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Let

A(f) = 12]3 s ek(x — Yf(y)dy,
where z, y are points in n-dimensional Euclidean space R" and k(z) is a homogeneous
function of degree —n with mean value zero on |z| = 1, and let B(f) = b(z)f(x).
It is well known (see ref. 1) that if £ and b are sufficiently smooth and b is bounded,
then (AB — BA)(9/dz;) and (8/9z;)(AB — BA) are bounded operators in L?,
1<p< ».

The purpose of the present note is to extend and strengthen the preceding result
and establish some related facts of independent interest. These are stated in
Theorems 2 and 3 below.

TueoreEM 1. Let k(x) have locally integrable first-order derivatives in lxl > 0,
and suppose that the partials of k(x) + k(—zx) belong locally to L log* L in |x| > 0.
Let b(x) have first-order derivativesin L', 1 <r < o. Thenif I <p< »,1<qg< =,
¢~ = p~t 4+ r~! and f is continuously differentiable and has compact support, we have

d
[(AB — BA) a—x,f”" < dil,, (a)

where ¢ 1s independent of f. Furthermore, (AB — BA)f has first-order derivatives
wm L and

&

ox,

where, again, c is independent of f.

THEOREM 2. Let h(x) be homogeneous of degree —n — 1 and locally integrable
m le > 0. Let b(x) have first-order derwatives in L', 1 <r < ». Then,if 1 <p<
o, ] <g< ®,¢g7! = p~t 4 71 h(x) is an even function and

< dflls, )

) = fl b= D0 - b6

C, maps L? continuously into L® and ||C(f)||, < c||grad b||.||fll, S~ |h(x)|dv, where
the integral is extended over le = 1, dv denotes the surface area of ]xl = 1, and
¢ depends on p and r but not on e. Furthermore, as e tends to zero C (f) converges in
norm in LY.

A similar result holds if 4(z) is odd provided that it belongs locally to L log+ L
in 'z| > 0 and that the functions z; h(z), j = 1,2, ..., n, have mean value zero

on !xl = 1. This, however, will not be proved in the present note.
THEOREM 3. Let F(t 4+ is) be analytic in s > 0 and belong to H?, 0 < p < o.
Let S(F)(t) = [ S x(t — u,s)IF” (u + is)l 2du ds]"?, where x(t,s) is the characteristic
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Sfunction of the set s > 0, Itl < 8. Then there exist two positive constants c¢i and ce
depending on p only, such that ci||F(t)||, < ||ISPF)||, < ||F@)|,, where F(t) = B’f’o

F(t + is).

The novelty in the preceding statement is the first inequality for p < 1. A
similar result for the function g of Littlewood and Paley when F has no zeros was
proved by T. M. Flett (ref. 3), whose method we borrow partially. Actually, only
the case p 2> 1 will be needed in this note, but its proof is no less laborious than
that of the general case.

Proof of Theorem 3: We will assume first that F (¢ + 7s) is analyticin s > 0
and that |F| (2 + s»)F —> 0 as (2 + s?) > » for every k > 0. Then, of course,
F belongs to H? for every p > 0. We introduce now some notation. For a function
G defined on the real line we write

+ 1/p
M,(G) = [f_ G”dt] , p>0.

If G is also defined in the upper half-plane, we write
m(G) = sup x(t — u,8)|Gu,s)|, S@) = [Sx(t — u,5)|grad G|du ds]”,
where x(¢,s) is the characteristic function of the set s > 0, Itl < s. By integration

we obtain M2 [S(@)] = 2 S sl grad G’I *dt ds. Now if § is any positive number, we
set G = | F|® then a simple calculation gives

A(G?) = 4|grad G|? )
and an application of Green’s formula yields*
M2(G) = 4 S s|grad G|%dtds = 2 M2[S(G)]. 1)

On account of the definition of G and the analyticity of ¥, we have the following
well-known inequality

M,m(@)] < cMy(@), 0<p< . ()
Now let p > 1, then
8(@?)? = S x(t — u,s)|pG?P~! grad G|%du ds < pm(G)*?—28(G)?,
that is,
S8(@) < pm(@*'8(@), 1<p< = 3)
Nowlet a,8>0,0< e¢<1,ac + B(1 — o) = 1. Then

8@ = S x(t — ws)|grad G|?du ds = a=28=20=7 S (x|grad G*|?)°
(clerad 67| d,

whence from Hélder’s inequality we obtain

s@ < [Ls@ [[Gsen] ™ @
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Let us assume now that we have the inequality

¢ M.(G) = M,[S(G)] ®)
for some r,r > 0. Let0 < g <randp = r/qg. Then (3) applied to G'/? gives

S(@) < pm(GU?)P—18(G17) = pm(Q)@—DIS(GY?),
whence, applying Hoélder’s inequality, we get
M28(G)] < p* My[m(G)*@=DPS(GH7)*] < p? M 1o [S(GYP) 1M 11— [m(G) 4P —D17]
=p* M 2[S(G'?)IM 2 *~P/[m(G)]
and from the last expression, (2), and (5) applied to G'/? it follows that
M2S(@)] < ep® MA[GYVPIM 2P —DIP(G) = cp® M P(G)M 0 ~V7(G)

or M,[8(@)] < ¢, M(G). 6)

On account of (1), (5) holds with » = 2. Hence the preceding inequality holds
for0 < ¢g<2.

Now we will show that (6) holds for 0 < ¢ < «. Since (5) implies (6) with
g < r, it is enough to show that (6) holds for ¢ > 4. Let h(f) > 0 be any bounded
function with compact support. Then

+o +o

S(G)?hdt = f Rt S x(t — u,s)|grad G|2du ds dt

+ @
= S |grad GI’f h(t)x(t — u,s) dt du ds.
Now we observe that if P(f,s) denotes the Poisson kernel for the half-plane, then
x(t,s) < ¢sP(ts) and consequently
+ +
ht)x(t — u,s)dt < ¢ h(t)sP(t — u,s)dt < ¢ s H(u,s),

—®

where H(i,s) is the Poisson integral of h(f). Thus,
+ @
f S(@)*hdt < ¢ S |grad G| H(t,s)dt ds.

Now, from (0) we have
A(G*H) = HAG? + 2(grad G?)- (grad H)
= 4H|grad G|* + 2G(grad G)- (grad H)
> 4H|grad G|* — 2G|grad G| |grad H|

and

+ @
S@)hdt < fi S sA(G2H)dt ds + g J 5G| grad G| |grad H|dt ds

-_—®
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and applying Green’s formula to the first term on the right*

4+ ® c +
S(@)h dt < ;f G*h dt

P — @

+
+ if dt S x(t — w,s) G|grad G| |grad H|du ds

c [t A
< ;f G?h dt +4f m(G) S(G) S(H)dt.

Now we set p = ¢/(¢ — 1) and apply the three-term Hélder inequality with ex-
ponents 2¢, 2¢, p to the preceding integrals and get

4f_+wS(G)2h dt < Mz (G)M (k) + cMyo[m(G) IMo[S(G)IM,[S(H)].  (7)

Since H is harmonic and 1 < p < «, we have M,[S(H)] < ¢,M,(h), and since
4 < ¢ < =, we also have M, [m(G)] < ¢,M3,(G). Substituting in the preceding
inequality, setting M,(k) = 1, and taking the supremum of the left-hand side over
all such h, we find that M,[S(G)?] = M;2[S(G)] < ¢ M3(GQ) [M2(G) + M2S(G)],
and this implies that M, [S(G)] < ¢’ M,,(G) provided that M,,[S(G)] < «. To
see that this is the case we observe that since m(G) is bounded, (7) holds with
M. [m(G)] replacing Ms,[m(G)] and M ,[S(G)] replacing M,,[S(G)] and from this,
arguing as above, we obtain

My *[8(G)] < ¢ My *(G) + ¢ Ma[m(G)]IM,[S(G)].

Since the right-hand side is finite for ¢ = 2, it follows by induction that the left-

hand side is finite for arbitrarily large ¢ and hence for all ¢ > 2. Thus (6) is

established for 0 < ¢ < . '
Now we prove the converse inequality. Let ¢ > 0. Then (1) and (4) give

MA@ = MG = 2 Ma?S(G™%) < ¢ My[S(G=er)»S(GParzy2a—=],

where @ = 2¢/(¢ + 2),8 = 2/¢, 0 = (g + 2)/2(¢ + 1), 1 — o = ¢/2(¢ + 1).
Applying Holder’s inequality to the right-hand side we get '

MAG) < ¢ Mrpio[S(G™U2)* 1M 11 [S(G)20—].
But

Mqsw1o[S(G*)*] = M (o2, [S(G*/7)]
Moa[S(@)="] = M 202 [S(G)].

Applying (6) to the right-hand side of the first of the preceding identities, and
observing that M (42/,[G*?] = M ,*¥*(G), substitution in the preceding inequality
yields '

M2 G) < cg M7 (G) M2~ [S(G)].
Since ¢ — aoqg = 2(1 — ¢), from this it follows that
M (@) < cg M,[S(G)]. ®
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-To obtain (6) and (8) for F we set G = IF | and observe that Igrad G’I = IF’ | .
Finally, we must remove the conditions we imposed on F at the beginning of the
proof. If F(z),z = t + s, is analytic in the upper half-plane and belongs to H?,
then F(z + ¢/n) = F,(2) is bounded there. Let now e,(z) = exp(—z"m), where
0 < a < 1/4 and arg(z*) is between 0 and 7/4. Then a simple calculation shows
that

f len’(t + 45)|2dt ds < c2a,
8>0

where c is independent of m. Consequently, S(e,)? < c*a. Now, the following
inequalities can be readily verified:

S(Fnen)* < 2[8(Fn)? + m(Fa)*S(em)?] < 2[S(Fa)? + *’m(F,)’a]
S(Fren)” < 2°[S(F,)? + c"m(F,)?a”2].
Integrating we get
MyP[S(Fuen)] < 2°[MP[S(Fr)] + ca®2Mp? [m(F,)]].
Since M,?(F,) = lim M ,*(F, e,) and by (8), M,*(F, exn) < c,” M,?[S(F, e,)] from
the inequality abo;'r‘e we obtain
MP(Fa) < ¢ 22 [M,P[S(Fr)] + M P [m(F )11,
and letting a tend to zero
M,(Fa) < c,2M,[S(F)].
Finally, as n tends to infinity, M,(F,) converges to M,(F) and S(F,) increases and
converges to S(F). Thus we can pass to the limit in the preceding inequality and
obtain half of the desired result. To obtain the other half we observe that, since

(F, en)’ converges to F,’, we have S(F,) = lim,, inf S(F, e,). Thus from (6)
applied to F, e, and Fatou’s lemma we get

M,[8(Fa)] < ¢, M(F),

and a passage to the limit completes the proof of the theorem.
Proof of Theorem 2: We begin with the one-dimensional case. Here h(z)
becomes simply 2, and the proof reduces to estimate

+o
eeds = [ - 0bE - MW@ dy

in terms of the norms of f, g, and b’. For this purpose there is no loss of generality
in assuming that these functions are infinitely differentiable and have compact
support. Let e(z) be the characteristic function of > 0 and x(z) that of [:vl > e
Then

b(z) = f j:e(x — Db,

and substituting, the integral above becomes

+o
f YOS @ -7z - yDle — 8 — ely — Dlg@)f (y)dz dy dt
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and the problem reduces to studying the class of the function represented by the
inner integral. For this purpose we let z be a complex variable and set

1 RIS |
fi@) = 3

——J@dz,  j=1iIm@)>0, j=2iflme) <0,

and define similarly g;(z). Then we have f(x) = fi(z) — f2(z) and similarly for g.
Furthermore, the f; belong to H?, 1 < p < =, in the corresponding half-planes
and, with the notation of the preceding proof, we have

M,(Jf) < 6 M({), 1<p< . 9)

Corresponding relations hold also for g and g;. We will study the contribution of
f1 to the integral in question, an analogous argument being applicable to fo. Let
us introduce the following kernels

Kozyt) = @ — y)~x(|z — y|)el — O) — ey — 1]
Ki(zyt) = (@ —y —ie)2e(x — ) — ey — 1)]
Kizyt) = [ — )2+ (y — 2 + &] 7

An easy calculation shows that |K, — K;| < ¢K; with ¢ independent of ¢. Now
we set

k() = S Kzye@fily)dzdy k() = S Ka(z,y,0)|9(@) /() |dz dy.

We are interested in estimating kp. On account of the inequality between the
K, stated above, we have |ko| < |ki| + ckz and thus it will suffice to estimate k
and k. On account of the analyticity of fi(y) if x > ¢ we have

+
Kizyh(y) dy = | (@ —y —i97hly) dy

—®

+w
=“£%W+®—@~Mﬁw+wam

As readily seen, for z < ¢ the integral on the left above is also given by this last
expression. Thus,

to +o
O =~ [ o [ 1+ ) — @ = 916 + @ dGe),

—

and interchanging the order of integration we get
+ @ + o
b =~ [ he+ i [+ m - @ - 917 oto) do dlio).
8= -

Since g(z) = gi(xr) — g2(x) and go(2) is analytic in Im(z) < 0, its contribution to
the inner integral above is zero and the value of this reduces to 2wig,"(t + s + <e).
Thus we have

+o
ki(f) = — 2m =0f1(t + is) g/ (¢t + @5 + e) d(5s).

8

Let us introduce now
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+o
F(z) = — 21rif=0f1(z + 48)gi/(z + s + 1e)d(4s).

Then we have ki(f) = F(t). Furthermore, since f; and ¢, are bounded and O(z~!)
and O(z~2), respectively, F(z) belongs to H?, p > 1, and with the notation of the
preceding proof we have
2m) 7t S(F) < m(f)S(ga(z + 1¢)) < m(f1)S(g1)
andif¢g ' =p '+ r,1<p,qg< o,r < o, then by Theorem 3 and (9) we have
Myypa(ky) = My a(F) £ ¢ My, a[S(F)] < ¢ Myp[m(f2) 1M 4/01[S(g) ]
<c Mp(fl)Mq/a—l(gl) S e M,(f)M yea(g). (10)

Now we estimate k;. We have

to +o
Ky @ |y de - o7+ et s iy - o
+ 877 f@)| dy < cell — 9* + 17,

where f is the maximal function of Hardy and Littlewood associated with |f | .
Consequently,
+

b)] < el sw ef i~ 02+ @l |o@)] do < o0 20

©

M,pa(ks) < ¢ Mp(f) Mq/q—l(g) < e M, (f) M y0a(g).
This combined with (10) shows that M,;,_1(ke) < ¢ M,(f) M 4,-1(g) where ¢ depends

on p and r but not on e. As readily seen, this implies that M,[C.(f)] < ¢ M.’
M,(f).

We now pass to discuss the n-dimensional case. As before, we assume that f
and the partial derivatives b; of b are infinitely differentiable and have compact
support. We denote by » a unit vector in " and by E its orthogonal complement
and fix ¢, e > 0. Let s be a real variable and

k(z,0) = f _H6) 57 bG@) = b + )] fGo + ) d
8| >e€
Then setting y = = + s, integration in polar coordinates shows that

C) = /2 S k(zp) dv, (11)

where dv denotes the surface area element of the unit sphere in R”. We now fix »
and set x = z + »t, where ze£. Then from the inequality for the one-dimensional
case established above we get

+» + qar
k(G + vtp)idt < c[ f |grad b (z + vt,u)]'dt]

— X [ f_+: 7 + ut,v)l"dt]qlplh(u)l.

Integrating with respect to £ over £ and applying Hélder’s inequality to the right-
hand side, we obtain
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[S [ k(@,p)| 2 dz]Ve < ¢ [S | grad b]" dz ]V [ S| f(2)| ? dz )47 | A(»)] .
From this and Minkowski’s integral inequality applied to (11) we obtain
le.hlle < ellgrad bll, Ifll,/"| R0 | d,

where ¢ depends on p, ¢, and r but not on .

Concerning the convergence of C.(f) as ¢ tends to zero we merely observe that
our assertion obviously holds if f and the b, are assumed to be infinitely differentiable
and have compact support, whence the general case follows from the inequality
above by approximation.

Proof of Theorem 1: Since (b) can readily be obtained from (a) by duality,
we shall only prove the latter. Let us consider first the case when k(z) is an odd
function. There will be no loss in generality in assuming that k(z) is infinitely
differentiable in lx] > 0 and that f and the b; are infinitely differentiable and have
compact support. Let f;, b;, and k; denote the jth partial derivatives of f, b, and
k, respectively. Then integration by parts yields

[ ke-ub@ - bh@a = [ re-pbiwd-y
lz —y|>e I>e

+ . _,,|>,k’(x — y)[b(=) — b(»)1f(y) dy
— S k(e b(x) — b + ve)] f(x + ve)ve* 1 dy,

where »; denotes the jth component of the unit vector » and d» denotes the surface
area element of the unit sphere in R". Now, the first term on the right represents
an ordinary truncated singular integral and its norm in L? can be estimated in
terms of the norms of b; and f. To estimate the norm of the second term we use
Theorem 2, and in the last term we replace b(z)— b(z + ve) by

1
- f bz + tre)vsedt
o

and apply Minkowski’s integral inequality to the resulting integral. Collecting
results and letting ¢ tend to zero, (a) follows.

In the case when k(z) is even, the operator A can be represented as a finite sum
of operators of the form A;4, where A; and 4, have odd kernels and satisfy the
hypothesis of the theorem (see ref. 2). Since d/dz; commutes with A,, we have

i) i) 5]
(A14:B — BA1A;) — = A1(4:B — BA;) — + (4B — BA,) — A,,
axj 61:, 8:v,

since A1 and A, are bounded in L? for every p, 1 < p < =, the desired result follows.
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