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ABSTRACT

MPromDb (Mammalian Promoter Database) is a
curated database that strives to annotate gene pro-
moters identified from ChIP-seq results with the
goal of providing an integrated resource for mam-
malian transcriptional regulation and epigenetics.
We analyzed 507 million uniquely aligned RNAP-II
ChIP-seq reads from 26 different data sets that
include six human cell-types and 10 distinct mouse
cell/tissues. The updated MPromDb version
consists of computationally predicted (novel) and
known active RNAP-II promoters (42 893 human
and 48 366 mouse promoters) from various data
sets freely available at NCBI GEO database. We
found that 36% and 40% of protein-coding genes
have alternative promoters in human and mouse
genomes and �40% of promoters are tissue/cell
specific. The identified RNAP-II promoters were
annotated using various known and novel gene
models. Additionally, for novel promoters we
looked into other evidences—GenBank mRNAs,
spliced ESTs, CAGE promoter tags and mRNA-seq
reads. Users can search the database based on
gene id/symbol, or by specific tissue/cell type and
filter results based on any combination of tissue/
cell specificity, Known/Novel, CpG/NonCpG, and
protein-coding/non-coding gene promoters. We
have also integrated GBrowse genome browser
with MPromDb for visualization of ChIP-seq
profiles and to display the annotations. The current
release of MPromDb can be accessed at http://
bioinformatics.wistar.upenn.edu/MPromDb/.

INTRODUCTION

The mammalian transcriptome and proteome is far more
diverse than expected from one gene!one mRNA!one
protein paradigm (1). This diversity arises due to the
generation of multiple transcripts from a gene using alter-
native transcriptional and splicing events. Alternative
transcriptional events that involve use of multiple pro-
moters and/or transcriptional termination result in
multiple pre-mRNAs from the same gene that can
further undergo alternative splicing to generate a
plethora of transcript variants corresponding to a single
gene (2). Therefore, a gene can yield transcript variants
that differ in either their regulatory UTRs or/and
protein coding regions; thereby expanding the complexity
of mammalian genomes (3–5). In particular, the role of
alternative promoter activity is critical in transcriptional
regulation, as their precise utilization allows the balanced
expression of corresponding pre-mRNA variants in differ-
ent cell and/or developmental contexts. In fact, recent
evidence suggests that at least half of the mammalian
genes use alternative promoters generating multiple tran-
script variants (3,5). Therefore, identifying all possible
gene promoters, their usage and epigenetic modification
states in specific cell populations, tissues and their devel-
opmental stages and disease conditions is critical to under-
standing a diversity of physiological processes associated
with normal and diseased states.

Several high-throughput technologies, such as cap
analysis gene expression (CAGE), chromatin immunopre-
cipitation (ChIP) followed by microarray analysis (ChIP–
chip), (6,7), and more recently, ChIP coupled with
sequencing (ChIP-seq) (8) and sequencing of cDNAs
(RNA-seq) (5), are enabling the genome-wide identifica-
tion of alternative promoters and their patterns of use.
However, these high-throughput approaches need to be
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applied with caution because of the inherent problems
with each method (9). In our recent study, we have
shown that a combination of ChIP-seq and computational
technique provides a better approach to annotate active
promoters (9,10). Although EPD database (11) provides
curated promoter sequences for eukaryotic organisms, it
does not provide promoter activity information at tissue/
cell centric level. In this update of MPromDb we have
removed ChIP–chip results and added active RNAP-II
promoters identified after analyzing six different cell
types of human and 10 different cell/tissue types of
mouse ChIP-seq experiments performed with RNAP-II
antibody. In addition, we have added enrichment profile
of various transcription factors obtained from ChIP-seq
data sets. These promoters along with their annotations
are provided as a user-friendly database, where each
known and ChIP-seq promoter is linked to a new interface
for visualization of enrichment profile. Here, we describe
the updates of our MPromDb, which enables users to
study promoter activity at tissue/cell centric level for
human and mouse genome.

NEW FEATURES

Statistics of the promoters identified using ChIP-seq
data sets

In this update, we have added (i) a comprehensive
knowledgebase of known and novel promoters, (ii) pro-
moters identified from RNAP-II ChIP-seq experiments,
(iii) advance search and filter options and (iv) visualization
of ChIP-seq profiles and promoters using GBrowse (12).
The comprehensive promoter knowledgebase was
generated from various known gene models (RefSeq,
Vega, Ensembl, MGI and UCSC Known genes), predicted
gene models (AceView, Tromer, MGC, SGP, SIB,
Genscan, Geneid, N-SCAN and Augustus Abinitio),
Orthologous gene model (XenoRef), GenBank mRNAs,
spliced ESTs, CAGE promoters and mRNA-seq tags
(Figure 1). The gene models, mRNAs and spliced ESTs
were downloaded from UCSC Genome Browser database
(13), CAGE promoters location were downloaded from
FANTOM4 project (14) and mRNA-seq raw reads were
downloaded from NCBI GEO database. We have also
added promoter regions of recently discovered non-coding
genes class (lincRNA) transcribed by RNAP-II (15,16).
The total number of records in the knowledgebase can
be found in Table S1.

The RNAP-II ChIP-seq data sets includes the data
generated at our lab (9) and data sets from various pub-
lished and unpublished studies available freely at NCBI
GEO database. The human RNAP-II ChIP-seq data sets
include six different cell lines: CD4+T, HeLa S3, K562,
NB4, Lymphoblastoid and Jurkat, whereas mouse
samples include five different tissues and five different
cell types: brain, liver, lung, spleen, kidney, Embryonic
Stem Cell (V6.5), Mouse Embryonic Fibroblasts B4,
Mouse Embryonic Fibroblasts B6, Bone Marrow-
derived macrophages and 3T3-L1 (9,17–23). The NCBI
GEO accession numbers of the data sets are provided in

Table S2. On the downloaded ChIP-seq data sets, we
apply our pipeline (Figure 1) that includes alignment,
identification of significant enriched regions, promoter
prediction and annotation. Bowtie program (24) was
applied to map reads to the reference genome (mm9
version for mouse and hg18 version for human),
allowing up to two mismatches. Only uniquely mapped
reads were considered for further analysis. We obtained
174 777 943 and 333 192 049 uniquely mapped reads for
mouse and human genome respectively (Table S3).
Significant peaks were identified using our three steps pro-
cedure as described in (9) at P-value=0.01. After identi-
fication of significant RNAP-II bound peaks we apply our
recently published program for prediction of RNAP-II
bound promoters (10). The peak identification and
promoter prediction of each sample is summarized in
Table S3. Following promoter prediction, we performed
promoter annotation using our reference promoter
knowledgebase as summarized in Figures S1 and S2.
Finally, we identified 48 366 mouse and 42 893 human pro-
moters bound by RNAP-II where 39% and 42% of the
promoters in mouse and human respectively were
annotated as ‘Novel promoters’ (Table 1). In case the pre-
dicted ChIP-seq promoters lie within �1 to 0.5 kb of
known TSS or within the first exons of known transcripts,
they are defined as ‘Known promoters’ otherwise they are
considered as ‘Novel promoters’. It is worth noting that
65% and 90% of novel promoters in mouse and human,
respectively, are supported by additional sources (novel
gene models, mRNAs, spliced ESTs, CAGE tags and
Orthologous gene model) (Table S4).
Furthermore, our analysis has identified promoters for

15 493 and 14 266 protein-coding genes in mouse and
human respectively. A gene is defined as protein coding
if it has at least one protein-coding transcript in RefSeq/
Vega gene models, or else it is a non-coding gene. Please
note that a protein coding gene can generate transcript
variants that are non-coding RNAs. We also observed
that 40% and 36% of protein coding genes in mouse
and human are expressed from alternative promoters
(Table 2). Surprisingly, 37% of promoters in mouse
and 43% of human promoters were identified in a
single cell/tissue suggesting that they are cell/
tissue-specific promoters. Additionally, we analyzed the
CpG-richness and bidirectionality of the promoters and
found that 51% and 64% of promoters are CpG-rich
and there are 1801 and 1501 bidirectional promoters
in mouse and human respectively. Additionally, we
also provide significant enrichment profiles of various
factors (Mouse – OCT4, CEBPa, CHD7, c-Myc,
CTCF, ESRRB, FOXA1, FOXA2, GFP, KLF4,
n-Myc, NR5A2, P300, Rbbp5, SETDB1, SIRT1,
SOX2, STAT3, STAT4, STAT6, SUZ12, TBP, TBX3,
TCFCP2I1, WDR5, ZFX; Human – OCT4, CBP,
CTCF, ETS1, KLF4, NANOG, P300, PCAF, PHF8,
PPARG, RUNX, SOX2, STAT1, TFII, Tip60,
ZNF263, SUZ12, MOF, IGF1R, NFkB) calculated
from different published and unpublished ChIP-seq
datas ets (Table S5A and B).
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Figure 1. The block diagram and workflow of updated MPromDb database. Deep sequencing datasets were downloaded from NCBI GEO server
and processed by our analysis and annotation pipeline. The identified promoters are deposited in MPromDb tables. Novel promoters are compared
to various existing experimental and predicted gene promoter regions and status of novel promoters is deposited in the relational tables. The database
is accessed through a user-friendly webpage. The database is integrated with open source genome browser (GBrowse) to visualize the promoter and
various ChIP-seq enrichment profiles.

Table 1. Summary of RNAP-II bound promoters identified in various tissues/cell types for human and mouse using ChIP-seq data sets

Species Tissue/cell type No. of
known
promoters

No. of
novel
promoters

No. of tissue/
cell-specific
promoters

No. of
CpG
promoters

No. of
bidirectional
promoters

No. of
total
promoters

Mouse Brain 15 948 5270 3978 13 864 1373 21 218
Liver 12 319 3189 1642 10 421 1250 15 508
Kidney 15 059 4632 1995 12 879 1348 19 691
Spleen 9089 2121 806 8273 1067 11 210
Lung 15 373 5142 1935 13 986 1374 20 515
Embryonic stem cell(V6.5) 11 895 2880 2745 12 063 1314 14 775
Mouse embryonic fibroblasts B4 10 558 2261 273 10 898 1241 12 819
Mouse embryonic fibroblasts B6 11 887 2761 706 10 886 1237 14 648
Bone marrow-derived macrophages (untreated) 13 320 3977 870 12 038 1298 17 297
Bone marrow-derived macrophages (2 h) 12 647 3713 566 11 846 1294 16 260
Bone marrow-derived macrophages (4 h) 13 119 4041 688 11 926 1292 17 160
3T3-L1 cells (untreated) 8489 1373 113 8597 1038 9862
3T3-L1 cells (Day 1) 8684 1626 154 8803 1072 9310
3T3-L1 cells (Day 2) 8508 1593 174 8415 1042 10 101
3T3-L1 cells (Day 3) 8374 1540 136 8371 1035 9914
3T3-L1 cells (Day 4) 6976 1422 194 6793 848 8398
3T3-L1 cells (Day 6) 4039 1443 927 4030 511 5482
Total 29 517 18 849 17 902 24 587 1801 48 366

Human Jurkat cells 7417 1403 541 7653 792 8820
K562 cells 16 410 8012 6422 16 918 1320 24 422
Lymphoblastoid cells 19 617 8998 6629 20 682 1311 28 615
NB4 cells 12 925 2944 916 13 650 1156 15 869
HeLa_S3 cells 13 982 3502 2101 14 812 1212 17 484
CD4+T cells 14 329 4137 1336 15 740 1220 18 466
CD4+T cells (2 h) 7354 1267 174 7955 882 8621
CD4+T cells (12 h) 11 470 2389 377 12 740 1172 13 859
Total 24 967 17 926 18 496 27 488 1501 42 893
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Database search and visualization

MPromDb as a web-based application has many
layers: the core application (designed in Django), a
backend database (MySQL), a visualization component
(GBrowse) and a web server (Apache) (see
Supplementary File 1). The promoter information corres-
ponding to a particular gene can be retrieved from the
database using Entrez geneid or gene symbol. We also
provide additional search and filter options such as selec-
tion of tissue/cell type, tissue/cell specific promoters,
known/novel promoters and coding/non-coding gene

promoters. The gene search query returns result at two
different levels (see Figure 2, Supplementary File 2,
Supplementary Tables S6 and S7). The first level
provides information (promoter position, CpG type and
bidirectional type) regarding all promoters of the queried
gene that are present in the promoter knowledgebase. The
second level of search result lists all promoters identified
from ChIP-seq data sets for the queried gene. The result of
the search can be downloaded into an excel file. Each
promoter of the search result is linked to the visualization
module. Further, complete list of annotated promoters
can be downloaded from the download link.
Visualization of the promoter position and ChIP-seq
data enrichment profile is implemented using GBrowse
(12), an open source genome browser platform.
GBrowse is simple but highly configurable web-based
genome browser, which provides a fast and customizable
interface for visualizing data that is stored in a backend
database, as well as the data that is uploaded by the user.
GBrowse is lighter than UCSC genome browser and offers
many advantages especially in displaying the results and
tracks. Some of the features unique to GBrowse are:

Figure 2. Screenshots of MPromDb and search results. (A) MPromDb main search page where a user can perform search based on either Entrez
gene id/symbol or specific tissue/cell type and the resulting page is shown in (B) and (C), respectively. (D) User can visualize the ChIP-seq profile
for any promoter displayed on (B) or (C) by clicking on the promoter position link.

Table 2. Alternative promoter usage for active protein-coding genes

in mouse and human

Protein-coding genes Mouse (%) Human (%)

1-promoter genes 9290 (60) 9051 (63.44)
2-promoter genes 3490 (22.5) 3192 (22.37)
�3-promoter genes 2707 (17.5) 2023 (14.18)
Total 15 493 14 266
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glyphs and balloons to represent different features,
organizing features sub categories to more depth, multi-
language support, view GenBank, chado and biosql
feature databases, third party loading. On GBrowse the
identified promoter location and enrichment profile of the
analyzed ChIP-seq data sets are shown (Figure 2D).
Further, users can directly type the genome coordinates
or gene symbol on GBrowse for searching. Users have an
option to turn on/off the tracks that are displayed on the
genome browser.

FUTURE PLANS

In future, we plan to include epigenetic histone modifica-
tions profile identified from ChIP-seq data sets that are
currently available at NCBI GEO and integrate it to our
promoter knowledgebase. We will also continue to collect
RNAP-II and transcription factors ChIP-seq data sets
from a wider variety of tissues and cell types to routinely
update MPromDb. We also plan to include other mam-
malian data sets, and add additional features and search
options to the frontend of the database. In conclusion,
MPromDb will provide integrated transcriptional regula-
tory information for mammalian genomes in an easily ac-
cessible way. We believe that the updates will facilitate
large-scale ChIP-seq data analysis and contribute toward
the elucidation of mammalian transcriptional regulatory
networks.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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