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Abstract
Adequate respiratory and laryngeal motor control are essential for speech, but may be impaired in
Parkinson's disease (PD). Bilateral subthalamic nucleus deep brain stimulation (STN DBS)
improves limb function in PD, but the effects on respiratory and laryngeal control remain
unknown. We tested whether STN DBS would change aerodynamic measures of respiratory and
laryngeal control, and whether these changes were correlated with limb function and stimulation
parameters. Eighteen PD participants with bilateral STN DBS were tested within a morning
session after a minimum of 12 h since their most recent dose of anti-PD medication. Testing
occurred when DBS was on, and again 1 h after DBS was turned off, and included aerodynamic
measures during syllable production, and standard clinical ratings of limb function. We found that
PD participants exhibited changes with DBS, consistent with increased respiratory driving
pressure (n = 9) and increased vocal fold closure (n = 9). However, most participants exceeded a
typical operating range for these respiratory and laryngeal control variables with DBS. Changes
were uncorrelated with limb function, but showed some correlation with stimulation frequency
and pulse width, suggesting that speech may benefit more from low-frequency stimulation and
shorter pulse width. Therefore, high-frequency STN DBS may be less beneficial for speech-related
respiratory and laryngeal control than for limb motor control. It is important to consider these
distinctions and their underlying mechanisms when assessing the impact of STN DBS on PD.
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Background
Parkinson's disease (PD) affects millions of people worldwide, resulting in impairment of
limb motor control and substantial deficits of speech motor control, including abnormal
respiratory, laryngeal, and supralaryngeal control for breathing and speech [1–11]. The
Unified Parkinson's Disease Rating Scale (UPDRS) is commonly employed to assess
individuals with PD [12], and is a reasonable limb-assessment tool that correlates well with
more specific measures of limb motor function [6,13]. However, the UPDRS contains only
two speech-related items that correlate weakly with more specific measures of speech
function [14]. Therefore, the ability to efficiently sample and index specific speech-related
respiratory and laryngeal physiology would be valuable in assessing disease severity and the
potential influence of intervention on PD.

Adequate respiratory driving pressure is essential for speech, but it is often substantially
decreased in PD. These deficits contribute to reduced speech audibility and intelligibility,
linguistic confusion, and communicative impairment [15–18]. Respiratory driving pressure
during speech may be assessed by measuring subglottal air pressure (PS) directly through a
hypodermic needle inserted into the trachea, or indirectly through a polyethylene tube placed
in the oral cavity during simple syllable ([ ]) production [19,20]. Therefore, measuring air
pressure in the oral cavity during syllable production provides a non-invasive estimation of
respiratory driving pressure.

Respiratory driving pressure during speech results in air flow through the larynx and upper
airway. Air flow may be measured directly through a face mask coupled to an air flow
sensor placed over the mouth and nose, and provides information regarding respiratory and
laryngeal function. For example, the peak in the air flow signal following release of the
consonant in the syllable [ ] is influenced by respiratory driving pressure and the degree
of vocal fold abduction. The slope of declination in the air flow signal following the peak
may provide information on the relative timing of phonatory onset. Mean vocalic air flow
during the vowel in [ ] reflects vocal fold adduction and closure for voicing. Intraoral
pressure and vocalic air flow can be used together to estimate laryngeal airway resistance
associated with vocal fold closure. Finally, simple time integration of the air flow signal
provides a measure of lung air volume expended for each syllable. Therefore, measuring air
pressure and air flow during syllable production provides a simple, non-invasive assessment
to examine physiological changes in speech respiratory and laryngeal control in PD and
response to intervention such as deep brain stimulation (DBS).

DBS of the subthalamic nucleus (STN) has rapidly emerged during the past decade as a
treatment for advanced PD [21,22]. The primary goal of STN DBS is to improve limb-
related function as defined using the UPDRS. As such, DBS has been associated with
significant improvements in limb motor function and quality of life [13,23]. However,
previous speech-related reports on STN DBS demonstrated different outcomes [24–37] (see
reviews [32,38–40]). One possible explanation for these differences may be that high-
frequency STN DBS is optimized for limb function as determined by the UPDRS, and the
localization and programming of the DBS electrodes are optimized for limb-related
somatotopy. However, improved ability to generate larger magnitudes of force, as reported
in limb and orofacial force control studies, may be less beneficial for the complex, fine
forces required for speech and voice [41–43]. In fact, previous reports suggest that speech
may benefit more from low-frequency stimulation than high-frequency stimulation [41,42].
Therefore, the patterns of fine force control contributing to speech production, including
respiratory and laryngeal control, may respond differently than limb function to DBS.
However, no studies have examined changes in aerodynamic measures of speech-related
respiratory and laryngeal control in PD with STN DBS. Therefore, the primary objective of
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the present study was to examine the effects of bilateral STN DBS on aerodynamic
measures of respiratory and laryngeal control in PD participants. The second objective was
to examine the possible association between clinical ratings of limb function (e.g., UPDRS)
and stimulation parameters (e.g., frequency, pulse width) with changes in the aerodynamic
measures.

Methods
Participants

The protocol was approved by the local institutional ethics committee for the safety of
human subjects and written informed consent was obtained from all participants. Data were
collected from 18 individuals (15 men, 3 women) with advanced idiopathic PD, an average
of 11.5 years since diagnosis and a minimum of 3 months since bilateral STN DBS surgery
(Table 1). Mean age was 60 years (range 36–76).

Neurological assessment
Testing was coordinated with the participant's scheduled neurological evaluation. Each PD
participant was tested during a single morning session a minimum of 12 h since their most
recent dose of anti-PD medication. As part of the scheduled neurological evaluation, each
participant underwent post-operative assessment (DBS ON only) by a movement disorder
specialist (R.P.) including the motor scale of the UPDRS, Hoehn and Yahr (H&Y) staging,
and the Schwab and England Activities of Daily Living Scale (S&E) [12,44,45]. This post-
operative assessment (DBS ON, no medication) was compared with the pre-operative
assessment (no medication). Participants exhibited signifi-cant pre- versus post-operative
improvement in clinical ratings of limb-related function with DBS (UPDRS, t = –5.19, p <
0.001; H&Y, t = –2.36, p < 0.04; S&E, t = 5.30, p < 0.001). Assessment results are provided
in Table 1. STN DBS stimulation parameters (e.g., frequency, pulse width) are in Table 2.

We carefully considered our participants and their limited availability for testing.
Accordingly, we selected non-invasive aerodynamic measures of speech respiratory and
laryngeal control, and chose to assess each participant with DBS on, and again 1 h after
DBS was turned off. We explored whether changes in aerodynamic measures of speech
respiratory and laryngeal control (DBS ON vs. DBS OFF) were associated with clinical
ratings of limb function (e.g., UPDRS, pre- vs. post-operative) and DBS stimulation
parameters (e.g., frequency, pulse width).

Air pressure and air flow
Participants were comfortably seated in an exam chair and instructed to repeat the syllable
[ ] at a rate of two syllables per second at a comfortable pitch and loudness. The air
pressure in the oral cavity during the closed phase of the voiceless bilabial plosive [p] equals
the air pressure below the glottis (PS). This sampling context provides a reasonable estimate
of PS for voice and speech [19,20]. Air pressure in the oral cavity was measured using a
polyethylene catheter (Intramedic PE 260, 1.77 mm ID, 7 cm length) placed in the mouth
near the oral angle and oriented perpendicular to the breath stream during speech. The
catheter was coupled to a pressure transducer (Honeywell model 164PC01D37). A 10-cm-
H2O pressure source (U-tube manometer) was used to calibrate the air pressure transducer.
Air flow was measured using a Puritan-Bennett full-face respiratory mask (model 5253) and
a Hans Rudolph pneumotachometer (model R4719) instrumented with a pressure transducer
(Honeywell model 163PC01D36). A 500-cc/s flow source (Glottal Enterprises model
MCU-2) was used to calibrate the air flow transducer. Both air pressure and air flow signals
were conditioned by bridge amplifiers (Biocommunication Electronics, model 201, LP –3
dB @ 50 Hz, Butterworth 3-pole). Lip closure and voicing were carefully monitored for
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each participant. Only syllables with complete seal of the lips during the consonant and
continuous voice production during the vowel were included in analysis. Signals were
digitized at 3.3 kHz using a custom designed data acquisition and analysis program [46] to
compute PS, peak air flow, mean vocalic air flow, and laryngeal airway resistance. Air flow
data were processed (Minitab v.13.20) to determine the slope of declination following the
peak in the air flow signal associated with phonatory onset, and integrated to determine the
lung air volume expended per syllable.

Statistical analyses
Because of the heterogeneity of participant responses reported previously, we anticipated
individual increases and decreases for each of the six aerodynamic measures of respiratory
and laryngeal control with DBS such that traditional group analysis (paired t tests DBS ON
vs. DBS OFF, α = 0.05/6 measures = 0.008) would not reflect significant changes. However,
we hypothesized that individual participants would exhibit significant absolute changes in
each measure with DBS. To examine this hypothesis, we used individual change data (see
Table 3) to calculate the group mean magnitude of change and the group standard error for
each measure. We evaluated whether individuals exhibited an absolute magnitude of change
that exceeded two times the group standard error, and used this as our criterion for
significance (see Fig. 1, top panels). We then compared our data with typical operating
ranges reported in the literature for each of the six aerodynamic measures [19,20,47]. We
examined the individual baselines, responses to DBS, and examined whether individual
values approached, departed from, or stayed within the typical operating range with DBS
(see Table 4; Fig. 1, bottom panels). To examine the possible relation between changes in
each measure of respiratory and laryngeal control and clinical ratings of limb function (e.g.,
UPDRS) and stimulation parameters (e.g., frequency, pulse width), we computed Pearson
product moment correlation coefficients (α = 0.05).

Results
Individual values and corresponding change for each aerodynamic measure of respiratory
and laryngeal control are shown in Fig. 1, and summarized in Table 3. As anticipated, we
observed individual increases and decreases for each of the six aerodynamic measures of
respiratory and laryngeal control with DBS such that traditional group analysis (paired t tests
DBS ON vs. DBS OFF, all p values > 0.05) did not reflect significant changes.

However, individual participants exhibited changes in each measure (Table 4; Fig. 1, top
panels): subglottal air pressure (n = 14), peak air flow (n = 12), mean vocalic air flow (n =
12), laryngeal airway resistance (n = 12), lung air volume expended per syllable (n = 14),
and slope of declination in air flow (n = 12). Of these participants, most exhibited increases
in subglottal air pressure (n = 9), peak air flow (n = 7), laryngeal airway resistance (n = 11),
and slope (n = 8), with decreases in mean vocalic air flow (n = 9) and lung air volume
expended per syllable (n = 9). These changes were primarily consistent with increased
respiratory driving pressure, increased vocal fold closure for voicing, associated changes in
timing of phonatory onset, and reduced expenditure of lung air volume per syllable.
However, participants demonstrated individual responses to DBS. For example, of the 14
individuals who demonstrated changes in subglottal air pressure with DBS, nine exhibited
increased pressure while five demonstrated decreased pressure.

We then compared our data with typical operating ranges reported in the literature for each
of the six aerodynamic measures [19,20,47] to evaluate the individual baselines, responses
to DBS, and whether individual values approached, departed from, or stayed within the
typical operating range with DBS (see Table 4; Fig. 1, bottom panels). Eight PD participants
that exhibited values beyond the typical range (OFF) approached but overshot the typical
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range for peak air flow (participants 2 and 6), vocalic air flow (participant 1, 5, and 13),
laryngeal resistance (participants 3 and 13), and volume (participant 3) with DBS ON. Not
all PD participants exhibited values beyond the typical range with DBS OFF, and most
participants exhibited values that exceeded the typical range for each measure with DBS
ON. Therefore, although most PD participants exhibited changes with DBS, most exhibited
measures that deviated from a typical operating range.

Next, we examined the degree to which aerodynamic measures of respiratory and laryngeal
control were associated with clinical ratings of limb function (e.g., UPDRS) and stimulation
parameters (e.g., frequency, pulse width). These measures were not significantly correlated
with changes in the UPDRS, H&Y, or S&E (Pearson product moment correlation
coefficients, all p values > 0.09). However, we did find a moderate positive correlation
between vocalic air flow and the single item index of functional communication from the
UPDRS Activities of Daily Living (ADL) subscale (r = 0.46, p = 0.05). We also found
moderate negative correlations (all p ≤ 0.05) between stimulation frequency of the left STN
with peak air flow (r = –0.61) and volume (r = –0.56), between stimulation frequency of the
right STN with peak air flow (r = –0.59), volume (r = –0.63), and slope (r = –0.48), and
between stimulation pulse width of the right STN with peak air flow (r = –0.52) and volume
(r = –0.46). Therefore, changes in aerodynamic measures of respiratory and laryngeal
control did not parallel clinical ratings of limb function, but demonstrated some relation to
DBS parameters (i.e., frequency and pulse width), and vocalic air flow was correlated with
degree of functional communication deficit.

Discussion
This study presents the first data examining the effects of bilateral STN DBS on
aerodynamic measures of respiratory and laryngeal control in PD. We found that PD
participants exhibited changes in respiratory and laryngeal control with STN DBS. These
findings are consistent with the heterogeneity of speech responses to STN DBS reported
previously. As anticipated, we found individual increases and decreases for each of the six
aerodynamic measures with STN DBS. Most of the changes with DBS were consistent with
increased respiratory driving pressure, increased vocal fold closure for voicing, associated
changes in timing of phonatory onset, and reduced expenditure of lung air volume per
syllable. In the present study, changes in aerodynamic measures of respiratory and laryngeal
control with DBS may represent changes in central scaling among neural networks involved
in speech-related respiratory and laryngeal control. When improvements were observed, it
may be that abnormally altered patterns of neural firing presumed to occur throughout the
basal ganglia-thalamo-cortical network may approximate a more normal pattern of
oscillation with STN DBS, or these patterns may be more amenable to beneficial
compensation by remaining healthy brain tissue in the presence of STN DBS. However, it
should be noted most participants exhibited speech values that exceeded the typical range
with DBS, consistent with respiratory over-drive and excessive vocal fold closure.

We observed a moderate positive correlation between vocalic air flow and the single-item
index of functional communication from the UPDRS ADL subscale, suggesting an
association between breathiness (consistent with hypophonia in PD) and functional
communication deficit. However, changes in aerodynamic measures of respiratory and
laryngeal control were uncorrelated with changes in clinical ratings of limb function (e.g.,
UPDRS Motor sub-scale). This finding is not surprising given that the UPDRS Motor
subscale is focused almost entirely on limb function, and lacks the construct validity to
accurately and reliably assess the speech motor subsystems [14,48,49]. The heterogeneity of
participant responses and the lack of association between the speech and limb-related
measures may relate to potential variability in the localization of the active DBS electrodes,
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stimulation fields, and potential current spread beyond the STN target (e.g., internal
capsule), individual variability in somatotopic representation in STN, hemispheric
interactions [35–37], differences in pre-treatment severity [25,26], and optimization of DBS
settings for limb function rather than for speech-related motor control.

The negative correlations we found between stimulation frequency and aerodynamic
measures of respiratory and laryngeal control suggest a differential effect of high-frequency
DBS for speech and limb-related control, and indicate that lower frequency stimulation may
generally be associated with greater respiratory driving pressure, associated changes in the
timing of phonatory onset, and increased expenditure of lung air volume for each syllable.
These correlations accord with previous reports, lending further support that speech may
benefit more from lower-frequency DBS than high-frequency DBS [41–43]. Therefore,
high-frequency stimulation may be of less benefit for speech-related respiratory and
laryngeal control than for functions that require larger forces, such as limb movements. In
some cases, a differential effect may also be evident for stimulation voltage [50]. We
observed an association between right hemisphere pulse width with peak air flow and
expended lung air volume. This association may also confirm previously reported
hemispheric effects of STN DBS [35–37]. Again, it is important to note that most
participants exhibited values that exceeded the typical range with DBS, consistent with
respiratory over-drive and excessive vocal fold closure, and that all participants were
receiving high-frequency stimulation, with the lowest stimulation frequency at 145 Hz.
Therefore, our findings of respiratory over-drive and excessive vocal fold closure with DBS
further suggest that high-frequency stimulation may be of less benefit for the fine force
requirements of speech respiratory and laryngeal control than for the large magnitudes of
force required for limb-related function.

Because clinical neurological assessment scales (e.g., UPDRS) focus almost exclusively on
limb motor function and possess limited ability to accurately identify speech changes in PD,
we employed aerodynamic measures of speech respiratory and laryngeal function. As
demonstrated in the present study, non-invasive measures of speech physiology, including
speech aerodynamics, may be helpful to assess even subtle changes in speech-related
function that may be unidentified during a standard neurological evaluation. A limitation of
our study was that we only were able to perform post-operative speech testing (DBS ON vs.
DBS OFF). In planning future experiments, we would suggest inclusion of pre- and post-
operative testing for comparison, to examine the impact of pre-operative speech severity,
and a more comprehensive task set including phrases and sentences. Future study designs
would also benefit from the integration of aerodynamics with other assessment tools (e.g.,
acoustics, perceptual scales). Finally, we would suggest repeating clinical ratings of limb
function (e.g., UPDRS) with DBS turned off to directly compare limb function (DBS ON vs.
DBS OFF), and to include electrode localization coordinates with speech and limb measures
for additional correlative analyses.

Conclusions
The effects of STN DBS on speech-related respiratory and laryngeal control in PD were
previously unknown. In this study, we used non-invasive aerodynamic measures to examine
speech respiratory and laryngeal function. We found that bilateral STN DBS may change
respiratory and laryngeal function during syllable production in PD. The effects on
respiratory and laryngeal control were not uniform across participants and did not correlate
with changes in limb-related function. We found that high-frequency STN DBS often
resulted in respiratory over-drive and excessive vocal fold closure, suggesting that high-
frequency STN DBS may be less beneficial for speech-related respiratory and laryngeal
control than for limb control, and that speech may benefit more from low-frequency
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stimulation than high-frequency stimulation. It is important to consider the differences
between speech versus limb function, and between high- versus low-frequency stimulation
when planning and optimizing the stimulation parameters for individuals with PD.
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Fig. 1.
Individual values and corresponding change for each aerodynamic measure (a through f).
(PS subglottal pressure, LR laryngeal resistance). Top individual change (DBS ON–DBS
OFF). Bottom individual values for each participant with DBS ON (black symbols) and DBS
OFF (gray symbols). In each graph, dashed vertical reference lines demarcate boundaries
between significant increases (left), non-significant changes (middle), and significant
decreases (right). Solid horizontal reference lines in the bottom graph demarcate a typical
operating range
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