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ABSTRACT

Although the capability of DNA to form a variety of
non-canonical (non-B) structures has long been
recognized, the overall significance of these alter-
nate conformations in biology has only recently
become accepted en masse. In order to provide
access to genome-wide locations of these classes
of predicted structures, we have developed non-B
DB, a database integrating annotations and analysis
of non-B DNA-forming sequence motifs. The
database provides the most complete list of alter-
native DNA structure predictions available,
including Z-DNA motifs, quadruplex-forming
motifs, inverted repeats, mirror repeats and direct
repeats and their associated subsets of cruciforms,
triplex and slipped structures, respectively. The
database also contains motifs predicted to form
static DNA bends, short tandem repeats and
homo(purineepyrimidine) tracts that have been
associated with disease. The database has been
built using the latest releases of the human, chimp,
dog, macaque and mouse genomes, so that the
results can be compared directly with other data
sources. In order to make the data interpretable
in a genomic context, features such as genes,
single-nucleotide polymorphisms and repetitive
elements (SINE, LINE, etc.) have also been
incorporated. The database is accessed through
query pages that produce results with links to the
UCSC browser and a GBrowse-based genomic
viewer. It is freely accessible at http://nonb.abcc
.ncifcrf.gov.

INTRODUCTION

The ability of certain DNA sequences to adopt alternative
conformations, in addition to the canonical Watson—Crick
right-handed double helix, has long been recognized (1).
Indeed, a large number of studies have documented the
formation of alternative (non-B) DNA structures by bio-
physical methods, including X-ray crystallography (2-4),
nuclear magnetic resonance (NMR) spectroscopy (5) and
circular dichroism (6). Other methods, such as the detec-
tion of single-stranded bases upon non-B DNA structure
formation by chemical and enzymatic probes and the re-
laxation of negative supercoiling by two-dimensional gel
electrophoresis have played a major role in revealing the
formation of non-B DNA conformations in biological
systems (7-9).

Repetitive DNA motifs may fold into non-B DNA
structures. Specifically, inverted repeats can adopt cruci-
form structures, runs of alternating purine—pyrimidine
bases are able to switch from the right-handed B- to the
left-handed Z-DNA helix, homo(purincepyrimidine)
tracts with mirror repeat symmetry may fold into several
types of intramolecular triplexes, four sets of three, four or
five guanines, each interrupted by ~1-7 bases, can form
highly stable, polymorphic, quadruplex structures and
direct repeats can give rise to loops or hairpins through
the misalignment of complementary strands, also known
as slipped structures (10).

A number of bioinformatic searches have been con-
ducted with the aim of identifying the biological relevance
of putative non-B DNA structures in mammalian and
other genomes (1). These studies support the notion
that the secondary structure conformational domain,
rather than the underlying sequence symmetry, often con-
tributes to the control of diverse biological functions,
including replication, transcription, immune response
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(11), recombination and antigenic variation in human
pathogens (1,12). Concomitant to this notion, a number
of studies have provided circumstantial evidence for the
involvement of DNA secondary structures in inducing
genetic instability, both in model systems (13—15) and in
association with human genetic disease (16-20), including
genomic regions that do not contain known genes, sug-
gesting that deeper functional annotation across these
regions is warranted. Therefore, the need has arisen to
provide the scientific community with a tool that offers
a systematic cataloguing of all predicted sequences cur-
rently known to potentially form alternative DNA con-
formations. The non-B DB database bridges this gap by
providing a resource for searching, mapping and
comparing non-B DNA-forming motifs among various
mammalian species.

RESULTS
Non-B DB versus existing databases

To date, several reports have detailed methods aimed at
enumerating and evaluating predicted non-B DNA-
forming elements from genomic sequences, including
QuadBase (21), TTS (22), TRF (23) and others (docu-
mented at  http://nonb.abcc.nciferf.gov/Resources)).
These reports use various consensus-based scanning
methods for identifying one specific class of predicted
non-B DNA structure. In some cases, the identified
motifs are screened for the presence of other overlapping
functional motifs, such as Spl binding sites and CpG
islands (24). In other cases, the resulting motifs can be
searched by genomic position and scanned for the
presence of other nearby non-B DNA predicted features
[e.g. triplex sequences near quadruplexes (22)]. More
recently, analyses that incorporate thermodynamic
values into the overall scoring method (25-27) have been
reported. Together, these resources provide an important,
yet partial, view into the complexities of locating and
characterizing the many different sequence motifs that
have the potential of forming non-B DNA structures.
Our database expands on these functionalities by
including all classes of predicted non-B DNA-forming se-
quences and by using the latest genome assemblies of
human, mouse and other mammalian species. The non-B
DNA data are available with current genomic annotation
data and polymorphism information. Importantly, non-B
DB provides the capacity to visualize the data in a
genomic context that is fully integrated with other
genomic features, such as genes and single-nucleotide
polymorphisms (SNPs). The same interface allows for
the users to upload their own annotation data, which
are displayed alongside the in-house data through the
PolyBrowse and UCSC interfaces.

One of the main difficulties in developing and
evaluating algorithms that predict the likely candidates
for each class of non-B structures is the lack of large col-
lections of experimental data that have validated their for-
mation in vivo. Although most non-B DNA structures can
be formed under in vitro conditions, the identification

of such conformations in vivo and the elucidation of par-
ameters that govern their B to non-B equilibria have pre-
sented formidable challenges. In addition, these equilibria
are influenced by local superhelical density, the presence
of nearby DNA unwinding element complexes (DUESs)
(28), the transcriptional status, nucleosome assembly and
other tissue/temporally regulated biological processes. In
light of these considerations, we have taken the approach
of using rather broad and general identification methods
based exclusively on sequence features; thus, although
subsequent filtering of the sampled data is straightforward
because of the flexibility provided by the database, our
current criteria are expected to include a subset of both
false positive and negative hits.

Non-B DB: key features

We have previously reported the construction of a
database containing information on mouse indel poly-
morphisms (30). Herein, we have extended that system
to include motifs with the potential to form non-B DNA
structures. A number of studies in vitro (31-34) and in vivo
(29,35-38) have indicated that the structural transition
from B to non-B DNA is assisted by unrestrained
negative supercoiling. In mammalian cells, the global
steady-state levels of negative supercoiling vary depending
on chromosomal location (39), but are expected to
increase transiently by processes, such as transcription,
replication and repair, that entail separation of the com-
plementary strands and thus affect nucleosome occupancy
(29,38,40-42). However, because the kinetics of these
processes may vary among cell types and various develop-
mental stages, an assessment of the probability that a
defined chromosomal sequence might exist in the non-B
form is currently not available. Indeed, only limited
overlap has been reported between the predicted Z-DNA
formation based on in silico thermodynamic predictions
and genomic loci bound to the Za domain of ADARI,
which displays high specificity for Z-DNA (43). Thus, a
combination of factors, including nucleosome occupancy,
negative supercoiling, matrix attachment sites, replication,
transcription and repair may underlie B to non-B
equilibria in vivo. In the absence of such information,
our search algorithms were based solely on sequence rela-
tionships derived from in vitro data.

The general approach involves running a scanning
application for each specific predicted non-B DNA class
against each chromosome (Table 1), including
G-quadruplex motifs, alternating purine—pyrimidine se-
quences, mirror repeats, inverted repeats and direct
repeats. Although the ‘Mirror Repeat’ class as a whole
has not been reported to form specific non-B DNA struc-
tures, it is included in the database as it is used as a first
step in the identification of triplex-forming motifs, i.e. the
subset of mirror repeats with purine/pyrimidine content.

The output file in GFF format (http://nonb.abcc
.nciferf.gov/FAQs/) is then loaded into a MySQL
database. The data from all such scans are merged and
can be queried and displayed using our local instance of
GBrowse called PolyBrowse (44) at http://pbrowse3.abcc
.nciferf.gov/cgi-bin/gb2/gbrowse/human_37 and several
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Table 1. Criteria for predicting non-B DNA-forming motifs in non-B DB

DNA feature Subset of ‘DNA feature’

forming non-B DNA

Search criteria for ‘Subset
of DNA feature’

Search criteria

Inverted repeat Repeat: 10-100 nt Cruciform motif
Spacer: 0-100 nt

Repeat: 10-100 nt

Repeat: 10-100 nt
Spacer: 0-3 nt
Repeat: 10-100 R
or Y nt

Spacer: 0-8 nt
Repeat: 10-50 nt
Spacer: Ont

Mirror repeat Triplex motif

Spacer: 0-100 nt
Repeat: 10-50nt
Spacer: 0-5nt

Direct repeat Slipped motif

Z-DNA repeat >5 units of CG/TG or CG/CA repeats Whole set As per the whole set

G-quadruplex Four identical blocks of (3-7) G nt, Whole set As per the whole set
forming repeat each block separated by 1-7nt

A-phased repeat >3 runs of A-tracts with Whole set As per the whole set

10-bp phasing

Inverted repeat: a pair of DNA sequences, each 10-100 nt in length and separated by a spacer of 0—100 nt, whose sequence composition on the same
strand of DNA is such that the bases of the first repeat, when read in the 5'—3’ orientation, are complementary to those of the second repeat read in
the 3’—5 orientation. The term ‘complementary’ refers to the Watson—Crick hydrogen bonding scheme, whereby A only pairs with T and C only
pairs with G. Only perfect inverted repeats that conform to this Watson—Crick pairing scheme are considered.

Cruciform motif: the subset of inverted repeat sequences in which the ‘Spacer’ comprises 0-3 bases; due to their proximity, this subset of inverted
repeat sequences may fold-back and form intramolecular, antiparallel, double helices stabilized by Watson—Crick hydrogen bonds, i.e. a cruciform
structure (1,34).

Mirror repeat: a pair of DNA sequences, each 10-100nt in length and separated by a spacer of 0—100 nt, whose sequence composition on the same
strand of DNA is such that the bases of the first repeat, when read in the 5—3’ orientation, are identical to those of the second repeat read in the
3'—5" orientation (palindrome); only perfectly matching repeats are included.

Triplex motif: the subset of mirror repeat sequences comprising only purines (R = A and G) [or pyrimidines (Y = C and T)] on the same strand of
DNA, and which are separated by few (0-8) nt (‘Spacer’). These motifs are able to form various intramolecular three-stranded (triplex, H-DNA)
isoforms stabilized by Hoogsteen hydrogen bonds (1,52,53). Only ReY-containing mirror repeats that may yield A:AeT and G:GeC base triplets
(colon indicates Hoogsteen hydrogen bonded bases; dot indicates Watson—Crick hydrogen bonded bases) for the R:ReY type of intramolecular
triplexes and T:AeT and C":GeC triplets for the Y:ReY type of intramolecular triplexes are included since these are considered the most stable
triplet combinations.

Direct repeat: two tracts of DNA, each comprising 10-50nt and separated by 0-5nt, having the same sequence composition.

Slipped motif: the subset of direct repeat sequences without a spacer (tandem repeats); when aligned in an out-of-register fashion, tandem repeats
may give rise to single-stranded loops and/or hairpins (1).

Z-DNA motif: five or more tandem repeats, each comprising an alternating pyrimidine—purine dinucleotide motif, in which the pattern YG is
maintained on at least one of the DNA strands; examples include (CGeCG)4, (CAeTG)s and [(TG)3(CG)4e(CG)4(CA)s]; these motifs may adopt the
left-handed Z-DNA conformation (3,54).

G-quadruplex-forming repeat: four blocks, each containing the same number (1) of G bases (n can vary from 3 to 7), on the plus or minus strand,
separated by 1-7nt; this type of DNA sequence may adopt quadruplex structures (2); overlapping tracts of four G-blocks are also considered.
A-phased repeat: three runs of A bases (A-tracts) in phase with the helical pitch of the DNA double-helix, i.e. 10 bp; an A-tract is defined as a set of
AeT base-pairs without a TpA step (47,55-57); three or more tracts of Az 7, T3 7, AAATTT, AAATTTT and AAAATTT (in any combination) on
the plus or minus strand, whose centers are separated by 10 bases, are considered; since A-tracts induce static bends in the DNA double helix, the
overall DNA superhelix is expected to display either a left-handed or a right-handed writhe (47,55-57); as mentioned, all the search criteria used
herein do not allow for interruptions in the repeats and no thermodynamic information was factored-in in the algorithms used.

GFF-based query tools at http://nonb.abcc.nciferf.gov
(Figure 1). Importantly, the result pages produced from
the queries contain links that allow the user to switch to
the genome browser view of that feature, as well as a view
that provides the sequence and other annotations for each
feature.

These data represent the basis for the non-B DNA an-
notation information for each species. The scanning
criteria do not allow for mismatches within the repeat
segments; however, this feature may be added as informa-
tion becomes available as to the acceptable structural tol-
erances for each mismatch case. Also, currently not
included are very large palindromes (>100kb), such as
those that characterize the Y chromosome and whose re-
combination is known to lead to spermatogenic failure
(45,46). Nevertheless, some aspects related to the
presence of mismatches are presented in the polymorph-
ism analysis described below.

After scanning across different mammalian genomes,
the numbers of ecach of the predicted classes of non-B
DNA structure-forming motifs appear to be quite
variable (Table 2).

As the overall base composition between different mam-
malian genomes is rather similar (data not shown), the
observed differences in the numbers of predicted non-B
DNA motifs could simply result from the altered arrange-
ment of bases from one species to another. Alternatively,
variations in the population of classes of repetitive
elements (SINE, LINE, etc.) among species, or other
unknown features, might also contribute to the observed
differences. This interspecies variability appears to be uni-
formly distributed along the entire chromosomes, rather
than concentrated in large repetitive clusters (data not
shown). Whether these differences play any role or contrib-
ute to conferring species-specific differences remains to be
investigated.



D386 Nucleic Acids Research, 2011, Vol. 39, Database issue

A Search By Feature

Allows users to search the non-B DB by feature. A feature is defined as any of the following: Z-DNA
motifs, g-quadruplex forming motifs, inverted repeats, mirror repeats and direct repeats and their
associated subsets of cruciforms, triplex and slipped structures, respectively.. To learn more about
how these features have been identified, click here.

A field with an asterisk (*) before it is a required field.

Species: | Human 37 2|

Classes: [ nonbbDAs =] (2)
———

() search By Chromosome (*) Search By Gene

*Gene (Official Symbol): |myc

Z-DNA_Motif

Inverted_Repeat

Cruciform_Motif

Direct_Repeat

Slipped_Motif

Mirror_Repeat .
Triplex_Motif v

*Feature Types to Retrieve: G-Quadruplex_Furming_Repeat[‘

*Qtype: | all features from the region 2]

Output Style: [full )

[Submit) [:Flestart)

B Your search has returned 9 matches* in non-B DB
Downloads: Data, Links and Actions:
Species : Human 37
Gene o MYC
CFF Coordinates : 12B748316-128753674
. PolyBrowse, UCSC Genome Browser, Details
y Links H—. —
< 1 bioDBnet Name: chrl_120740616_GQFR_wswd
3 Type: G-Quadruplex_Forming_Repeat
ab Description:
Delimited " : rospesas ABCC
View SQL Query Start Over Modify Search Position:  civ:126748616. 128748637 (- srand)
Length: 2
Seore: °
. P . BestScore: 17
*Please note that we have provided only snapshots for very large results. BestStruct:  G3-N6-G3-N1-G3-NZ-GY(ATCAGC/A/CT)
The GFF file or tab-delimited file contains all the results and is a Length:
faster way of retrieving all your data. m fm
_dbid: nonb:database
>chr8_12874861¢_GQFR_vswd class=Sequence position=chrf:128749616..128748637 (- strand)
GGGATCASC GGOAGGGCTS GG
Direct Repeat - 1 Result
(Click to View)

G-Quadruplex Forming Repeat - 4 Results

(Click to View)

Feature chromosome chrom start chrom stop strand Annotatigh oo~ location
G-Quadruplex_Forming_Repeat chrg8 128748616 128748637 - A P L
G-Quadruplex_Forming_Repeat chrg 1287349918 128749935 + A P L
G-Quadruplex_Forming_Repeat chrB 128750234 128750263 + A P L
G-Quadruplex_Forming_Repeat chrg8 128750677 128750656 - A P L

Inverted Repeat - 2 Results

Figure 1. (A) Non-B DB user interface. (B) Query results page. Non-B DB user interface (A) three query modes are available at the Genomic
Database Search Tools page of the non-B DB web interface: Search by Feature (shown), Search by Feature Attributes, and Search by Location
(a feature browser). In this example, all non-B DNA motifs were queried by the gene symbol MYC. (B) Query results and links to PolyBrowse,
UCSC Genome Browser, bioDBnet (51), etc. Users may download the results in GFF format and tab delimited format. Direct access to the sequence
and other annotation information for each of the features is available by clicking on the ‘A’ link (red box).
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Table 2. Statistics for DNA repeats and non-B DNA-forming motifs in non-B DB
DNA feature Human 37 Mouse 37 Dog 2 Chimp 2 Macaque 1
G-quadruplex forming repeat 374545 559280 492 535 314171 298 142
Inverted repeat 1044 533 801242 814080 998249 843889
Cruciform motif 197910 188532 172032 190736 128334
Direct repeat 871045 1593107 968 955 787335 765798
Slipped motif 347969 695150 404750 314516 305285
Mirror repeat 1651723 3431486 1829867 1485135 1455025
Triplex motif 179623 618928 336642 105640 140580
Z-DNA repeat 294320 690276 261012 278928 280982
A-phased repeat 1130731 909653 1241082 1085591 1098030

For the current releases of the five mammalian genomes indicated, the motif searches were performed and the number of features for each class
was counted. According to Table 1, the cruciform motifs represent a subset of the inverted repeat class, the slipped motifs represent a subset of the
direct repeat class and the triplex motif represents a subset of the mirror repeat class.

A caveat concerning the simple assessment and com-
parison of the number of non-B DNA-forming repeats
among species relates to the criteria used and the
counting method. For example, in the G-quadruplex
forming sequences, the pattern of a run of 3Gs followed
by 1-7 bases repeated four times can be extended, as long
as more runs of Gs are encountered, resulting in a single
cluster that has the potential to form many substructures.
This circumstance needs to be considered when comparing
between different reports or methods. Although our
approach identifies this finding as a single cluster in the
database, separate database tables are provided, in which
all possible permutations of the sequence that satisfies the
consensus sequence are reported.

In addition to the non-B DNA predicted motifs, the
database contains other features of the DNA, such as
phased A-tracts that impart static bends to the
double-helix and may be involved in nucleosome
assembly (47), simple tandem repeats (STR) including
triplet repeats whose expansions cause a number of neuro-
muscular disorders (20) and poly(purincepyrimidine)
tracts, which are characterized by high stacking inter-
actions (48). In addition, NCBI-derived features, such as
genes, SNPs and  RepeatMasker  (http://www
.repeatmasker.org/) clements are also included. This
integrated information is critical not only for guiding the
user visually, but also for enabling queries that combine
‘classes’, such as ‘exons’ containing predicted ‘Z-DNA’
forming sequences, etc.

Cross-species comparisons

One of the main features of the non-B DB is the ability to
compare different mammalian genomes for the presence
of non-B DNA-forming motifs. This allows for conserva-
tion of the predicted elements to be evaluated visually.
Figure 2 illustrates this capability by comparing the
presence of G-quadruplex forming motifs in the region
upstream of the MYC locus across the human, chimp,
macaque, dog and mouse reference genomes. In order to
view syntenic regions in other genomes, the liftOver appli-
cation from the UCSC website was used to map 1-kb
fragments along each chromosome to the corresponding
other genomes. These mapped features are called

liftOverlk. Areas where a syntenic match failed to be
identified (i.e. that region was absent in the other
genome, or mapped redundantly) do not show a link to
that species. Other non-B DNA tracks available in
PolyBrowse will be described in more detail elsewhere
(Cer et. al., manuscript in preparation).

Polymorphism analysis

The computed non-B DNA forming elements are likely to
be under-represented in our reference genome as their
underlying repeats may be polymorphic among individ-
uals. Because this type of information may be critical in
the context of gene regulation or predisposition to disease
(48), we used a specific parser to scan both the reference
human genome as well as additional sequence sources,
such as trace reads from the trace archive (http://www
.ncbi.nlm.nih.gov/Traces/trace.cgi) and contigs (http://
www.ncbi.nlm.nih.gov/projects/ WGS/WGSprojectlist.cgi)
from personal genome projects (49), for matches to the
non-B DNA motifs. Each match found in either the ref-
erence or alternate source is then scored for being poly-
morphic or not. Of the sites identified as polymorphic, a
second evaluation is made to determine whether the poly-
morphism would affect the motif underlying the putative
non-B  DNA structure. The results of this scan are
incorporated into the database as a series of separate
tracks (Figure 3B, trace GPlex tracks). Additional infor-
mation can be gathered by extending this type of analysis
to sequence alignments using closely related species.
Currently, only the G-quadruplex forming motif
supports this type of query.

In order to provide access to the back-end database, we
have leveraged two existing tools from the bioinformatics
community. The first is a BioPerl (50) set of methods,
which is used to query genome databases in various
ways, such as by position, by class, or by attribute. This
same set of utilities is used within the context of
PolyBrowse (44), so that visualization of the genomic
features is made available. In addition to linking the
outputs from the query tools to the browser for visualiza-
tion, we also provide links allowing the returned data to
be displayed in the familiar UCSC (http://genome.ucsc
.edu/) genome browser (Figure 3C), as well as links to
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Figure 3. (A) PolyBrowse view of some of the non-B DNA features in the human M YC gene. (B) G-Quadruplex polymorphism tracks. (C) UCSC view
of tracks. Links to PolyBrowse and UCSC browsers: (A) display of PolyBrowse rendering the M YC gene and its promoter with some of the non-B
DNA motifs tracks with the PuPy [poly(purineepyrimidine)] and polymorphism tracks turned on. Several other tracks include features computed at the
Advanced Biomedical Computing Center (ABCC), such as STRs, base composition, physical DNA characteristics, mapping, as well as the NCBI
derived features, including genes, SNPs, cytogenic markers assembly information, RepeatMasker elements, etc. (data not shown). (B) Display of the
MYC gene in PolyBrowse showing some of the polymorphism information in non-B DB. Below the gene and mRNA tracks, the searched motifs in the
reference sequence are displayed (teal). Below them, the alignments from the trace archive are shown (blue). Some of the predicted motifs are found
only in the trace sequences. An additional track shows specific G-quadruplex motifs in which all of the observed trace files contained mutations
disrupting the G-quadruplex motif. (C) Display of the M YC gene at the UCSC human genome browser (GRCh37/hgl9 assembly) as linked to non-B

DB from the search shown in Figure 2B. Some of the non-B

DNA motifs from non-B DB can be seen in the red rectangular box.
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our bioDBnet database warehouse (51), which contains
gene-centric information derived from several sources,
and additional links.

CONCLUSIONS

Herein, we present a database containing the locations of
motifs predicted to adopt the most common non-B DNA
structures. The database can be used to browse specific
genomic regions for the possible contribution of non-B
DNA-forming elements to inherent biological observa-
tions derived from the region. In addition to the locations
of predicted motifs, the database also contains poly-
morphism information about each of the test sequences,
as well as additional candidate sequences not present
within the reference genomes. The database is accessible
using both query pages and PolyBrowse. Additional
genomes are in the process of being added to the system
and will continue to be updated and added as they become
available. Input from the community regarding the
addition of other tracks, enhanced algorithms for the de-
tection or scoring of the identified motifs or additional
query tools are welcome and will be incorporated into
the system as appropriate. Further additions, such as a
community-based curation capability and the addition of
other validation information through literature mining
approaches are also under consideration.

We anticipate that significant improvements to our
methods will be made in the future by incorporating ener-
getic, and other secondary metrics, to the current predict-
ive algorithms. Although significant biological knowledge
would be required, such as localized superhelical density,
nucleosome positioning, etc. (see above), the overall goal is
to associate a likelihood index with each of the predicted
locations for each of the non-B DNA-forming classes.
Finally, as reliable methods are expected to be developed
that identify genome-wide data on non-B DNA structures
in vivo and some of the biological parameters involved, the
resulting data sets can be used to train the prediction tools,
resulting in improved predictive capabilities for each type
of non-B-forming classes.
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