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ABSTRACT

The procedure of drug approval is time-consuming,
costly and risky. Accidental findings regarding multi-
specificity of approved drugs led to block-busters
in new indication areas. Therefore, the interest in
systematically elucidating new areas of application
for known drugs is rising. Furthermore, the know-
ledge, understanding and prediction of so-called
off-target effects allow a rational approach to the
understanding of side-effects. With PROMISCUOUS
we provide an exhaustive set of drugs (25000),
including withdrawn or experimental drugs, anno-
tated with drug-protein and protein-protein rela-
tionships (21500/104000) compiled from public
resources via text and data mining including
manual curation. Measures of structural similarity
for drugs as well as known side-effects can be
easily connected to protein-protein interactions
to establish and analyse networks responsible for
multi-pharmacology. This network-based approach
can provide a starting point for drug-repositioning.
PROMISCUOUS is publicly available at http://
bioinformatics.charite.de/promiscuous.

INTRODUCTION

Quality plays a crucial role in the highly competitive drug
development process. However, cost and the time invested
also affect decisions and push scientists to develop new
technologies and methods.

In the past few decades the de novo development of drugs
has become more and more challenging. About 90% of
drugs fail during development in phase 1 clinical trials,
which makes this process extremely expensive and time
consuming (1). To bring a single de novo drug to the
market, an average of more than $800 million is spent in

a time period of 15 years; with costs varying from $500
to $2000 million depending on the developing company
or the therapy (2). Hence the number of new drugs
introduced to the market has not kept in line with the
cost of research and development. The cost of a failure is
higher by orders of magnitude in the latter stages of
development (3). Therefore, effective and innovative
approaches are required in the development process.
Addressing the problem of off-targets during the design
phase, will lead to faster and more efficient
drug-development which will make it possible to save
patients’ lives and alleviate their suffering. In addition,
much effort in terms of financial risk and time could be
saved.

The most important causes of drug failures are a lack of
efficacy and toxicity (4-6). Limited drug efficacy can be
caused by the intrinsic robustness of the biological
network of which the intended target is a part (7);
whereas toxicity of a drug may be caused by unwanted
cross-reactivity with other biologically relevant targets (8).
Furthermore, the intended drug target might exhibit pre-
viously unknown functions in other processes within the
cell or in other tissues.

These issues call for innovative approaches reflecting
the insights that no target stands alone, but is embedded
in a highly complex and heterogeneous network. There is
nothing like a one-to-one relation between a drug and its
target; cross reactivity of different strengths with other
targets must be considered.

Unfortunately, the development of new drugs according
to these insights is hampered by the growing but still
limited knowledge about biological networks. Since
systems biology attempts to extend the knowledge of
these networks, its combination with drug development
promises huge advantages to both fields (9,10).

A good example of the knowledge transfer between
drug development and systems biology was presented by
Campillos et al. (11). In this work it was shown that
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known side-effects and structural similarity of drugs can
successfully be used to identify new targets for known
drugs. This method has been applied successfully, for
example leading to a patented reposition of Aprepitant
(12). In another case, Kinnings et al. were able to repos-
ition a safe drug as a promising lead compound for a
new class of anti-tubercular therapeutics using off-target
information (13).

The most prominent example of successful drug repos-
itioning was Sildenafil which was initially studied for use
in hypertensia and angina pectoris, but has been repos-
itioned as a treatment for erectile dysfunction, and is now
known by the trade name of Viagra (14).

As is the case with the aforementioned drug, until now
most cases of drug repositioning are the result of seren-
dipitous observations. One of the few successful systemat-
ic approaches was performed by Keiser et al. (15) where a
network of drug—target connections was constructed by
representing target similarity in terms of respective
ligand structural similarities. This knowledge was used
to construct a network of predicted drug—target connec-
tions implying novel targets for known drugs. Another
example was that of Xie er al. (16) in explaining the
off-target effects of the CETP inhibitor Torcetrapib that
was taken out of phase III clinical trials after it was dis-
covered to have significant side-effects. Their work
revealed a complex network of interactions with up to
twelve putative off-targets.

Plenty of data on this topic are publicly available, often
free for academic users. However, it is scattered over dif-
ferent resources, which only have a small overlap.
Therefore, a comprehensive analysis of the available
data was not possible until now. PROMISCUOQOUS is an
exhaustive network-focused resource of protein—protein
and protein—drug interactions enriched with side-effects
and structural information which aims to provide a
uniform data set for further analysis, integrating basic
graph theoretical analysis methods. This resource forms
a unique starting point for indication finding and
drug-repositioning. Furthermore, it enables the explor-
ation and understanding of off-target-effects and the
general analysis of the interplay between drugs and
targets.

DATABASE
Integrated data

PROMISCUOUS contains three different types of entities:
drugs, proteins and side-effects. Proteins are retrieved
from UniProt (17) and displayed with synonyms and
organism information. If available, 3D-structures from
PDB (18) and EC-numbers (19) are given. About 25000
drugs from SuperDrug (20) were integrated into the
database and assigned metadata as ATC-codes (WHO-
classification: Anatomical Therapeutic Chemical) (21),
structure information and synonyms. A total of 1100
different side-effects related to the drugs contained in
PROMISCUOUS were collected from SIDER (22) and
integrated into the dataset.
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The function of a drug or protein (target) in an
organism results from its interactions with other
entities. PROMISCUOUS integrates relations be-
tween drugs, targets and side-effects as depicted schemat-
ically in Figure 1. The entities contained in
PROMISCUOUS are connected to each other through
drug—target, drug side-effect, protein—protein and drug—
drug relations.

To provide a comprehensive dataset of drug—target
relations, PROMISCUOUS integrates drug—target rela-
tions from the extensive databases DrugBank (23),
SuperTarget (24) and SuperCyp (25), as well as newly
explored ones as follows. Complete MEDLINE/
PubMed data were downloaded from the NCBI FTP
site in XML format. The LingPipe-package (26) was
used to parse the MEDLINE data from its native
XML format into structured Java objects. To create a
text-index, objects were transferred to the Lucene
package, provided by the Apache Software Foundation
(27). Both tools are free open-source software imple-
mented in Java. Two lists were used for the searches
containing the (i) drug- and (ii) target-synonyms. The
indexed data fields were then searched by dynamically
combining the two lists with the query language
provided by Lucene and LingPipe. For completeness,
keywords were searched in the abstracts, titles and
MeSH (Medical Subject Headline) fields.
NER-algorithms (named entity recognition) were
applied to identify drug- and target-entities in the
indexed PubMed abstracts. These entities were linked
to each other by rule-based algorithms and sorted by
their relevance for drug—target relations, e.g. by the
distance between entities. In a further step, the resulting
6300 papers with the highest rank were manually
validated to identify false positives. Therefore, a valid-
ation website was set up where curators were enabled to
login and validate the presumed drug—target relations in
the literature. To put the entities into a cellular context
the drugs and targets contained in the database were
mapped onto 1600 KEGG (28) pathways.

Knowledge about the way target-proteins interact with
each other is necessary in order to optimize drug-action. A
dataset that integrates physical protein—protein inter-
actions from several databases was retrieved from
ConsensusPathDB (29) and integrated into
PROMISCUOUS.

Drugs stored in PROMISCUOUS assume inferred re-
lationships through structural similarity. A server for
drug—target prediction [SuperPred (30)] was formerly de-
veloped in our group and is now used by
PROMISCUOUS to provide the user with drugs which
have a high probability of acting in a similar way on a
target.

The different entities in PROMISCUOUS are intercon-
nected by the relation types described above. They form a
large network consisting of 12000 proteins and 104 000
associated interactions, as well as 21 500 relations connect-
ing 5000 drugs with 6500 target-proteins, often annotated
with PubMed-IDs. This information is enriched by 63 000
side-effect—drug associations and information on protein
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Figure 1. Schematic representation of PROMISCUOUS: the database integrates three types of entities: drugs, targets and side-effects. These are

connected by different types of relationships.

complex composition (31). The database will be continu-
ously maintained and annually updated.

Exploration by user queries

The data delivered by PROMISCUOUS can be queried
through various search forms. The easiest way to search
for a drug is by its name or PubChem ID. Alternatively,
given that drugs in PROMISCUOUS are classified by
ATC-code makes it possible to find drugs with a specific
desired medical indication. As stated, knowledge on
side-effects can be extremely useful in drug-repositioning;
therefore searching drugs by their side-effects has also
been implemented in PROMISCUOUS. Targets can be
queried by the protein name and different commonly
used identifiers such as Uniprot ID, Accession number,
PDB ID or KEGG ID. Where proteins were assigned
EC-numbers, these also can be used as search terms.
PROMISCUOUS can also be explored by metabolic
and signalling pathways. These are retrieved from
KEGG via web service. Targets for which drug-target

relationships are available are highlighted; information
on drugs addressing these relationships are displayed by
hovering the mouse pointer above them. Information
on pathway affiliation is available for every drug or
target. To facilitate the exploration of PROMISCUOUS
a ‘pin board’ was implemented. It enables the user to store
drugs, targets and pathways of interest in order to save
the search and repeat it later in the same session.
Alternatively, the user can choose one or more objects
stored in the ‘pin board’ and load them into the network
visualization as discussed below.

Network-based exploration of the data space

For a scientific yet intuitive way of exploring and handling
the data a Java plug-in for interactive network visualiza-
tion was developed. The interface represents database
entities (drugs, targets and side-effects) as nodes in a
network with edges representing the relations between
them. Starting from an arbitrary set of drugs and
targets, this network can be explored interactively. By



double clicking a node neighbouring nodes are loaded into
the network in real time. That allows users to construct a
personalized complex network of drug—target side-effects
data. Furthermore, detailed information about nodes and
edges, as well as additional features are available via the
bar on the right side of the applet (Figure 2). For example
basic graph properties (Betweeness, Degree, Clustering
Coefficient) for the proteins in the display and the
complete protein—protein-interaction-network can be
calculated. It is possible to save the user-defined network
as an XML file to the local client at any time and to load
this XML representation into the interface again later on.

EXAMPLES OF USE

The following two use cases illustrate the various features
of PROMISCUOUS.
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Case study 1: Memantine and Amantadine: use of the
PROMISCUOUS drug similarity feature

Memantine is a drug prescribed for dementia in patients
with Alzheimer’s disease. It acts as a non-competitive
antagonist for N-methyl-p-aspartate (NMDA) glutamate
receptors. One of its known side-effects is vomiting; in this
case study a possible explanation is sought for this
side-effect. Starting with Memantine as a drug search,
one hit is found (Figure 3a). By opening the interactive
network visualization tool, Memantine is shown with a
subset of its targets and side-effects, among them the
NMDA glutamate receptor and vomiting as a side-effect
(Figure 3b). Next, similar drugs to Memantine are loaded
into the network by first clicking on the drug and then on
the button labelled ‘show similar drugs.” One of them, the
anti-Parkinson drug Amantadine, shares the NMDA glu-
tamate receptor as a target with Memantine (Figure 3c).
Besides this receptor, Amantadine targets the Dopamine-
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Figure 2. Network visualization interface. (1) The main window enables the user to view and manipulate the drug-target side-effects network. By
double clicking a node neighbour nodes are loaded into the current network. (2) The current state of the network can be saved at any time into an
XML file. (3) The side bar shows context sensitive information about highlighted nodes, outlinks to more detailed information tabs, groups of
highlighted nodes and graph/node properties. (4) To establish a clear view of the network the user is able to manipulate the display style of the
nodes, to fix the view, zoom in and out and to alter the spring constant of the edges. (5) The nodes can be represented by different drawing styles. If
a PDB structure of a target is available, the target is an icon like representation of the crystal structure. The nodes can be hidden and redrawn.
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2-Receptor, known to be linked to vomiting (click on
Amantadine and then on the button labelled ‘show neigh-
bours’) (Figure 3d). Based on the fact that similar drugs
often act on the same targets, one can assume that
Memantine may also act on the Dopamine-2-Receptor,
thereby causing vomiting as a side-effect.

Case study 2: Mirtazapine: use of the PROMISCUOUS
side-effect similarity feature

Mirtazapine is an antidepressant for which 184 side-effects
are detailed in PROMISCUOUS. Based on this side-effect
information, a search for related drugs can be performed
in the network exploration tool. After selecting a drug, for
example Mirtazapine, a list of other drugs sharing
side-effects with it can be retrieved by clicking on ‘show
drugs with shared side-effects’ (Figure 4). The list is sorted
based on the number of shared side-effects. The drugs
with the highest numbers of shared side-effects are
expected to act on similar targets. Loading the four
drugs with the most shared side-effects (Fluoxetine,
Venlafaxine, Paroxetine, Pregabalin) indeed shows that
three of them not only share side-effects but also their
targets (serotonin receptors) and cytochromes with
Mirtazapine. This demonstrates that this feature is able
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CONCLUSIONS AND FUTURE DIRECTIONS

With PROMISCUOUS we developed a rich source of
information about drug and target related interactions.
The database not only contains drug—target interaction
data, but also protein—protein interaction and drug side-
effect data, which have proven to be useful for drug
repositioning. This information is mapped to its biological
context via KEGG pathways. The integrated network
visualization tool allows the network of the intended
target to be explored in an intuitive way. Additionally,
the implemented features like showing common neigh-
bours, computing graph properties, selecting drugs with
the same ATC-codes and loading similar drugs allow
interactive analyses to be performed on the network.
These analyses have proven to be useful in order to
identify candidates for drug repositioning. However, due
to the complex nature of drug—target interactions these
candidates have to be validated and tested experimentally.

Currently, the constructed network can be saved as a
proprietary XML file. Soon, supporting of common file
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Figure 3. Case study 1-—use of the PROMISCUOUS drug similarity feature. The red circles depict where to click in order to reproduce the example.
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formats such as XGMML or SBML is planned to be im-
plemented in order to be compatible with other network
visualization software like Cytoscape (32).
PROMISCUOUS is publicly available without registra-
tion; it is licensed under a Creative Commons Attribution-
Non-commercial-Share Alike 3.0 License.
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