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Characterization of the response to primary
blast injury
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Lung injuries, predominantly arising from blast exposure, are a clinical problem in a significant min-
ority of current military casualties. This special feature consists of a series of articles on lung injury.
This first article examines the mechanism of the response to blast lung (primary blast injury to the
lung). Subsequent articles examine the incidence of blast lung, clinical consequences and current
concepts of treatment, computer (in silico) modelling of lung injury and finally chemical injuries
to the lungs. Blast lung is caused by a shock wave generated by an explosion causing widespread
damage in the lungs, leading to intrapulmonary haemorrhage. This, and the ensuing inflammatory
response in the lung, leads to a compromise in pulmonary gas exchange and hypoxia that can
worsen over several hours. There is also a characteristic cardio-respiratory effect mediated via an
autonomic reflex causing apnoea (or rapid shallow breathing), bradycardia and hypotension (the
latter possibly also due to the release of nitric oxide). An understanding of this response, and the
way it modifies other reflexes, can help the development of new treatment strategies for this
condition and for the way it influences the patient’s response to concomitant injuries.
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1. INTRODUCTION
Explosive or blast injuries are a current and very
significant clinical issue in military medicine, with a
significant number of casualties being injured by impro-
vised explosive devices in the current conflicts in Iraq
and Afghanistan [1-3]. Unfortunately, blast injuries
also impact on civilian medicine, most dramatically
when terrorist bombings cause mass casualties [4—11].
Medical investigation and reporting of blast injury pre-
cedes the First World War, with a number of case
reports dating back to 1768 (cited in [12]). Systematic
descriptions are found in observations made on casual-
ties during the First World War, with descriptions such
as ‘men subjected to concussion of large shells often
developed a condition of shock which was unrelated to
obvious trauma since no external wounds were visible’
[13]. More detailed observations giving insight into
potential autonomic mechanisms were made during
the Second World War with descriptions of casualties
displaying bradycardia and hypotension [14].
Observations on casualties will always play a central
role in any investigation of a clinical problem, not least
because they initiate the definition of the problem and
guide a systematic scientific study. However, a detailed
investigation of mechanisms often requires the develop-
ment of models, ranging from physical and computer
(in silico), through in vitro to complex i vivo studies.
These are necessary for a variety of reasons, including
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the ability to conduct studies under controlled con-
ditions to exclude confounding variables and to
conduct detailed mechanistic studies that are too inva-
sive to perform on human casualties. The loop is
finally closed, usually, by further observations in casual-
ties to confirm that mechanisms deduced from models
truly represent the ‘real world’. Hence, the most power-
ful research is an integration of basic science and
clinical studies often with iterative steps in laboratory
and clinical settings.

This special feature contains a series of papers that
examine lung injury, predominantly focusing on blast
injury since this is currently a high-profile clinical
issue. This paper discusses some of the models used
to elucidate the mechanism of the response to thoracic
blast. How concerned should we be about blast lung?
The next paper by Smith [1] evaluates the most
recent clinical data to determine the incidence of
blast lung in current casualties. A further paper by
Mackenzie & Tunnicliffe [15] describes the clinical con-
sequences of blast exposure in casualties returning to
the UK from Afghanistan and discusses current con-
cepts in the management of these casualties. Perhaps
the most rapid means of screening new treatment strat-
egies is by using computer-based i silico models,
provided the models are faithful representations of the
relevant aspects of the real world, and this is the basis
of the next paper by Harvey & Hardman [16]. Finally,
lest we forget that blast lung is not the only threat faced
by military and civilian casualties, the final paper by
Jugg et al. [17] provides a brief examination of the con-
sequences and models used to evaluate the treatment of
chemical injuries of the lung.
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Table 1. Classification of blast injuries.

the effects of the shock wave. The shock wave travels through the body tissues depositing energy (and hence

P causing damage) especially at gas/liquid interfaces. The lungs are among the organs most likely to suffer this
form of injury, where it is called ‘blast lung’.

secondary fragments and debris energized by the explosion collide with the body causing penetrating injuries.

tertiary the body being thrown against obstacles by the mass movement of air (blast wind) causing blunt injuries.

quaternary other injuries including burns and crush from collapsed buildings etc.

Table 2. Evolution of blast lung.

event apparent clinical problem time (h)
shock wave damage 0
rupture of alveolar capillaries
blood into interstitium and alveoli reduced gas transfer (esp O,)
free Hb and blood inflammation
free radicals/oxidative stress
augmented inflammatory response
more oedema reduced gas transfer (esp O,)
leucocyte accumulation more inflammation and reduced gas transfer 3
more oxidative stress, inflammation and oedema
epithelial cell damage evident further impairment 12-24
endothelial cell damage evident lung mechanics 24-56

2. BLAST INJURIES

Blast injuries fall into four main categories [18,19]:
primary, secondary and tertiary, with miscellaneous
additional injuries forming a further (quaternary)
group (table 1).

In vivo models using shock waves generated by a
range of devices including real explosions, shock
tubes and compressed air shock wave ‘generators’
have been used extensively to characterize the response
to blast lung injury.

3. THE DEVELOPMENT OF BLAST LUNG INJURY
Blast lung is a primary blast injury. The shock wave
causes an immediate lung injury that is characterized
by rupture of alveolar capillaries, the influx of blood
and extravasation of oedema fluid into lung tissue
[20,21], giving rise to haemorrhagic foci that can be
substantial depending on the level of blast loading.
The intrapulmonary haemorrhage and oedema con-
tribute to the initial respiratory compromise in blast
lung [22]. The problem is exacerbated because free
haemoglobin (Hb) and extravasated blood have been
shown to induce free radical reactions that cause
oxidative damage [22] and initiate/augment a pro-
inflammatory response [21]. Free Hb also causes an
accumulation of inflammatory mediators and chemo-
tactic attractants [23], thereby amplifying the problem.

Within 3 h leucocytes can be demonstrated within
the haemorrhagic areas, and levels increase for 24 h
or more after exposure [22]. This accumulation of
leucocytes is associated with increasing levels of
myeloperoxidase activity, which in turn is indicative
of oxidative events and developing inflammation in
the affected areas [22]. Histological and electron
microscopic examination reveal prominent perivascu-
lar oedema and extensive alveolar haemorrhages
without widespread visible damage to endothelial
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cells during the first 12 h after exposure [22]. There-
after (12—24h after exposure), type 1 epithelial cells
show evidence of developing damage followed later
(24-56h after exposure) by secondary damage to
endothelial cells which become detached from their
basement membrane into the capillary lumen [22].
This process is summarized in table 2.

Recent studies examining novel pharmacological
means of attenuating the development of blast lung
have shown considerable promise. Initial demon-
stration that resolution of the inflammatory
component of blast lung coincided with engagement
of adaptive antioxidant and anti-inflammatory mech-
anisms [24] led to studies using these mechanisms as
targets for therapy. Activation of haemoxygenase-1
using haemin was reported to increase survival in
rats with blast lung, possibly via an anti-inflammatory
mechanism [25], while administration of the antioxi-
dant N-acetylcysteine amide was found to attenuate
the development of blast lung and the associated
pulmonary inflammatory response [26].

4. PHYSIOLOGICAL RESPONSE TO PRIMARY
BLAST INJURY

Primary blast injury results in a characteristic cardio-
respiratory response that is mediated in large part by
the autonomic nervous system. However, it must also
be recognized that other mechanisms such as the
release of mediators (e.g. nitric oxide (NO)) into the
circulation may also play a significant role in the
acute response to blast injury.

(a) Cardiorespiratory response to primary blast
injury to the thorax

A number of experimental studies and clinical
reports have indicated that primary blast injury to the
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Figure 1. Typical effects of a single blast exposure to the thorax of an anaesthetized male Wistar rat on the electrocardiogram
(ECQG), systemic arterial blood pressure (art BP), respiratory tidal volume (resp vol, inspiration upwards), femoral arterial
blood flow (fem Q) and femoral vascular resistance (fem VR). A single blast wave was applied to the ventral thorax at the

point indicated (blast). Scale bar, 10 s.

thorax produces bradycardia [14,27-32], prolonged
hypotension [14,27,29,30,32] and apnoea followed by
rapid shallow breathing [28,29,31,32] (figure 1). This
response is thought to be an autonomic reflex.

A detailed study of the immediate response to pri-
mary blast injury to the thorax has shown that the
cardiovascular and respiratory responses are not
instantaneous; the bradycardia had a latency of onset
of approximately 4 s, while blood pressure began to
fall approximately 2 s after blast [33]. This latency is
consistent with the response being reflex in nature
rather than being the consequence of direct effects,
e.g. on the heart or central nervous system. More
recent studies have shown that the response also
includes a reduction in vascular resistance, at least in
the skeletal muscle (figure 1).

The bradycardia and apnoea seen after blast are
both mediated by a vagal reflex [33—36]. The aetiology
of the hypotension seen after primary blast injury is
complex. The fall in blood pressure appears to be
due to a fall in peripheral resistance and cardiac
output, the latter because of a myocardial impairment
that can last many hours after blast injury [37].
Although the autonomic nervous system plays some
part in the hypotension, it is not solely responsible.
Recent findings have suggested that primary blast
injury causes a rapid release of the potent vasodilator
NO from the pulmonary circulation [38-40]. It is
thought that such a brisk overproduction of NO
could lead to a systemic response that includes
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vasodilatation ([41]; J. L. Atkins 2008, WRAIR, per-
sonal communication).

In summary, blast lung is a progressive condition
characterized by the development of pulmonary inflam-
mation and oedema following initial intrapulmonary
haemorrhage as a consequence of damage by the blast
shock wave. The combined influence of pulmonary
haemorrhage and oedema is to reduce pulmonary gas
transfer and lead initially to hypoxia and, with worsen-
ing blast lung, hypercarbia. Thoracic, but not
abdominal [32], blast produces a triad of bradycardia,
hypotension and apnoea. The bradycardia and apnoea
are mediated entirely by a vagal reflex, the most likely
candidate being the pulmonary afferent C-fibre reflex.
The effects of the hypoxia and altered cardiovascular
reflexes can have profound effects on the ability of the
casualty to respond to concomitant or further events
such as haemorrhage and resuscitation [42].

© Crown copyright 2011. Published with the permission of
the Defence Science and Technology Laboratory on behalf
of the Controller of HMSO.
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