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ABSTRACT

Protein phosphorylation catalyzed by kinases plays
crucial regulatory roles in intracellular signal trans-
duction. With the increasing number of experimental
phosphorylation sites that has been identified by
mass spectrometry-based proteomics, the desire
to explore the networks of protein kinases and sub-
strates is motivated. Manning et al. have identified
518 human kinase genes, which provide a starting
point for comprehensive analysis of protein phos-
phorylation networks. In this study, a knowledge-
base is developed to integrate experimentally
verified protein phosphorylation data and protein-
protein interaction data for constructing the
protein kinase-substrate phosphorylation networks
in human. A total of 21110 experimental verified
phosphorylation sites within 5092 human proteins
are collected. However, only 4138 phosphorylation
sites (~20%) have the annotation of catalytic
kinases from public domain. In order to fully inves-
tigate how protein kinases regulate the intracellular
processes, a published kinase-specific phosphor-
ylation site prediction tool, named KinasePhos is
incorporated for assigning the potential kinase.
The web-based system, RegPhos, can let users
input a group of human proteins; consequently, the
phosphorylation network associated with the
protein subcellular localization can be explored.
Additionally, time-coursed microarray expression
data is subsequently used to represent the degree
of similarity in the expression profiles of network

members. A case study demonstrates that the
proposed scheme not only identify the correct
network of insulin signaling but also detect a novel
signaling pathway that may cross-talk with insulin
signaling network. This effective system is now
freely available at http://RegPhos.mbc.nctu.edu.tw.

INTRODUCTION

Protein phosphorylation is the most widespread and
well-studied post-translational modification in eukaryotic
cells. It has been estimated that one-third to one-half of
all proteins in a eukaryotic cell are phosphorylated (1).
Phosphorylation can regulate almost every property of
a protein and is involved in all fundamental cellular
processes. In addition, protein phosphorylation catalyzed
by kinase plays crucial regulatory roles in intracellular
signal transduction. The networks of proteins and
small molecules that transmit information from the cell
surface to the nucleus, where they ultimately effect tran-
scriptional changes (2). Thus, a full understanding of the
mechanism of intracellular signal transduction remains a
major challenge in cellular biology. Mass spectrometry
(MS)-based proteomics have enabled the large-scale
mapping of in vivo phosphorylation sites (3). There
are several databases storing experimentally verified
phosphorylation sites with catalytic kinases, such as
Phospho.ELM  (4), PhosphoSite (5), UniProtKB/
Swiss-Prot (6), Phosphorylation Site Database (7) and
PHOSIDA (8). PhosPhAt (9) is a database of phosphor-
ylation sites in Arabidopsis thaliana. PhosphoPOINT (10)
provides robust annotation for kinases, their down-stream
substrates and their interaction (phospho)-proteins and
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this should accelerate the functional characterization of
kinome-mediated signaling.

Manning et al. (11) have identified 518 human
kinase genes, the so-called ‘kinome’, that provides a
starting point for comprehensive analysis of protein phos-
phorylation networks. To explore the protein kinase—sub-
strate phosphorylation networks, the experimentally
verified kinase-specific phosphorylation sites can be
collected from the public resources. However, only 20%
of the experimentally verified phosphorylation sites have
the annotation of catalytic kinases. Recently, with expo-
nential increase in protein phosphorylation sites identified
by MS, many researches are undertaken to identify
the kinase-specific phosphorylation sites, including
NetPhosK (12), Scansite 2.0 (13), GPS (14,15), PPSP (16)
and KinasePhos (17-19). The summary of the previously
developed phosphorylation site prediction methods is listed
in Supplementary Table S1. Particularly, Linding et al. (20)
have proposed an excellent method, namely NetworKIN,
that augments motif-based predictions with the network
context of kinases and phosphoproteins.

Although the proposed resources can be utilized to
construct the phosphorylation network between kinase
and substrate proteins, the experimental data need to be
combined by systems biology analysis, which translates
the separate, large-scale datasets into signaling networks
(21). Many studies have been proposed to model signaling
networks using various approaches (22-26). Additionally,
Steffen et al. (2) have developed a computational
approach for generating static models of signal transduc-
tion networks. It utilizes protein-interaction maps
generated from large-scale two-hybrid screens and DNA
microarrays expression profiles. However, it is still insuf-
ficient to discover signaling networks in a gene group
that have similar microarray expression profiles. To fully
investigate how protein kinases regulate the intracellular
processes, it is necessary to accurately identify the catalytic
kinases for phosphoproteins. In this study, a knowledge-
base named RegPhos is developed to integrate experimen-
tally verified protein phosphorylation data and
protein—protein interaction data for constructing the
protein kinase—substrate phosphorylation networks in
human. A graph searching algorithm, Breadth-first
search (BFS) (27), is applied to explore the intracellular
phosphorylation network starting from receptor kinases
to transcription factors, associated with the information of
protein subcellular localization. Supplementary Figure S1
demonstrates the concept of RegPhos. This effective
system can let users input a group of human proteins;
consequently, the phosphorylation network associated
with the protein subcellular localization can be explored.

For the phosphoproteins without the annotation of
catalytic kinases, KinasePhos (17-19) is incorporated
with protein association for assigning the potential
kinase. A case study is demonstrated that RegPhos not
only identify the correct network of insulin signaling but
also detect a novel signaling pathway that may cross-talk
with insulin signaling network. Additionally, time-coursed
microarray expression data is subsequently used to repre-
sent the degree of similarity in the expression profiles of
network members.

MATERIALS AND METHODS

The system flow of RegPhos is shown in Figure 1, mainly
including the collection of experimentally verified
phosphorylation sites, identification of experimentally
confirmed kinase—substrate interactions and construction
of intracellular phosphorylation networks. To fully inves-
tigate how protein kinases regulate the intracellular
processes, a published method, KinasePhos (17-19), is
combined with protein associations for identifying
kinase-specific  phosphorylation sites. Time-coursed
microarray expression data is then used to validate the
degree of similarity in the expression profiles of network
members.

Collection of experimentally verified phosphorylation sites

The experimental verified phosphorylation sites are ex-
tracted from dbPTM (28) which has integrated version
8.0 of Phospho.ELM (4), release 55.0 of UniProtKB/
Swiss-Prot (29) and version 1.0 of PHOSIDA (8). As
shown in Table 1, Phospho.ELM, Swiss-Prot and
PHOSIDA contains 21 542, 24 628 and 6600 experimental
verified phosphorylation sites within 6520, 8606 and 2244
phosphoproteins, respectively. Additionally, Human
Protein Reference Database (HPRD) (30), which inte-
grates a wealth of information relevant to the function
of human proteins in health and disease, is integrated in
this work. In release 7.0 of HPRD, there are totally 16972
PTMs within 2830 protein entries, of 7438 PTMs are
phosphorylation sites within 1774 proteins. Furthermore,
data pertaining to thousands of protein—protein inter-
actions, posttranslational modifications, enzyme/substrate
relationships, disease associations, tissue expression and
subcellular localization were extracted from the literature
for a non-redundant set of 25661 human proteins. We are
prompted to construct human phosphorylation network
in this study, the collected phosphorylation sites in
human proteins are separately represented in Table 1.
After removing the redundant data among these data-
bases, the number of human phosphorylation sites and
phosphoproteins are 21 110 and 5092, respectively.

Identification of experimentally confirmed
kinase—substrate interactions

The human kinase annotations extracted from KinBase
(11) are used to unify the kinase names among the
external phosphorylation site databases which contain
various names for a kinase. To unify the heterogeneous
data of kinases and phosphoproteins, the kinase names in
KinBase and phosphoproteins in public resources are both
mapped to the UniProtKB/Swiss-Prot ID and accession
number. Due to the classification of kinase identified by
Manning et al. (11), 518 kinases are categorized by their
annotated family or subfamily, including totally 221
kinase families. The 518 kinases are major nodes in the
construction of human phosphorylation networks. Several
representative kinase families are listed in Supplementary
Table S2; for instance, the family of protein kinase B
(PKB) consists of three kinase members such as AKTI,
AKT2 and AKT3. With the integration of
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Figure 1. System flow of RegPhos.
Table 1. Statistics of the public phosphorylation databases integrated in RegPhos
Database Version All species Human
Number of Number of Number of Number of
phosphoprotein phosphosite phosphoprotein phosphosite
Phospho.ELM 8.0 6520 21542 4067 13833
UniProtKB/Swiss-Prot 55.0 8606 24328 3746 11862
PHOSIDA 1.0 N/A N/A 2212 8969
HPRD 7.0 - - 1774 7438
Combined (NR?) - - - 5092 21110

NR, non-redundant.

experimental phosphorylation sites from public resources,
totally 89 phosphorylation sites of 63 human phosphopro-
teins are catalyzed by PKB kinase family. The
knowledgebase contains 21110 experimentally verified
phosphorylation sites within 5092 human proteins, of
4138 phosphorylation sites (~20%) have the annotation
of catalytic kinases. According to the annotations of 4138
experimentally confirmed kinase-specific phosphorylation
sites, a total of 1306 experimentally kinase—substrate
interactions are identified.

Construction of intracellular phosphorylation networks

Manning et al. (11) have identified 518 human kinase genes,
that provides a starting point for investigating protein
phosphorylation networks. With the identification of

experimentally confirmed kinase—substrate interactions,
the intracellular phosphorylation networks can be recon-
structed. A graph-based method is adopted to formalize the
construction of intracellular phosphorylation network to a
path search problem in graph theory. The intracellular
protein phosphorylation networks are visualized as an
directed graph G = (V, E), where x, ye V and (x, y) € E.
Let x and y represent kinase and substrate proteins,
respectively and (x, y) € E represent a phosphorylation
interaction when kinase x phosphorylates substrate y.
However, the intracellular phosphorylation networks (sig-
naling networks) contain not only the kinase cascades or
kinase—substrate interactions, but also protein—protein
interactions or protein complex, such as insulin signaling
network (31). To make the construction of signaling
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networks feasible, the experimental protein—protein inter-
actions or protein complexes in human are integrated from
DIP (32,33), MINT (34), IntAct (35) and HPRD (30), as
shown in Supplementary Table S3. In this work, V refers to
all human proteins in UniProtKB (36) and E refers to all
experimental interactions in knowledgebase including
experimentally verified kinase—substrate interactions
and experimental protein—protein interactions.

Moreover, the cellular localization of proteins is used to
constrain the search of phosphorylation network.
Supplementary Table S4 lists the public databases of
protein subcellular localization, including LOCATE (37),
DBSubLoc (38), Organelle DB (39) and PSORTdb (40).
Due to the annotation of cellular localization databases,
there are 84 cell membrane-associated kinases being the
start points of the phosphorylation networks. With the
annotation of TRANSFAC version 11.0 (41), there are
1364 transcription factors in human. To identify the phos-
phorylation networks starting from membrane receptor to
transcription factor in nucleus, the graph-based definition
can be refined as follows: given a directed weighted graph
G = (V, E) with n nodes, m edges, a set § of start nodes
(receptor) and a set T of end nodes (TF). As shown in
Supplementary Figure S2, for each node s in S, a acyclic
path p = (s, cl,. .., ck, t) with length k that starts from .S
and ends at ¢ within 7, passed through cytoplasmic
proteins cl, ..., ck is found. A graph searching algorithm,
BFS (27), is applied to explore the intracellular phosphor-
ylation network associated with the information of protein
subcellular localization. BFS is one of the basic schemes
for searching a subgraph or a path in a graph. Given a
graph G = (V, E) where V represents the set of proteins
and E is the set of physical interactions between proteins
and a distinguished source vertex s, BFS systematically
explores the edges of G to discover every vertex that is
reachable from s. We restrict attention to simple paths
that was constrained the order of occurrence of proteins
in a defined path length 8 (2).

Systematically exploring the intracellular phosphoryl-
ation networks, starting from membrane receptor to tran-
scription factor in nucleus, may produce a lot of false
positive networks. Clustering genes with similar profiles
into a group is a proven method for grouping functionally
related genes (21). Therefore, the identified signaling
networks are further examined the degree of similarity in
the expression profiles of network members. The
time-coursed gene expression samples from Affymetrix
GeneChip Human Genome U133 Array Set HG-U133A
platform (GPL96) (42), which consists of 22 283 probe set
for 12678 genes, is used to explore the co-expression of
kinase and substrate genes. Gene expression data,
including Esophageal cell response to low pH (GSE2144),
Lung cancer cell line response to motexafin gadolinium
(GSE2189), Cyanobacterial metabolite apratoxin A cyto-
toxic effect on colon adenocarcinoma cells (GSE2742),
Interleukin 13 effect on bronchial cell line (GSE3183),
Endotoxin effect on leukocytes (GSE3284), Blood
response to various beverages (GSE3846) Androgen
receptor modulator effect (GSE4636), Glucocorticoid
receptor activation effect on breast cancer cells
(GSE4917) and Epidermal growth factor effect on

cervical carcinoma cell line (GSE6783), were quantified
by Robust Multichip Average (RMA) algorithm (43).
RMA quantification was performed by the justRMA
function of Bioconductor Affy package in R program
language using raw data (Affymatrix CEL file). Then,
Pearson correlation coefficient is used to measure the
trends of two expression profiles.

Computational identification of kinase—substrate
interactions

With the integration of public phosphorylation resources,
most of the experimentally verified phosphoryl-
ation sites (~80%) do not have the annotation of catalytic
kinases. To fully investigate how protein kinases regu-
late the intracellular processes, it is necessary to accur-
ately link the experimental phosphorylation sites to
catalytic kinases. With reference to the approach of
NetworKIN (20), a published kinase-specific phosphor-
ylation site prediction tool, named KinasePhos (17-19),
is incorporated with protein association for assigning
the potential kinase. The association context for
each kinase—substrate pair is investigated by the infor-
mation of protein—protein interactions, functional
associations (physical protein interactions, curated
pathway, co-occurrence in literature abstracts, mRNA
co-expression studies and genomic context) and cellular
co-localization. A public SVM library, namely LibSVM
(44), is adopted to train the kinase-specific predictive
models, including more than 100 kinase families, with
the encoded amino acid sequences and structural
features, such as secondary structure (SS), accessible
surface area (ASA) and disorder region (DIS). Radial
basis function (RBF) K(S;, S)) = exp(—y|S; — Sj||2) is
selected as the kernel function of SVM. Each model is
evaluated  the  discriminatory  power  between
phosphorylated and non-phosphorylated sites, based on
five-fold cross-validation.

To investigate the possibility of using association context
to enhance the identification of kinase-specific substrates,
the constructed SVM models are combined with protein
associations including protein—protein interactions, func-
tional associations and subcellular localization. This
work extract human protein—protein interactions from
DIP (32,33), MINT (34), IntAct (35) and HPRD (30), as
shown in Supplementary Table S3. Moreover, to capture
the complete biological context of a substrate, the func-
tional associations extracted from the STRING database
(45) are integrated. In order to identify the direct and
indirect connection between kinase and substrate, a graph
searching algorithm, BFS, is also adopted.

The eukaryotic cell is a composite system internally
subdivided into membrane-enveloped compartments that
perform particular functions (46). The proteins, which are
involved in similar biological functions, are closely located
in the same subcellular localization. Therefore, knowing
the localization of every protein is important for
elucidating its interactions with other molecules and for
understanding its biological function. In order to accur-
ately identify the interaction of kinase—substrate phos-
phorylation, the information of subcellular localization



is used to evaluate the co-localization between kinases and
phosphoproteins. Supplementary Table S4 shows the list
of integrated databases of protein subcellular localization,
including LOCATE (37), DBSubLoc (38), Organelle DB
(39) and PSORTdD (40).

Logistic regression has been adopted to evaluate the
confidence value of protein—protein (kinase—substrate)
interaction (25). In this study, a modified version of
the Sharan et al. (47) method was utilized to evaluate
the confidence values of the discovered kinase—substrate
interactions (see Supplementary Figure S3). In the logistic
regression model, we incorporate four sets of variables for
a given interaction set, including (i) the prediction score
of the kinase-specific SVM model, (ii) the depth of inter-
action between kinase and substrate was observed,
(i11) the confidence score of the STRING functional asso-
ciation and (iv) the binary (0/1) protein subcellular local-
ization data of interacting pairs. The computationally
identified kinase—substrate interactions can be considered
into the construction of intracellular phosphorylation
networks, which may make the discovered network more
feasible. Since exploring the protein phosphorylation
networks, each edge has the weighted score from 0 to 1,
1 for the experimentally verified kinase—substrate inter-
action and logistic regression probability value for the
computationally identified kinase—substrate interaction.

RESULTS AND DISCUSSIONS

The aim of this work is to develop an effective system,
namely RegPhos, for exploring the protein kinase—
substrate phosphorylation networks in human. The infor-
mation of subcellular localization is utilized to construct
the intracellular phosphorylation network starting from
membrane receptor to transcription factor in nucleus. In
order to enhance the identification of kinase—substrate
interactions, the protein associations (protein—protein
interaction, functional association and subcellular localiza-
tion) between kinases and phosphoproteins are carefully
investigated.
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Investigation of association context among kinases,
phosphoproteins and interacting proteins

With the annotations of 4138 experimentally confirmed
kinase-specific phosphorylation sites in human, a total of
1306 experimental kinase—substrate interactions are
identified; as presented in Supplementary Figure S4,
1039 kinase—substrate pairs of which have been annotated
as protein—protein interactions, based on the collection of
protein interactions from DIP (32,33), MINT (34), IntAct
(35) and HPRD (30) databases. According to annotations
in the four integrated interaction databases, a total of 1801
phosphoproteins have the direct interaction to 430 human
kinases. Furthermore, the indirect links between kinases
and their substrates are also taken into account. Those
unobvious relationships would be very difficult to
predict by manually inspecting the available sequence
motifs. To investigate the interacting distance of indirect
connection between kinases and substrates, the number of
substrates interacting to a specific kinase family is
observed in different interacting distance. As shown in
Table 2, the numbers of interacting substrates in PKA,
PKC, CK2, CDK, Src, EGFR and INSR families
are listed with various interacting distance. For instance,
PKA family, consisting of PKACa, PKACb and PKACg
kinases, has 123 (63%) directly interacting substrates.
About 37% of PKA-specific substrates are indirect
connection to PKA kinases. Base on the statistics of inter-
acting distance between kinases and their substrates, most
of the substrates (~95%) are connecting to kinases within
the distance of three interacting nodes (proteins). Both
direct and indirect protein associations are adopted to
help the identification of kinase—substrate interactions.

Investigation of cellular co-localization between kinases
and substrates

To easily categorize the subcellular localization for kinases
and substrates, the localization of substrates is mainly
classified into nuclear and cytoplasmic substrates. We
mapped localizations from UniProtKB/Swiss-Prot to the
kinase-specific substrates, which resulted in 3863

Table 2. The interacting distance between kinases and their substrates

Kinase Kinase Number of Number of substrates in a specific interacting distance
family =~ members substrates
Distance = 1 Distance = 2 Distance = 3 Distance > 4
(direct (indirect (indirect (indirect
interaction) interaction) interaction) interaction)
PKA PKACa, PKACb, PKACg 194 123 39 25 7
PKC PKCh, PKCa, PKCb, 231 175 41 6 9
PKCd, PKCe, PKCg,
PKCi, PKCt, PKCz
CK2 CK2al, CK2a2, CK2b, 158 120 28 9 1
CK2al-rs
CDK CDC2, CDK2, CDK3, 157 135 15 2 5
CDK4, CDKS5, CDKG6,
CDK7, CDK8, CDKO9,
CDK10, CDK11,
Src Src 92 68 19 3 2
EGFR EGFR 27 25 0 1 1
InsR InsR 14 12 0 1 1
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phosphoproteins that are described as localizing to either
the cytoplasm or the nucleus. The statistics of substrate
localization preference of kinase families is listed in
Table 3. The statistically significant (P < 0.05) localization
preference of kinase family is marked in bold. Based
on the statistics, we found 33 kinase groups that show a
statistically significant preference for either cytoplasmic or
nuclear substrates. For the kinase groups that are pri-
marily localized in the nucleus (ATM, DNAPK, RSK,
CK2, CDK, CDC2 and Aurora), their preference were
about two-fold more nuclear than cytoplasmic targets.
However, GRK, ROCK, BARK, CaMK2 and CKI1
have strong preference for cytoplasmic substrates. PKA,
PKC, PKB, Abl, IKK and MAP2K families are both
fairly pleiotropic kinases, which in the phosphorylation
network show a slight preference for cytoplasmic
substrates. In the case of membrane-associated kinase
families, EGFR, INSR, JAK, Src, FYN, LCK, LYN
and SYK have the high preference of cytoplasmic
substrates.

Table 3. Cellular co-localization of human kinases and their
substrates

Kinase  Cellular All Cytoplasmic Nuclear  Cytoplasmic
family  localization substrates substrates  substrates and nuclear
of kinases substrates
PKA Cytoplasm, nucleus 151 96 74 21
PKC Cytoplasm, nucleus 168 105 81 26
PKB Cell membrane, 63 49 32 19
cytoplasm, nucleus
GRK Cytoplasm 19 18 2 2
ROCK  Cytoplasm 15 15 1 1
BARK  Cytoplasm 14 14 1 1
CaMK2 Cytoplasm 36 29 11 6
CaMK1 Cytoplasm, nucleus 14 5 8 2
CK1 Cytoplasm 33 29 14 10
ATM Nucleus 34 11 32 9
DNAPK Nucleus 13 3 12 2
RSK Nucleus 31 15 25 9
CK2 Nucleus 123 46 91 17
CDK Nucleus 121 34 79 30
CDC2  Nucleus 95 37 66 17
GSK Nucleus 34 15 23 9
MAPK  Cytoplasm, nucleus 140 59 91 29
JNK Cytoplasm, nucleus 27 13 22 9
P38 Cytoplasm, nucleus 35 15 22 4
ERK Nucleus 88 41 63 18
Aurora  Nucleus 19 8 14 4
IKK Cytoplasm, nucleus 12 10 8 6
PAK Cytoplasm 25 19 6 1
MAP2K Cytoplasm, nucleus 13 9 6 2
Abl Cytoplasm, nucleus 26 18 13 5
EGFR  Cell membrane, nucleus 22 18 0 4
InsR Cell membrane 9 9 0 0
JAK Membrane associated 17 17 6 6
Src Membrane associated 68 61 22 16
FYN Membrane associated 21 16 9 5
LCK Membrane associated 25 22 1 1
LYN Membrane associated 20 17 3 3
SYK Membrane associated 17 15 1 1
Total 3863 1661 2195 612

The bold value means P-value < 0.05.

Predictive performance of computationally identifying
kinase—substrate interactions

To fully investigate how protein kinases regulate the intra-
cellular processes, this work proposes a computational
model for assigning the potential kinase for each experi-
mental phosphorylation sites without the annotation
of catalytic kinase. With reference to NetworKIN (20),
that has augmented motif-based predictions with the func-
tional association context of kinases and phosphoproteins,
we adopt the similar data set to evaluate the performance
of the proposed method. Using only SVM-based model
(KinasePhos), the predictive accuracies are 84, 89.6,
91.5 and 81.9% in PKC, CDK, PIKK and INSR, respect-
ively (Supplementary Table S5). The cross classifying
specificity among PKC, CDK, PIKK and INSR families
are listed in Supplementary Table S6. The specificity (Sp)
of CDK, PIKK and INSR sets corresponding to the PKC
model are 81.9, 89.1 and 83.3%, respectively. Similarly,
the cross specificity values among PKC, CDK, PIKK
and INSR are generally higher than 80%. However,
the specificity of INSR model is slightly weak when
differentiating PKC substrates from INSR substrates.
The higher specificity in the cross-validation, the less in-
correct prediction of the phosphorylation sites in other
groups. By incorporating contextual information of
protein association, the prediction accuracy improves to
84.1, 91.6, 919 and 91.9% in PKC, CDK, PIKK
and INSR, respectively, because of the improvement of
specificity (Supplementary Figure S5). However, there
are slight drops in predictive sensitivity. These results
highlight the importance of including contextual infor-
mation in identifying kinase—substrate relationships for
experimentally verified phosphorylation sites without
annotated catalytic kinases. The computationally
identified kinase—substrate interactions can make the con-
struction of intracellular phosphorylation networks more
feasible.

A case study of identifying catalytic kinases for insulin
receptor substrate 1

Insulin receptor substrate 1 (IRS1), which mediate the
control of various cellular processes by insulin (48), were
used to present the effectiveness of computational identi-
fication of kinase-specific phosphorylation sites. With the
annotation of Phospho.ELM (4) and UniProtKB/
Swiss-Prot  (29), IRS1 has totally 32 experimentally
verified phosphorylation sites. However, some of the ex-
perimental phosphorylation sites do not have the annota-
tion of catalytic kinases. Based on the trained threshold of
logistic regression probability score in each kinase group,
these phosphorylation sites were annotated the potential
catalytic kinases. As illustrated in Figure 2, seven
kinase-specific phosphorylation sites with their protein as-
sociations are identified. For instance, the tyrosine phos-
phorylation sites ‘Y612’ and ‘Y632’ were potentially
catalyzed by Janus kinase 1 (JAK1), with the indirect
protein—protein interaction which was linked by v-erb-b2
erythroblastic leukemia viral oncogene homolog 2 (ErbB2).
The tyrosine phosphorylation sites ‘Y46’ and ‘Y896’ were
catalyzed by [Insulin-like Growth Factor I Receptor
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Figure 2. Case study of computationally identified kinase-specific phosphorylation sites in Insulin Receptor Substrate 1 (IRS1).

(IGFIR), with the directly functional association
annotated by STRING database. Phosphoserine ‘S636’
was catalyzed by Mitogen-Activated Protein Kinase
(MAPK) group and a functional association shows that
Mitogen-Activated Protein Kinase 1 (MAPK1 or Erk2)
was directly link to IRS1. Phosphotyrosine ‘Y1229’ was
catalyzed by insulin receptor (InsR) with the direct
protein—protein interaction (DIP:429E) of DIP database.
Some phosphorylation sites were identified by more than
two kinases, for example phosphoserine ‘S1145” was po-
tentially catalyzed by v-akt murine thymoma viral oncogene
homolog 1 (Aktl) with directly functional association or
was potentially catalyzed by protein kinase C epsilon
(PKCe) with indirect link in distance of three protein—
protein interactions, passing through Stratifin (SFN) and
B-Raf  proto-oncogene  serine/threonine-protein  kinase
(BRAF).

Web interface of exploring protein phosphorylation
networks

To facilitate the investigation of protein kinase and their
substrate, a web-based system, named RegPhos, was im-
plemented for users to efficiently browse the protein
kinases and their substrate proteins in a user-friendly
manner. Three major functions, including browsing
kinase or substrate (see Supplementary Figure S7), con-
structing phosphorylation network and microarray ex-
pression analysis (see Supplementary Figure S8), are
provided in the proposed system. The JMol viewer (49)

is adopted for the visualization of PDB (50) structures of
kinases and substrates. The proposed system can let users
input a group of gene/protein names; the phosphorylation
network associated with protein subcellular localization
can be automatically constructed. To fully investigate
how protein kinase control the intracellular processes,
the experimentally verified kinase—substrate phosphoryl-
ations and the computationally discovered kinase—
substrate interactions are incorporated to explore the
phosphorylation networks starting from receptor kinases
associated with membrane to transcription factors located
in nucleus. However, the phosphorylation-driven signal
transduction pathway is not always the phosphorylation
cascade. Some protein—protein interactions are involved in
the signal transduction pathway, such as IRSI-GRB2
interaction, GRB2-SOSI interaction, SOS1-HRAS inter-
action and HRAS-RAF]1 interaction in insulin signaling
pathway (31). Supplementary Figure S9 shows an example
of insulin signaling network in the construction of phos-
phorylation network. A group of proteins associated with
insulin signaling pathway are inputted to construct the
network from membrane-associated proteins to nuclear
proteins.

A case study of the discovered networks associated with
insulin signaling pathway

To demonstrate the effectiveness of the proposed method,
the discovered phosphorylation networks associated with
the insulin signaling pathway are represented in Figure 3.
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Figure 3. Case study of the discovered phosphorylation networks associated with insulin signaling pathway.

Insulin regulates both metabolism and gene expression;
the insulin signal transduction passes from the plasma
membrane receptor to insulin-sensitive metabolic
enzymes and finally to the nucleus, where it stimulates
the transcription of specific genes (31). The well-known
insulin signaling pathway, INSR — IRSl — Grb2 —
SOS1 — RAS — Rafl - MEK — ERKI1 — EIkI, can
be successfully identified by the presented graph-based
phosphorylation network searching method (‘= stands
for phosphorylation and ‘— stands for protein—protein
interaction). Due to the protein—protein interactions,
which are allowed in the network searching, numerous
insulin receptor (INSR) related signaling pathways have
been discovered, which contain about 2000 pathways with
length of eight proteins. After the validation of time-
coursed microarray data, the discovered INSR-related
phosphorylation networks can be decreased to about 50
pathways. Some of the well-known signaling networks are
discovered and marked with red lines in Figure 3.
RegPhos not only identify the correct network of insulin
signaling but also detect a potentially novel signaling
pathway that may cross-talk with insulin signaling
network. For instance, Qin-induced kinase (QIK)
posphorylates ‘Ser-794” of IRSI1 in insulin-stimulated
adipocytes, potentially modulating the efficiency of

insulin signal transduction (51); SHC-transforming
protein 1 (SHC1) is a signaling adapter that couples
activated growth factor receptors to signaling pathway
(48);  GRB2-associated-binding  protein 1 (GABI)
probably involved in EGF and insulin receptor signaling
(52). The phosphoregulators, such as QIK, IRS1, SHCI1
and GABI, are considerably involved in cross-talk
between signaling cascades (53).

Investigation of co-expressed kinases and substrates

To investigate the statistically significant syn-expressed
pair of kinase and substrate genes, all the pairs of genes
are calculated for background correlation. However, it is
time-expensive for calculating all pairs of genes.
Therefore, the random sampling is adopted to extract
100000 gene pairs as the background set for estimating
the distribution of Pearson correlation coefficients of
background gene pairs (see Supplementary Figure S10).
The distribution of Pearson correlation coefficient of
pairs of specific kinases and their substrates is also
investigated. Supplementary Figure S11 shows the distri-
bution of correlation coefficient of PKA-substrate pairs,
CDC2-substrate pairs and EGFR-substrate pairs, based
on 98 microarray series. Most of the PKA-substrate
pairs (40%) belong to the low positive correlation



(0 <r<0.4), with the average correlation coefficient 0.08.
In particular, about 65% of CDC2-substrate pairs have
the positive correlation, with ~20% high positive correl-
ation (r>0.7). The average correlation coefficient of
CDC2-substrate pairs is 0.14. In the case of EGFR-
substrate pairs, the distribution of correlation coefficient
is similar to the distribution of all kinase—substrate pairs.
The average correlation coefficient of EGFR-substrate
pairs is 0.028.

Moreover, the distribution of Pearson correlation coef-
ficient of pairs of specific kinases and their substrates is
investigated based on time-coursed microarray data.
Supplementary Figure S11 shows the distribution of
correlation  coefficient of PKA-substrate pairs,
CDC2-substrate pairs and EGFR-substrate pairs based
on nine time-coursed microarray series (described in
‘Materials and methods’ section). The average correlation
coefficient of PKA-substrate pairs is up to 0.12. The
proportion of PKA-substrate pairs belonged to the low
positive correlation (0 <r<0.4) is increased from 40 to
45%. In the case of EGFR-substrate pairs, the average
correlation coefficient of EGFR-substrate pairs is raised
from 0.028 to 0.08. The proportion of EGFR-substrate
pairs belonged to high positive correlation (r> 0.6) is
approaching 16%. However, based on time-coursed
microarray data, the average correlation coefficient of
CDC2-substrate pairs is decreased to 0.10. Generally,
the experimentally confirmed kinase—substrate pairs have
higher value of Pearson correlation coefficient based on
time-coursed microarray expression data. Thus, the
time-coursed microarray data of Affymetrix GeneChip
Human Genome U133 Array Set HG-U133A platform
(GPL96) are used to test the degree of similarity in the
expression profiles of network members.

CONCLUSION

With the increasing number of in vivo phosphorylation
sites, which have been identified, the desire of mapping
the network of protein kinase and substrate is motivated.
The experimental kinase-specific substrates, ultimately,
need to be combined by systems biology analysis, which
translates the separate, large-scale datasets into signaling
networks. Therefore, this study has incorporated the ex-
perimentally verified kinase—substrate interactions with
experimental protein—protein interactions to construct
the intracellular phosphorylation network starting from
receptor kinases to transcription factors, associated with
the information of subcellular localization. With the inte-
gration of public phosphorylation resources, most of the
experimentally verified phosphorylation sites (~80%) do
not have the annotation of catalytic kinases. A published
kinase-specific phosphorylation site prediction tool,
KinasePhos (17-19), is incorporated with protein associ-
ation (protein—protein interaction, functional association
and protein subcellular localization) for assigning the
potential kinase. After the evaluation, the proposed
method improves the predictive power and highlights the
importance of kinase—substrate interactions in the specifi-
city of protein phosphorylation within cells. Moreover,
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the experimental expression evidence, such as gene micro-
array data, was adopted to validate the syn-expression of
the discovered phosphorylation network with statistical
significance. To facilitate the investigation of protein
kinases and their substrates, a web-based system, named
RegPhos, was implemented for users to efficiently browse
the protein kinases and their substrate proteins in a
user-friendly manner. A case study demonstrates that
RegPhos not only identify the correct network of insulin
signaling but also detect a novel signaling pathway that
may cross-talk with insulin signaling network. In
prospective works, protein phosphatase, act as oppositive
function to protein kinases, is needed to be considered in
construction of protein phosphorylation network. Protein
kinases and phosphatases can regulate the phosphoryl-
ation status of the protein complement of a cell and in
turn, regulate the activity of their target phosphoproteins
in cellular processes. Defining the entire complement of
these proteins gives us an opportunity to view the
system as a whole.

AVAILABILITY

The RegPhos database will be continuously maintained
and updated. All the experimentally verified data on
protein phosphorylation and protein—protein interaction
will be updated quarterly. The time-coursed microarray
expression data collected from Gene Expression
Omnibus (GEO) will also be updated quarterly. The
resource is now freely available at http://RegPhos.mbc
.nctu.edu.tw.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.

FUNDING

National Science Council of the Republic of China under
(Contract Numbers of NSC 98-2627-B-009-005, NSC
99-2320-B-155-001, NSC 99-2627-B-009-003, NSC 98-
2311-B-009-004-MY3, NSC 99-2621-B-006-001-MY2
and NSC 99-2628-B-006-016-MY3); National Research
Program for Genomic Medicine (NRPGM), Taiwan.

Conflict of interest statement. None declared.

REFERENCES

1. Hubbard,M.J. and Cohen,P. (1993) On target with a new
mechanism for the regulation of protein phosphorylation.
Trends Biochem. Sci., 18, 172-177.

2. Steffen,M., Petti,A., Aach.J., D’Haeseleer,P. and Church,G.
(2002) Automated modelling of signal transduction networks.
BMC Bioinformatics, 3, 34.

3. Aebersold,R. and Mann,M. (2003) Mass spectrometry-based
proteomics. Nature, 422, 198-207.

4. Diella,F., Cameron,S., Gemund,C., Linding,R., Via,A., Kuster,B.,
Sicheritz-Ponten,T., Blom,N. and Gibson,T.J. (2004)
Phospho.ELM: a database of experimentally verified
phosphorylation sites in eukaryotic proteins. BMC Bioinformatics,
5, 79.



D786 Nucleic Acids Research, 2011, Vol. 39, Database issue

1.

12.

13.

14.

15.

16.

19.

20.

21.

22.

23.

24.

. Hornbeck,P.V., Chabra,l., Kornhauser,J.M., Skrzypek,E. and

Zhang,B. (2004) PhosphoSite: A bioinformatics resource dedicated
to physiological protein phosphorylation. Proteomics, 4,
1551-1561.

. Boeckmann,B., Bairoch,A., Apweiler,R., Blatter, M.C.,

Estreicher,A., Gasteiger,E., Martin,M.J., Michoud,K.,
O’Donovan,C., Phan,I. et al. (2003) The SWISS-PROT protein
knowledgebase and its supplement TrEMBL in 2003. Nucleic
Acids Res., 31, 365-370.

. Wurgler-Murphy,S.M., King,D.M. and Kennelly,P.J. (2004) The

Phosphorylation Site Database: A guide to the serine-, threonine-,
and/or tyrosine-phosphorylated proteins in prokaryotic organisms.
Proteomics, 4, 1562—-1570.

. Gnad,F., Ren,S., Cox,J., Olsen,J.V., Macek,B., Oroshi,M. and

Mann,M. (2007) PHOSIDA (phosphorylation site database):
management, structural and evolutionary investigation, and
prediction of phosphosites. Genome Biol., 8, R250.

. Heazlewood,J.L., Durek,P., Hummel,J., Selbig,J., Weckwerth,W.,

Walther,D. and Schulze,W.X. (2008) PhosPhAt: a database of
phosphorylation sites in Arabidopsis thaliana and a plant-specific
phosphorylation site predictor. Nucleic Acids Res., 36,
D1015-D1021.

. Yang,C.-T., Chang,C.-H., Yu,Y.-L., Emma Lin,T.-C., Lee,S.-A.,

Yen,C.-C., Yang,J.-M., Lai,J.-M., Hong,Y.-R., Tseng,T.-L. et al.
(2008) PhosphoPOINT: a comprehensive human kinase
interactome and phospho-protein database. Bioinformatics, 24,
14-20.

Manning,G., Whyte,D.B., Martinez,R., Hunter,T. and
Sudarsanam,S. (2002) The protein kinase complement of the
human genome. Science, 298, 1912-1934.

Blom,N., Sicheritz-Ponten,T., Gupta,R., Gammeltoft,S. and
Brunak,S. (2004) Prediction of post-translational glycosylation
and phosphorylation of proteins from the amino acid sequence.
Proteomics, 4, 1633-1649.

Obenauer,J.C., Cantley,L.C. and Yaffe,M.B. (2003) Scansite 2.0:
Proteome-wide prediction of cell signaling interactions using short
sequence motifs. Nucleic Acids Res., 31, 3635-3641.

Xue,Y., Zhou,F., Zhu,M., Ahmed,K., Chen,G. and Yao,X. (2005)
GPS: a comprehensive www server for phosphorylation sites
prediction. Nucleic Acids Res., 33, W184-W187.

Zhou,F.F., Xue,Y., Chen,G.L. and Yao,X. (2004) GPS: a novel
group-based phosphorylation predicting and scoring method.
Biochem. Biophys. Res. Commun., 325, 1443-1448.

Xue,Y., Li,A., Wang,L., Feng,H. and Yao,X. (2006) PPSP:
prediction of PK-specific phosphorylation site with Bayesian
decision theory. BMC Bioinformatics, 7, 163.

. Huang,H.D., Lee, T.Y., Tzeng,S.W. and Horng,J.T. (2005)

KinasePhos: a web tool for identifying protein kinase-specific
phosphorylation sites. Nucleic Acids Res., 33, W226-W229.

. Huang,H.D., Lee, T.Y., Tzeng,S.W., Wu,L.C., Horng,J.T.,

Tsou,A.P. and Huang,K.T. (2005) Incorporating hidden Markov
models for identifying protein kinase-specific phosphorylation
sites. J. Comput. Chem., 26, 1032-1041.

Wong,Y.H., Lee,T.Y., Liang,H.K., Huang,C.M., Wang,T.Y.,
Yang,Y.H., Chu,C.H., Huang,H.D., Ko,M.T. and Hwang.,J.K.
(2007) KinasePhos 2.0: a web server for identifying protein
kinase-specific phosphorylation sites based on sequences and
coupling patterns. Nucleic Acids Res., 35, W588-W594.
Linding,R., Jensen,L.J., Ostheimer,G.J., van Vugt, M.A.,
Jorgensen,C., Miron,I.M., Diella,F., Colwill,K., Taylor,L.,
Elder,K. et al. (2007) Systematic discovery of in vivo
phosphorylation networks. Cell, 129, 1415-1426.

Janes,K.A. and Yaffe,M.B. (2006) Data-driven modelling of
signal-transduction networks. Nat. Rev. Mol. Cell Biol., 7,
820-828.

Neves,S.R. and Iyengar,R. (2002) Modeling of signaling networks.
Bioessays, 24, 1110-1117.

Choi,C., Crass,T., Kel,A., Kel-Margoulis,O., Krull,M., Pistor,S.,
Potapov,A., Voss,N. and Wingender,E. (2004) Consistent
re-modeling of signaling pathways and its implementation in the
TRANSPATH database. Genome Inform., 15, 244-254.
Sachs,K., Perez,O., Pe’er,D., Lauffenburger,D.A. and Nolan,G.P.
(2005) Causal protein-signaling networks derived from
multiparameter single-cell data. Science, 308, 523-529.

25

26.

217.

28.

29.

30.

31.

32.

33

34.

35.

36.

37.

38.

39.

40.

41.

42.

44.

. Bebek,G. and Yang,J. (2007) PathFinder: mining signal

transduction pathway segments from protein-protein interaction
networks. BMC Bioinformatics, 8, 335.

Eungdamrong,N.J. and Iyengar,R. (2004) Modeling cell signaling
networks. Biol. Cell, 96, 355-362.

Knuth,D.E. (1997) The Art of Computer Programming, 3rd edn.
Addison-Wesley, Boston.

Lee,T.Y., Huang,H.D., Hung,J.H., Huang,H.Y., Yang,Y.S. and
Wang, T.H. (2006) dbPTM: an information repository of protein
post-translational modification. Nucleic Acids Res., 34,
D622-D627.

Farriol-Mathis,N., Garavelli,J.S., Boeckmann,B., Duvaud,S.,
Gasteiger,E., Gateau,A., Veuthey,A.L. and Bairoch,A. (2004)
Annotation of post-translational modifications in the Swiss-Prot
knowledge base. Proteomics, 4, 1537-1550.

Keshava Prasad,T.S., Goel,R., Kandasamy,K., Keerthikumar,S.,
Kumar,S., Mathivanan,S., Telikicherla,D., Raju,R., Shafreen,B.,
Venugopal,A. et al. (2009) Human Protein Reference
Database-2009 update. Nucleic Acids Res., 37, D767-D772.
Lehninger,A.L., Nelson,D.L. and Cox,M.M. (2005) Lehninger
Principles of Biochemistry. 4th edn., W. H. Freeman, Worth
Publisher, USA.

Xenarios,l., Salwinski,L., Duan,X.J., Higney,P., Kim,S.M. and
Eisenberg,D. (2002) DIP, the Database of Interacting Proteins: a
research tool for studying cellular networks of protein
interactions. Nucleic Acids Res., 30, 303-305.

. Xenarios,I., Fernandez,E., Salwinski,L., Duan,X.J.,

Thompson,M.J., Marcotte,E.M. and Eisenberg,D. (2001) DIP:
The Database of Interacting Proteins: 2001 update. Nucleic Acids
Res., 29, 239-241.

Chatr-Aryamontri,A., Ceol,A., Palazzi,L.M., Nardelli,G.,
Schneider,M.V., Castagnoli,L. and Cesareni,G. (2007) MINT: the
Molecular INTeraction database. Nucleic Acids Res., 35,
D572-D574.

Kerrien,S., Alam-Faruque,Y., Aranda,B., Bancarz,I., Bridge,A.,
Derow,C., Dimmer,E., Feuermann,M., Friedrichsen,A.,
Huntley,R. e al. (2007) IntAct—open source resource for
molecular interaction data. Nucleic Acids Res., 35, D561-D565.
Boutet,E., Lieberherr,D., Tognolli,M., Schneider,M. and
Bairoch,A. (2007) UniProtKB/Swiss-Prot: The Manually
Annotated Section of the UniProt KnowledgeBase.

Methods Mol. Biol., 406, 89—112.

Sprenger,J., Lynn Fink,J., Karunaratne,S., Hanson,K.,
Hamilton,N.A. and Teasdale,R.D. (2008) LOCATE: a
mammalian protein subcellular localization database.

Nucleic Acids Res., 36, D230-D233.

Guo,T., Hua,S., Ji,X. and Sun,Z. (2004) DBSubLoc: database of
protein subcellular localization. Nucleic Acids Res., 32,
DI122-D124.

Wiwatwattana,N., Landau,C.M., Cope,G.J., Harp,G.A. and
Kumar,A. (2007) Organelle DB: an updated resource of
eukaryotic protein localization and function. Nucleic Acids Res.,
35, D810-D814.

Rey,S., Acab,M., Gardy,J.L., Laird,M.R., deFays,K., Lambert,C.
and Brinkman,F.S. (2005) PSORTdb: a protein subcellular
localization database for bacteria. Nucleic Acids Res., 33,
D164-D168.

Wingender,E., Karas,H. and Kniippel,R. (1997) TRANSFAC
database as a bridge between sequence data libraries and
biological function. In Altman,R.B., Dunker,A.K., Hunter,L. and
Klein,T.E. (eds), Pacific Symposium on Biocomputing 97
(PSB’97). World Scientific, Singapore, pp. 477-485.

Barrett,T., Troup,D.B., Wilhite,S.E., Ledoux,P., Rudnev,D.,
Evangelista,C., Kim,I.F., Soboleva,A., Tomashevsky,M. and
Edgar,R. (2007) NCBI GEO: mining tens of millions of
expression profiles—database and tools update. Nucleic Acids Res.,
35, D760-D765.

. Hochreiter,S., Clevert,D.A. and Obermayer,K. (2006) A new

summarization method for Affymetrix probe level data.
Bioinformatics, 22, 943-949.

Chang,C.-C. and Lin,C.-J. (2001) LIBSVM: a library for support
vector machines, Software available at http://www.csie.ntu.edu.tw/
~cjlin/libsvm (date last accessed, 30 September 2009).



45.

46.

47.

48.

49.

von Mering,C., Jensen,L.J., Kuhn,M., Chaffron,S., Doerks,T.,
Kruger,B., Snel,B. and Bork,P. (2007) STRING 7-recent
developments in the integration and prediction of protein
interactions. Nucleic Acids Res., 35, D358-D362.

Pierleoni,A., Martelli,P.L., Fariselli,P. and Casadio,R. (2006)
BaCelLo: a balanced subcellular localization predictor.
Bioinformatics, 22, e408—e416.

Sharan,R., Suthram,S., Kelley,R.M., Kuhn,T., McCuine,S.,
Uetz,P., Sittler,T., Karp,R.M. and Ideker,T. (2005) Conserved
patterns of protein interaction in multiple species.

Proc. Natl Acad. Sci. USA, 102, 1974-1979.

Craparo,A., O’Neill,T.J. and Gustafson,T.A. (1995) Non-SH2
domains within insulin receptor substrate-1 and SHC mediate
their phosphotyrosine-dependent interaction with the NPEY motif
of the insulin-like growth factor I receptor. J. Biol. Chem., 270,
15639-15643.

Jmol: an open-source Java viewer for chemical structures in 3D.
http://www.jmol.org/ (date last accessed, 30 September 2009).

Nucleic Acids Research, 2011, Vol. 39, Database issue

50.

S1.

52.

53.

D787

Deshpande,N., Addess,K.J., Bluhm,W.F., Merino-Ott,J.C.,
Townsend-Merino,W., Zhang,Q., Knezevich,C., Xie,L., Chen,L.,
Feng,Z. et al. (2005) The RCSB Protein Data Bank: a redesigned
query system and relational database based on the mmCIF
schema. Nucleic Acids Res., 33, D233-D237.

Horike,N., Takemori,H., Katoh,Y., Doi,J., Min,L., Asano,T.,
Sun,X.J., Yamamoto,H., Kasayama,S., Muraoka,M. et al. (2003)
Adipose-specific expression, phosphorylation of Ser794 in insulin
receptor substrate-1, and activation in diabetic animals of
salt-inducible kinase-2. J. Biol. Chem., 278, 18440-18447.
Holgado-Madruga,M., Emlet,D.R., Moscatello,D.K.,
Godwin,A.K. and Wong,A.J. (1996) A Grb2-associated docking
protein in EGF- and insulin-receptor signalling. Nature, 379,
560-564.

Forrest,A.R., Ravasi,T., Taylor,D., Huber,T., Hume,D.A. and
Grimmond,S. (2003) Phosphoregulators: protein kinases

and protein phosphatases of mouse. Genome Res., 13,
1443-1454.



