ] i  
transient and contraction amplitudes.  32,71   Indeed, when hearts  in 
vivo  are stressed with maximal doses of isoproterenol, inotropy 
(+dP/dt) rises to a peak within 2 minutes followed by decline in 
WT but not PLM-null hearts (  Figure 4  ). Th erefore, when hearts are 
under duress, one of the major functions of PLM is to limit Na +  and 
Ca 2+  overload, thereby minimizing the risks of arrhythmogenesis 
apparently at the expense of reduced inotropy. 

 On the other hand, reduced cardiac contractility under 
conditions of fi ght or fl ight is clearly not in the best interests of 
the organism. In 2006, we proposed a coordinated paradigm in 
which PLM, upon phosphorylation at serine 68 , enhances Na + -
K + -ATPase activity to minimize risks of arrhythmogenesis but 
inhibits NCX1 to preserve inotropy during stress.  57   Our recent 
experiments provide support for this hypothesis. In PLM-null 
hearts in which isoproterenol has little-to-no eff ects on Na + -
K + -ATPase,  25,32   injection of recombinant adeno-associated virus 
(serotype 9) expressing the phosphomimetic PLM S68E mutant 
(rAAV9-S68E) directly into the LV resulted in expression of the 
mutant protein aft er 4–5 weeks. PLM S68E mutant inhibits NCX1 
but not Na + -K + -ATPase.  31   Isoproterenol stimulation resulted in 
similar increases in [Na + ] i  but higher +dP/dt in PLM-null hearts 
expressing PLM S68E mutant when compared to PLM-null 
hearts expressing GFP (  Figure 5  ). Th erefore, inhibition of NCX1 
by phosphorylated PLM preserves cardiac contractility under 
stressful situations.   

 FXYD Proteins In Aging, Exercise, and Disease 
 PLM expression is 2-fold higher in neonatal rabbit ventricular 
membranes and declines within 10 days to the level observed 
in adults.  73   The decrease in PLM expression with postnatal 
maturation is concurrent with reduction in Na + -K + -ATPase and 
NCX1  73   and suggests tight coordination of PLM with the two 
ion transporters. With aging, expression of PLM in sedentary rat 
skeletal muscle is not altered but the level of α1-subunit of Na + -K + -
ATPase that co-immunoprecipitates with PLM increases 3-fold.  74   
Th ere are no detectable changes of association of α2-subunit of 
Na + -K + -ATPase with PLM with aging.  74   

  Acute exercise (treadmill running) in rats increases SL 
PLM in skeletal muscle by 200–350% due to translocation,  but 
phosphorylation at serine 68  appears not to be altered.  75   When 
senescent rats (26-month-old) are subjected to endurance 
treadmill running for 13–14 weeks,  PLM in skeletal muscle 

  Figure 4.      Effects of activation of Na + -K + -ATPase by phosphorylated phos-
pholemman on �-adrenergic response  in vivo .  Shown are normalized  in vivo  he-
modynamics (+dP/dt) of anesthetized wild type (•;  n  = 9) and phospholemman-null 
(€  n  = 14) mice after stimulation with 25 ng of isoproterenol. Note time-dependent 
decline of +dP/dt in wild type but not phospholemman-null hearts. Phospholemman 
phosphorylated at serine 68  activates Na + -K + -ATPase,  25,32   leading to decreases in [Na + ] i  
in wild type but not phospholemman-null cardiac myocytes.  71,32      

  Figure 5.      Effects of inhibition of Na + /Ca 2+  exchanger by phosphorylated 
phospholemman on �-adrenergic response  in vivo .  Left ventricles of phos-
pholemman-null (KO) mice are injected with recombinant adeno-associated virus, 
serotype 9, expressing either green fl uorescent protein (GFP) (€;  n  = 5) or the 
phosphomimetic phospholemman S68E mutant (•;  n  = 7). S68E mutant inhibits 
Na + /Ca 2+  exchanger but has no effect on Na + -K + -ATPase.  12,31,57   Five weeks after virus 
injection,  in vivo  hemodynamics (+dP/dt) are measured in anesthetized mice.  32   Note 
that with increasing doses of isoproterenol, KO-S68E hearts contract signifi cantly 
better than KO-GFP hearts. Since isoproterenol has no effect on Na + -K + -ATPase in 
phospholemman-null myocytes,  25,32   [Na + ] i  is similar between KO-S68E and KO-GFP 
hearts (data not shown). Enhanced contractility in KO-S68E hearts is therefore due 
to inhibition of Na + /Ca 2+  exchanger by the S68E mutant.    
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is increased by 150% when compared to sedentary senescent 
rats.  74   In addition,  increased association of PLM with α1-subunit 
of Na + -K + -ATPase in skeletal muscle of senescent rats (as 
compared to young rats) is decreased with endurance treadmill 
running.  74   

 In 2000, using cDNA microarrays containing 86 known genes 
and 989 unknown cDNAs, Sehl et al.  76   are the fi rst to report that 
PLM is one of only 19 genes to increase aft er myocardial infarction 
(MI) in the rat. We confi rmed that PLM protein levels increased 
2.4- and 4-fold at 3 and 7 days post-MI, respectively, in the rat.  14   
PLM overexpression may very well explain the depression in both 
Na + -K + -ATPase  77   and NCX1  78,79   activities observed in the post-
MI rat model. In rat hearts subjected to acute ischemia, PLM is 
phosphorylated that leads to profound activation of SL Na + -K + -
ATPase.  28   In isolated perfused mouse hearts subjected to ischemia/
reperfusion, protection against infarction by sildenafi l is associated 
with increased PLM phosphorylation at serine 69  that enhances 
Na + -K + -ATPase activity during reperfusion.  80   Increased Na + -K + -
ATPase activity during acute ischemia ± reperfusion is critical in 
maintaining [Na + ] i  homeostasis in order to minimize the adverse 
eff ects of elevated [Na + ] i  on contractility and arrhythmogenesis. 
In human heart failure, protein levels of PLM in LV homogenates 
are reduced by 24%.  42   In a rabbit model of volume overload 
heart failure that is prone to arrhythmias,  81   expression of PLM is 
reduced by 42–48% but phosphorylation at serine 68  is dramatically 
increased.  42   Th us, both altered expression and phosphorylation of 
PLM have been observed in various cardiac disease models. In this 
context, it is very relevant to note that the two classes of drugs that 
have been clinically proven to be effi  cacious in human heart failure, 
β-adrenergic blockers (lowering PKA activity) and angiotensin-
converting enzyme inhibitors (reducing PKC activity), both have 
PLM as a common target. 

 Sepsis is a major clinical problem that is characterized by 
profound hypotension, systemic vasodilatation, and depression 
in cardiac contractility. A wide range of infl ammatory cascades 
is activated during systemic sepsis.  82   Increased nitric oxide (NO) 
by inducible NO synthase has been suggested to cause depressed 
cardiac contractility in sepsis.  83   In this light, Helge Rasmussen 
demonstrated that NO stimulates Na + -K + -ATPase  84,85   and Mike 
Shattock reported (in abstract form) that this is dependent on 
PLM. Acceleration of Na + -K + -ATPase activity by PLM may 
account for hyperpolarization and relaxation of vascular smooth 
muscle (vasodilatation) in addition to depression of cardiac 
contractility. 

 PLM has also been implicated in other diseases. For example, 
PLM is downregulated in layer II/III stellate neurons in patients 
with schizophrenia.  86   Rett syndrome, an X-linked neuro-
development disorder that ranks as the second most prevalent 
cause of mental retardation in girls,  87   is due to heterozygous  de 
novo  mutations in the methyl-CpG-binding protein 2 (MeCP2) 
gene. MeCP2 normally represses PLM transcription through 
direct interactions with sequences in the PLM promoter. In 
patients with Rett syndrome and MeCP2-null mice, PLM is 
elevated in neurons in the frontal cortex and cerebellum.  88,89   
Increasing neuronal PLM expression is suffi  cient to reduce 
dendritic arborization and spine formation, hallmarks of 
neuropathology in patients with Rett syndrome. 

 Dominant-negative mutation in FXYD2 (γ-subunit of Na + -
K + -ATPase) causes defective routing to the plasma membrane 
and is the cause of primary renal hypomagnesemia.  90   Increased 
MAT-8 (FXYD3) expression is associated with tumor progression 

in human breast, prostate, and colorectal cancers.  91   Likewise, 
dysadherin (FXYD5) expression is altered in a wide variety of 
human cancers, including but not limited to breast, gastrointestinal 
stromal, head and neck, papillary thyroid, colorectal, nonsmall 
cell lung, and testicular cancers, and also epitheliod sarcoma and 
malignant melanoma.  92     

 Future Directions 
 Th e physiological role of PLM on regulation of L-type Ca 2+  
channel needs to be established in its natural environment. Th e 
stoichiometry of interaction between PLM and Na + -K + -ATPase, 
PLM and NCX1, and PLM and L-type Ca 2+  channel remains to 
be determined in cardiac myocytes. Th e role of PLM in regulating 
cardiac contractility  in vivo , both in health and disease states, 
needs further investigation. Th is will likely require development 
of novel genetic models. Th e eff ects of oxidative stress and NO on 
both PLM and Na + -K + -ATPase are just beginning to be addressed. 
For eff ective but specifi c drug targeting, the precise molecular 
interactions between PLM and Na + -K + -ATPase, and PLM and 
NCX1 need to be mapped out.   

 Conclusion 
 FXYD proteins are emerging not only as novel endogenous 
regulators of ion transport but also as important targets in many 
human diseases including neurological, cardiac and renal diseases, 
and a wide variety of cancers. PLM (FXYD1) regulates Na + -K + -
ATPase, NCX1, and possibly L-type Ca 2+  channel in the heart. Its 
eff ects on  in vivo  cardiac contractility are complex and remain to 
be clarifi ed. When hearts are subjected to stress, PLM minimizes 
risks of arrhythmogenesis and preserves inotropy. Elucidating the 
mechanisms by which alterations or mutations of FXYD proteins 
are involved in human diseases will undoubtedly provide novel 
and rational therapeutic targets.  
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