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Abstract
In the past decade, the prevalence, significance, and regulatory mechanisms of vascular
calcification have gained increasing recognition. Over a century ago, pathologists recognized
atherosclerotic calcification as a form of extraskeletal ossification. Recent studies are identifying
the mechanisms of this remarkable process as a recapitulation of embryonic endochondral
ossification through phenotypic plasticity of vascular cells that function as adult mesenchymal
stem cells. These embryonic developmental programs, involving bone morphogenetic proteins and
potent osteochondrogenic transcription factors, are triggered and modulated by a variety of
inflammatory, metabolic, and genetic disorders particularly hyperlipidemia, chronic kidney
disease, diabetes, hyperparathyroidism, and osteoporosis. They are also triggered by loss of
powerful inhibitors, such as fetuin-A, matrix GLA protein, and pyrophosphate, which ordinarily
restrict biomineralization to skeletal bone. Teleologically, soft tissue calcification probably serves
to create a wall of bone to sequester noxious foci such as chronic infections, parasites, and foreign
bodies. This review focuses on atherosclerotic calcification, with reference to other forms of
cardiovascular calcification, such as medial and valvular calcification, each of which warrants its
own review. The capacity of the asculature to produce mineral in culture and to produce de novo,
vascularized, trabecular bone and cartilage tissue, even in patients with osteoporosis, should
intrigue investigators in tissue engineering and regenerative biology.

Introduction
More than a century ago, investigators recognized vascular calcification as a form of
extraskeletal ossification.1, 2 This concept was forgotten in the past century, when
cholesterol dominated the field. Vascular calcium deposits became regarded as passive,
inevitable, unregulated, and degenerative consequences of aging. In the past decade, the
prevalence, significance, and regulatory mechanisms of vascular calcification have gained
recognition among clinicians.3

A recent meta-analysis of 30 prospective cohort studies demonstrated the consistent finding
that presence of calcification poses an increased risk for cardiovascular and all-cause
mortality.4 By far, the most extensive vascular calcification occurs in patients with renal
disease (CKD),5 followed by those with type II diabetes.6 Nearly all cardiovascular disease
(CVD) patients have some degree of calcification,7 and in asymptomatic adults, prevalence
of coronary calcification corresponds roughly with age: among 60-year-olds, approximately
60% have calcific vasculopathy. 3, 4

Corresponding author: Linda L. Demer, MD, PhD, Division of Cardiology, David Geffen School of Medicine at UCLA, 10833
LeConte Ave., Box 951679, Los Angeles, CA 90095-1679, Phone: 310 206-2677, Fax: 310 825-4963, LDemer@mednet.ucla.edu.

NIH Public Access
Author Manuscript
Nat Rev Cardiol. Author manuscript; available in PMC 2011 September 1.

Published in final edited form as:
Nat Rev Cardiol. 2010 September ; 7(9): 528–536. doi:10.1038/nrcardio.2010.115.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Etiology
Vascular calcification is the culmination of several distinct pathological processes, many of
which overlap, such as in chronic kidney disease (CKD), which Towler aptly named the
“perfect storm” for vascular calcification.8 These processes largely follow developmental
programs that recapitulate embryonic ossification, with modulation by inflammatory or
metabolic phenomena (Figure 1). Both activators and inhibitors participate, and many of
them interact. The developmental programs play out in vascular cells exhibiting lineage
plasticity and inflammatory responses to chronic oxidative stress.

Given the potential adverse consequences of uncontrolled biomineralization, calcium-
phosphate metabolism is tightly regulated and mineralization ordinarily limited to skeletal
bone by circulating and local inhibitors. Early investigators believed that the process of
vascular calcification was a passive process possible only when inhibitors were absent or
deficient. The current view is that it is an active process that occurs despite the presence of
inhibitors and, once underway, recapitulates regulated osteogenesis.

Recapitulation of osteogenesis
One of the first, and most compelling, clues that vascular calcification recapitulates
osteogenesis was the presence of bone-like tissue in atherosclerotic arteries and valves.2, 9
In 10–20% of atherosclerotic human vessels and valves, 9 architecturally-complete,
trabecular bone emerges from amorphous mineralized matrix. All stages of endochondral
ossification are found in a careful survey of such lesions,10 even fully-formed marrow
cavities with hematopoietic cells, vascular sinusoids, marrow adipocytes, and marrow
stromal cells.1, 10, 11 Spontaneous bone formation inside the wall of adult arteries is difficult
to explain,

Vascular calcium deposits resemble bone from the macroscale to the nanoscale levels.
Macroscopically, cortical bone osteons resemble a parallel array of calcified vessels, each
containing concentric layers of mesenchymal cells surrounding the subendothelial basement
membrane of a central vessel. The mineral deposits contain “osteoid” (bone matrix), which
consists primarily of collagen I, but also has non-collagenous bone matrix proteins,
including osteopontin, bone sialoprotein, osteocalcin, fetuin, and matrix GLA protein.
Cellular components include osteoblasts, osteoclasts, chondroblasts, chondroclasts,
osteocytes, lymphocytes, and vascular cells. Figure 2

Analysis of the mineral in vascular lesions and cell cultures by energy dispersive x-ray
analysis consistently yields a calcium-phosphate molar ratio of approximately 1.6, matching
that of hydroxyapatite (bone) mineral.12, 13 The non-mineral components of the deposits
include cells, proteins, proteoglycans,14 and lipids.15 Solid-state nuclear magnetic
resonance spectroscopy reveals molecular surface features matching those of bone.14.

Cellular plasticity and vascular stem cells
Ectopic bone in the artery wall is dramatic evidence of mesenchymal cell plasticity. The
notion that smooth muscle cells undergo “de-differentiation into a synthetic phenotype” and
“phenotypic modulation” already has gained acceptance,16 and these terms may be viewed
as euphemisms for “transdifferentiation.” Indeed, conventional distinctions among many cell
lineages are becoming less clear as investigators report that: endothelial cells differentiate to
smooth muscle cells;17 adult mesoangioblasts to myocytes and cardiomyocytes;18

adipocytes to vascular cells;19 osteoclasts to dendritic cells;20 dendritic cells to osteoclasts;21

smooth muscle cells to osteoblasts;22, 23 and microvascular pericytes to osteoblasts,
myocytes and adipocytes.24, 25 The doctrines of lineage commitment and terminal
differentiation are giving way to the view of mesenchymal cell plasticity.
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Mature vascular cells, such as SMCs and valvular interstitial cells, may transdifferentiate22

or dedifferentiate-redifferentiate into osteochondrogenic cells. As with other cells, vascular
cell differentiation responds to microenvironmental26 and mechanical cues. As evidence of
the mechanical influence, mineral deposits co-localize with sites of mechanical stress on
valves.27 Furthermore, substrates of greater stiffness, such as fibronectin, induce
osteochondrogenic differentiation, whereas distensible substrates, such as laminin, promote
smooth muscle and/or adipogenic differentiation. 28 Since cross-linking increases matrix
stiffness, this may account for the vascular calcification induced by the matrix cross-linker,
transglutaminase-2.29 Positive feedback may occur when calcium deposition increases
plaque stiffness, which would induces osteochondrogenic differentiation of adjoining cells.

Adult mesenchymal stem cells residing in the artery wall have a lineage repertoire similar to
that of marrow stromal cells.18, 23, 25 Located primarily in the subendothelial (perivascular)
basement membrane,19 they appear to form an anatomic continuum30 ranging from the
microvascular pericytes to the macrovascular intimal cells, once known as “atherophils” and
“intimacytes.” Even the adventitial layer has subendothelial pericytes in its microvessels, the
vasa vasorum.31, 32

Paradox of vascular calcification and osteoporosis
Interestingly, aortic calcification is often greater in patients with osteoporosis, independently
of age.33, 34 Public health programs currently promote calcium supplements to prevent
osteoporosis, giving the impression that dietary calcium is the limiting factor for bone
growth. However, the fact that the vascular tissues of osteoporotic patients can produce
mature, well-mineralized bone tissue raises questions about the need for dietary supplements
and emphasizes the role of local, tissue-specific factors, such as inflammation, in
osteoporosis.

If the relationship is independent of age, possible explanations for the correlation include: 1)
vascular calcification causes osteoporosis, 2) osteoporosis causes vascular calcification, or
3) the two processes share a common etiology. A potential shared etiology is oxidant stress
from hyperlipidemia. Though most widely recognized in the vessel wall, hyperlipidemia
leads to deposition and nonenzymatic oxidation of lipoprotein particles in tissue. The pro-
inflammatory lipid oxidation products initiate atherogenesis. They also accumulate in other
tissues, including bone.35, 36

This concept has to the “lipid hypothesis of osteoporosis.”37 High fat-fed mice develop
skeletal bone loss,38 which is accelerated in hyperlipidemia.39 Lipid oxidation products have
direct effects on both bone-forming and bone-resorbing cells. They directly inhibit
differentiation of osteoblasts37 while directly inducing differentiation of osteoclasts.40 They
also regulate osteoclastogenic cytokines produced by osteoblasts41 and T lymphocytes.42

Recent studies have shown that patients with hyperlipidemia may not achieve efficacy with
intermittent PTH treatment for osteoporosis because the oxidized lipids blunt the bone
anabolic effects of PTH.43, 44

Mechanisms of initiation
While intracellular osteogenic phenomena are becoming clear, the extracellular crystal
initiation mechanism(s) remains less clear. In general, biomineralization is restricted to
tissues that express both collagen I and alkaline phosphatase; engineered co-expression of
these proteins suffices to induce ectopic calcification.45 Type I collagen, but not ALP, is
present in normal artery wall. Both type I collagen and ALP colocalize with mineral deposits
in calcific atherosclerosis46 and are produced in vascular cells in vitro.47, 48
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In mature osteoid, mineral is associated with fibrillar collagen I. In earlier stages,
crystallization may originate within extracellular membrane vesicles, such as matrix vesicles
or apoptotic bodies, which offer a microenvironment high in calcium and phosphate and
carry membrane-bound ALP.49 By electron microscopy, such crystalline matrix vesicles, are
often found in close proximity to apoptotic cells,50 within atherosclerotic plaques and, when
isolated, retain the ability to concentrate calcium and phosphate and initiate new crystal
formation.51, 52 Matrix vesicles may be specialized forms of general-purpose, membrane
vesicles used for intercellular communication53 while apoptotic bodies may represent a
pathophysiological surrogate.54

Elastic lamellae are degraded in atherosclerotic plaque, and their degradation products may
contribute to crystal initiation.55, 56

Pyrophosphate, a water softener and a cause of pseudogout, potently inhibits calcium
phosphate crystal formation. Although ALP produces Pi, its main role in calcification is the
breakdown of PPi. Extracellular PPi is produced in the extracellular space from nucleotide
triphosphates, such as ATP, by enzymes such as nucleotide pyrophosphatase (NPP)1. PPi
produced inside cells is exported via the transmembrane protein, Ank. Deficiency of either
NPP1 or Ank in mice results in vascular and joint calcification with spontaneous
chondrogenic metaplasia.57

Human genetic disorders
A lethal congenital disorder that causes myocardial infarction in infants, previously known
as idiopathic infantile arterial calcinosis, is now recognized as homozygous NPP1 deficiency
and has been renamed infantile arterial calcification.58 Patients with another hereditary
human disorder, fibrodysplasia ossificans progressiva (FOP), develop ectopic bone at sites
of muscle and soft tissue injury, gradually causing petrification of its victims.59 The ectopic
bone formation is mediated by cells of vascular origin,60 that derive from a Tie2-positive,
but not SM-MHC positive lineage, suggesting an endothelial or more primitive progenitor
stem cell origin. Patients with homozygous familial hypercholesterolemia have premature
severe calcific aortopathy and valvulopathy, suggesting a role for hyperlipidemia in both.61

Categories of vascular calcification
Vascular calcification can be distinguished by location as intimal (atherosclerotic), medial,
or valvular, each having somewhat distinct mechanisms.

Calcific atherosclerosis occurs in the same distribution as atherosclerosis. Small (5–10 µm)
hydroxyapatite mineral crystals arise in early lesions in the 3rd decade of life.62 It was
previously believed that calcification occurred only in the most advanced, end-stage plaque
in the elderly. Yet, it is now used as a marker for early atherosclerosis.63

Calcific valvular stenosis, a lethal disorder formerly attributed to wear-and-tear injury, is
now seen as an atherosclerotic process that shares risk factors and etiological factors with
calcific atherosclerosis. Chondroosseous metaplasia is a common feature.64 Oxidant stress,
65 lipids66, 67 and Wnt/beta-catenin/LRP5 pathway68, 69 have been implicated.

Medial calcification occurs primarily in association with chronic kidney disease and
diabetes, independently of atherosclerosis, and it resembles embryonic membranous (vs.
endochondral) ossification. In microvessels, medial calcification is known as calcific uremic
arteriolopathy, previously calciphylaxis.
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Both medial calcification and calcific valvular stenosis have been reviewed extensively
elsewhere. 5, 6, 64, 70, 71 The present review focuses primarily on atherosclerotic
calcification and its mechanisms.

Clinical significance
Controversy remains with respect to whether vascular calcification is a cause or
consequence of cardiovascular disease. Most likely, it is both: a cause, in that atherosclerosis
induces cellular osteogenic differentiation; and a consequence, in that vascular calcification
stiffens the aorta and affects plaque stability. In the coronary arteries, calcified plaque
independently predicts a 1.7-fold increase in mortality. In peripheral arteries, it
independently predicts amputation and mortality.72 When coronary calcification is
extensive, the risk is 60-fold higher.3

Aortic stiffness is an important consequence of medial calcification, and calcification has the
greatest effect on aortic rigidity.73, 74 Aortic rigidity results in hypertension, left ventricular
hypertrophy, ischemia, heart failure, amputation, and death.6

Plaque stability may be affected by calcium deposits because they introduce compliance
mismatch at the interface of the rigid mineral with the more distensible artery wall tissue.
Under mechanical stress, this interface has a greater risk for mechanical failure (plaque
rupture). Such plaque rupture is believed to cause most myocardial infarction and stroke.75

Based on finite element analysis, calcium deposits dramatically redistribute stress in plaque,
reducing it in some regions at the cost of increasing it in others,76 with the net effect on risk
of rupture depending on the anatomic orientation of the calcium deposits relative to the
plaque and any necrotic core.77, 78

Regulatory factors
Factors that regulate vascular calcification are shown in Figure 3. Developmental,
inflammatory and metabolic factors all impact on this process.

Developmental factors
Several developmental regulatory factors, and their respective inhibitors, govern
osteogenesis in skeletal bone and in vascular calcification. The master transcription factors,
Msx2, Runx2 (Cbfa1), Osterix, and Sox9, designate cells for osteoblast vs. chondrocyte
lineages through induction of downstream matrix components such as collagen I, alkaline
phosphatase, osteopontin, tissue factor, and osteocalcin. Osteopontin, a multifunctional
protein involved in diverse processes including inhibition mineralization, is reviewed in
detail by Giachelli and colleagues.79

Bone morphogenetic proteins—BMP2 and 4, potent osteogenic differentiation factors
originally isolated from bovine bone, induce ectopic ossification in muscle tissue in vivo and
mineralization in SMC in vitro. BMP-2 acts through Runx2,80 which induces type I collagen
and alkaline phosphatase. It is antagonized by noggin, chordin and matrix carboxyglutamic
acid protein (MGP). 81 BMP4 is induced by RANKL in rat smooth muscle cells,82 and
BMP7 inhibits calcification.83

MGP—MGP, the BMP inhibitor, associates with conventional cardiovascular risk factors
(Framingham), but, surprisingly, not with coronary calcification.84 It is highly expressed in
calcified vs. normal human arteries.46 Its inhibitory role in vascular calcification was
revealed with the unexpected phenotype of the MGP deficient mouse – complete
ossification of the aortic wall and major branches by calcified cartilage.85 Later studies
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showed two mechanisms of MGP inhibition of calcification: direct binding of nascent
crystals, and direct binding and inhibition of BMP-2.86 MGP is blocked, in turn, by heat
shock protein-70,87 and lack of vitamin K. Its function depends on vitamin K-dependent
gamma-carboxylation of glutamate residues,88 a process inhibited by warfarin. Accordingly,
long-term warfarin therapy is associated with increased femoral artery calcification,4 and its
possible contribution to other vascular calcification is under investigation.

RANKL—RANKL, expressed by osteoblasts, is an essential regulator of osteoclast
differentiation. Deficiency of osteoprotegerin (OPG), a decoy receptor for RANK, leads to
medial calcifcation.89, 90 Unexpectedly, RANKL levels increase with age and reliably
predict cardiovascular events.91 The OPG/RANKL system may govern differentiation of
osteoclast-like cells at sites of vascular calcification.9, 92

Inflammatory factors
Inflammation is closely associated with calcification. Macrophages, lymphocytes, and
dendritic cells infiltrate plaque and release cytokines that regulate calcification.20, 40

Perivascular adipose inflammation and systemic inflammation 93, 94 as well as systemic
inflammation.95 In elegant work by Towler and colleagues, the link between inflammatory
and developmental mechanisms was identified as the pro-osteogenic Msx2-Wnt-β-catenin
signaling mechanism.

TNF-a—TNFα induces the Msx2-Wnt-beta-catenin signaling pathway96 as do oxidant
stress6 and hyperphosphatemia.97 TNFα also promotes calcification in vitro by reducing
anti-apoptotic Gas698 and by inducing ALP via PKA signaling.48 TNFα may also act on
ALP via NADPH-mediated ROS and induction of Msx2.6, 99 In vivo, targeted TNFα
overexpression in SMCs enhances Msx2-Wnt induced calcification in Ldlr−/− mice, and the
clinically-used monoclonal antibody to TNFα, infliximab, inhibits Wnt activation and
calcification in Ldlr−/− mice.96

Gas6/Axl—A prominent anti-apoptotic pathway in VSMCs is regulated by Axl tyrosine
kinase and its ligand, Gas6, another GLA protein. Reduced expression of Axl and Gas6
correlates with progression of calcification in vitro,100 whereas restoration prevents
calcification.101, 102 This pathway is a downstream effector for a number of key regulators
of vascular calcification, including inorganic phosphate103 and TNFa98 as well as
testosterone 104 and adiponectin.98 The role of Gas6 and Axl in cardiovascular diseases may
be complex, since they also mediate atherogenesis, platelet function and immune cell
activation.

Fetuin-A—Fetuin-A, an abundant serum protein produced in the liver, binds and
complexes calcium phosphate nanocrystals, forming calcioprotein particles (CPPs),
preventing aggregation into insoluble mineral crystals, and preventing further growth.
Fetuin-A also promotes cellular uptake and removal of the complexes.105 Fetuin
accumulates at sites of vascular calcification106 as well as in bone. Other bone-associated
proteins also bind crystals particularly osteopontin.107 In vitro, fetuin taken up by VSMCs
reduces the ability of their matrix vesicles to calcify.106, 108 Low fetuin-A levels are
associated with increased vascular calcification and mortality in CKD patients.109

Crystals—Nanoscale hydroxyapatite crystals13, 14 may have direct biological effects on
cells through physicochemical interactions that trigger inflammation and apoptosis. 13 These
effects are known pyrophosphate and urate crystals, but less so for hydroxyapatite.110 A
positive feedback loop may ensue when inflammation triggers mineralization and
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mineralization triggers inflammation. In osteoarthritis crystals induce MMPs and cell
proliferation through Erk and calcium signaling.111

Metabolic factors
Excess lipids, phosphate and/or glucose, in chronic diseases, have both direct and indirect
effects on vascular calcification. A central downstream mediator of these changes and their
link with inflammatory and developmental processes described above may be oxidant stress.

Oxidant stress—Oxidant stress, alone, promotes vascular cell calcification,112 It may
account for the procalcific effects of inflammatory cytokines, oxidized lipids and certain
oxysterols. The classical oxidant stressor, H202, promotes osteochondrocytic differentiation
of VSMC by upregulating Runx2.47 Reactive oxygen species are increased at sites of
calcification in human valves.65, 113 Products of lipid oxidation, such as minimally-modified
LDL and oxidized phospholipids, induce osteogenic37, 114 and apoptosis-mediated
calcification of vascular cells.115 The osteogenic differentiation induced by TNF-alpha and
H202 is inhibited by insulin-like growth factor-1.116

Hyperphosphatemia—The important role of hyperphosphatemia in the medial
calcification associated with chronic kidney disease has been reviewed in detail.70, 97 Serum
phosphate levels are regulated by FGF23, which is released from bone osteocytes and
activates its coreceptor Klotho in the kidney, controlling phosphate elimination.

Vitamin D—High dose, dietary vitamin D reliably induces medial calcification; it is often
used to generate animal models of vascular calcification.117 As a fat-soluble vitamin, dietary
vitamin D may be carried by chylomicrons and lipoprotein particles, which are deposited
into the artery wall, where it may be converted to active form by 1-alpha-hydroxylase in
VSMC and in monocyte-macrophages. This raises interesting questions about the potential
for vitamin D to promote atherosclerotic calcification and cardiovascular risk. The role of
vitamin D in vascular calcification has been reviewed recently.118 Other metabolic factors
that affect calcific vasculopathy include insulin and glucose as well as the adipose-derived
factors, leptin and adiponectin, which promote and inhibit vascular calcification,
respectively.119–121

Treatments
Currently, no therapy is available to reverse vascular calcification; several are available for
underlying disorders such as atherosclerosis, CKD, diabetes mellitus, and osteoporosis.
Interestingly, this disorder is now afforded such importance in CKD that new therapies are
largely judged by their impact on vascular calcification.122 Under investigation are HMG-
CoA reductase inhibitors, sevelamer, bisphosphonates, the phosphorus binder, lanthanum
carbonate, bisphosphonates, alkaline phosphatase inhibitors, calcimimetics, , and the RANK
blocker, denosumab. Importantly, procalcific treatments used for skeletal osteoporosis may
have adverse effects on vascular calcification.

Conclusions
Mineral deposits in atherosclerotic plaque result from several different pathways involving
metabolic and/or inflammatory processes that trigger reversion to embryonic developmental
programs for osteochondrogenesis. What evolutionary advantage might this confer? One
possibility is that soft tissue calcification in general is an immune response of last resort.
Certain chronic infections, such as mycobacteria, parasitic worms, abscesses, or foreign
body infections, may be unabated by cellular and humoral immunity. By surrounding such
infections with a wall of bone, the body may contain the noxious focus. Radiologists have
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described such calcified structures as “ostrich eggs.” The capacity of the artery wall to
generate complete, vascularized, trabecular bone tissue, as well as cartilage and fat, should
capture the attention investigators in tissue regenerative and tissue engineering medicine.

Key Points

• Calcific vasculopathy and valvulopathy encompass amorphous calcification and
chondro-osseous metaplasia in atherosclerotic plaque, the medial layer of large
arteries, and cardiac valves, with different, but overlapping mechanisms.

• The process is associated with, and possibly driven by, developmental,
inflammatory, and/or metabolic abnormalities. A disturbance of one or any
combination of activating and inhibiting factors may be responsible. The list of
regulatory factors continues to grow, and the complex feedback regulatory
mechanisms require nonlinear and systems engineering analysis.

• Vascular calcification associates with most conventional cardiovascular risk
factors, and it is a significant, independent risk factor in itself.

• Clinical consequences of calcific disease include heart failure, valvular sclerosis
and stenosis, ventricular hypertrophy, diastolic dysfunction, and hypertension.
Plaque calcification introduces mechanical discontinuities and compliance
mismatch.

• Targeting hyperlipidemia in CVD patients and hyperphosphatemia in CKD
patients remain the current major approaches to preventing vascular
calcification, but definitive studies remain in progress.
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Figure 1.
Histological sections of human vascular calcification. Medial arterial calcification, osseous
metaplasia, and cartilaginous metaplasia (mineral is stained balck by the von Kossa method
and eosin counterstain; original magnification X 40; provided by M. Fishbein, Department
of Pathlogy and Laboratory Medicine, University of California, Los Angeles, CA, USA.)
(B) Higher-power view of a sequential section from (A) showing chondrocytes in a
basophilic matrix (arrows). (C) The tunica media of a human artery (hematoxylin and eosin
stain; the lumen contains a thrombus). The yellow arrows indicate amorphous mineral, and
the blue arrow identifies a region of osseous tissue that includes a marrow space. (Original
magnification X 100; provided by J. H. Qiao, Department of Pathology, California Hospital
Medical Center, Los Angeles, CA, USA.)
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Figure 2.
Chondro-osseous calcific vasculopathy of the medial layer of an atherosclerotic human
artery. Histological section (hematoxylin and eosin stain; original magnification X100;
provided by Qiao, J.H., Mertens, R. B., Fishbein, M.C. & Geller S.A. Cartilagenous
metaplasia in calcified diabetic peripheral vascular disease: morphologic evidence of
endochondral ossification. Hum. Pathol. 34(4), 402–407© 2003, with permission from
Elsevier).
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Figure 3.
Regulatory factors in vascular calcification. The Venn diagram illustrates overlap between
the three categories of factors regulating vascular calcification. The importance of oxidized
lipids (OxL) and hyperphosphatemia is reflected by their inclusion in each category.
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