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Abstract
Accurately corresponding a population of human cortical surfaces provides important shape
information for the diagnosis of many brain diseases. This problem is very challenging due to the
highly convoluted nature of cortical surfaces. Pairwise methods using a fixed template may not
handle well the case when a target cortical surface is substantially different from the template. In
this paper, we develop a new method to organize the population of cortical surfaces into pairs with
high shape similarity and only correspond such similar pairs to achieve a higher accuracy. In
particular, we use the geometric information to identify co-located gyri and sulci for defining a
new measure of shape similarity. We conduct experiments on 40 instances of the cortical surface,
resulting in an improved performance over several existing shape-correspondence methods.

1 Introduction
The cerebral cortex plays a key role in human brain functions such as memory, attention,
perceptual awareness, thought, language, and consciousness. Different cortical folding or
cortical thickness have been correlated with various brain diseases, including schizophrenia,
Alzheimer’s disease, depression, and multiple sclerosis. For identifying the disease-effected
cortical regions using neuroimages, it is important to bring all individual cortical surfaces
into the common space for comparison (between normal and abnormal groups). To achieve
this, one way is to identify the correspondences between different cortical surfaces. Then,
the corresponding cortical thickness (or folding features) can be compared at different parts
of the brain cortex, thus facilitating the detection of the statistically significant regions that
are related to the specific diseases.

Multiple 3D shape correspondence has been studied by many researchers [1,2,4,9]. Some of
them correspond each shape instance in the population to a fixed template [1,2] in a pairwise
way, which may produce large errors when a target shape instance is substantially different
from the template. Other methods consider the entire population simultaneously [4,9,11,12].
Such groupwise methods usually require complex optimization schemes with high
computing complexity and may not be guaranteed to produce the desirable optimal
solutions. Specific brain mapping models and algorithms have also been developed [5,6,14]
to identify corresponded landmarks on cortical surfaces. Most of them are based on
geometric and anatomic features and their performances are highly dependent on certain
pre-processing steps, such as the accurate extraction of the gyri and sulci.

Recently, Munsell et al. [10] suggested a shape organization approach for improving shape
correspondence. The basic idea is to organize the shape population into a rooted tree, where
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each node represents a shape instance and a parent-child pair represents two similar shape
instances. Shape correspondence starts from the root and propagates to its children, ending
at the leaf nodes. Particularly, in [10], a minimum spanning tree (MST) is constructed,
where the tree-edge weight describes the pairwise shape dissimilarity. However, the
correspondence error accumulates during the propagation in this approach. While such an
accumulation error is not obvious when corresponding simple 2D shape instances [10], it
becomes serious in corresponding complex 3D shape instances, such as cortical surfaces, as
revealed by the experiments in Section 4. Similar approach of shape organization was also
used for the interactive navigation of an image database [8].

In this paper, we develop a new method of shape organization for multiple cortical surface
correspondence. As in [10], it organizes the whole shape population into a tree. However,
we not only require each parent-child pair to describe similar shape instances, but also
control the height of the tree to reduce the accumulation error in the propagation. In this
paper, we use the Freesurfer software (http://surfer.nmr.mgh.harvard.edu) to co-register a
pair of cortical surfaces [7], with which we define the pairwise shape similarity and build the
correspondence between a parent-child pair for the propagation. In the experiments, we
compare the performance of the proposed method to the pairwise method using a fixed
template, the groupwise method developed in [11,12], and the MST-based shape-
organization method developed in [10].

2 Problem Description
Each cortical surface consists of two hemispheres, which are usually corresponded
independently. We represent each hemisphere, or subject, S by (i) point cloud extracted from
MR images representing the pial surface, (ii) triangle mesh constructed from the point cloud,
as shown in Fig. 1(a), and (iii) spherical representation S̃, as shown in Fig. 1(c), which is the
spherical mapping of the triangle mesh. These can be obtained from a given MR image
using the method of [3] available in the Freesurfer software. The goal of correspondence is
to identify N corresponded landmarks across a population of subjects S1, S2, …, SM.

As mentioned above, we use shape organization to facilitate shape correspondence in this
paper. In general, it consists of the following steps. First, the given M subjects are organized
into a tree, e.g., the ones shown in Fig. 2, where each node represent a subject. Second, we
take the subject represented by the root as the template and sample a set of N landmarks on
the template. Third, for each child of the root, we treat the subject represented by this node
as the target and match the target to the template by identifying N corresponded landmarks
on the target. Fourth, each target (with corresponded landmarks) in the previous step is then
treated as the new template to match its own child subjects in the tree by identifying the N
corresponded landmarks. This pairwise matching process is repeated until propagated to the
subjects represented by the leaf nodes, which leads to the final corresponded landmarks
across all the subjects.

Clearly, the structure of the constructed tree is important to the performance of the resulting
shape correspondence. If we select one subject as the root and set all the other subjects as
the children of the root, as shown in Fig. 2(b), the above method is reduced to the widely
used pairwise shape correspondence method with a fixed template. The method may lead to
large errors when there exist subjects that are substantially different from the template and
cannot be accurately corresponded to the template using a pairwise matching method. In
[10], an MST is constructed such that each parent-child pair represents very similar subjects.
This way, we only need to match very similar subjects, which is relatively simple and can be
achieved in high accuracy. However, the constructed MST may have a larger height, as
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shown in Fig. 2(a), and the correspondence error may accumulate in the propagation and
finally affect the consistency of landmarks as revealed in the later experiments.

3 Proposed Method
In this section, we describe a new strategy for constructing the shape-organization tree and
apply it for cortical surface correspondence. We focus on addressing the following two
problems: (i) measuring the shape dissimilarity between a pair of subjects and (ii)
constructing the tree to organize a set of subjects.

3.1 Shape Dissimilarity using Registration
We use the Freesurfer software to obtain the continuous co-registration between a pair of
subjects. Specifically, this software implements the method described in [7]. In registering
the subjects Si and Sj, this method takes as input their spherical representations S̃i and S̃j and

delivers an output spherical representation , which is a deformed version of S̃j on the
sphere and is co-registered with S̃i. For example, the spherical representation shown in Fig.
1(e) is the deformed version of the subject shown in Fig. 1(d) after co-registration with the
subject shown in Fig. 1(c). With this co-registration, we can uniformly sample K co-

registered points on both spherical representations S̃i and  and define the dissimilarity
between these two subjects by

(1)

where ci(k) = 0 if the curvature value at the k-th sampled point on pial surface i is negative
and ci(k) = 1 otherwise. This dissimilarity measure reflects whether the co-registered points
from these two subjects show consistent presence of gyri and sulci. Considering the
numerical sensitivity involved in computing curvature values, we do not use the exact
curvature values in defining this dissimilarity measure.

3.2 Shape Organization using a Low-Height Tree
In contrast to the MST used in [10], we combine two preferences in constructing the shape-
organization tree: (i) the parent-child pair represents similar subjects and (ii) the constructed
tree has a low height, which reduces the propagation length and therefore, reduces the
accumulation error. We first construct a fully connected graph G, with each node
representing a subject and the edge weight between two nodes being the dissimilarity of the
subjects represented by these two nodes. We then prune the edges in G sequentially in the
descending order of their weights, until one more pruning will make the graph disconnected.
From the pruned graph G′, we construct the tree T using the following steps:

1. Find the node with the largest number of incident edges in G′ and add it to the
initially empty T as the root.

2. Let VT and V̄T be the sets of nodes that are in T and not in T respectively.

3. If V̄T ≠ ∅, for each node in V̄T with edge links to nodes in VT in G′, we add this
node to T as a child to its linked node in VT with the smallest edge weight. Note
that, in this step, we check every node in V̄T for possible additions to T without
updating VT and V̄T. This way, the height of T will only increase by one after all
possible node additions in this step.
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4. Update VT and V̄T and go back to Step 3 until V̄T = ∅.

An example of a tree constructed using this method is shown in Fig. 2(c), which will be
discussed in more detail in the later experiments.

As for the pairwise subject correspondence in the propagation, we use the Freesurfer
software to continuously co-register the template and the target subjects. This registration
maps the N landmarks on the template to N points on the target and we simply take them as
the corresponded landmarks.

4 Experiments
For experiments, we use the LONI Probabilistic Brain Atlas (LPBA40) dataset, which
consists of 40 3D MR images of the brain [13]. On each image, 56 anatomic structures have
been identified by labeling all the relevant voxels. We extract the cortical surface from these
MR images using Freesurfer for all 40 cases and then take the left hemisphere of the
extracted cortical surface as the test subjects. For the pairwise shape dissimilarity (1), we
uniformly sample the angular-spherical coordinates, together with two poles, to construct K
= 4, 952 co-registered points on each subject.

To evaluate the performance, we use anatomic-structure labels provided with this dataset:
we check whether the corresponded landmarks across the population show consistent labels.
First, for each identified landmark on each subject, we find its label by searching for the
closest labeled voxel in the original image. Second, for each set of corresponded landmarks
across the population, e.g., the first landmarks on all 40 subjects, we perform a majority
voting to find the label shared by the largest number of subjects. We use this majority label

as the true label for these 40 landmarks. This way, for the j-th landmark  on the subject i,

we have its label  and true label . If , we find on image i the closest

voxel to  such that this voxel has a label . We calculate the Euclidean distance

between  and this closest voxel as the error  for landmark . If , we simply

set . We then define the average error on the subject as , the average error

for the set of j-th landmarks on all subjects as , and use these errors to evaluate
the correspondence performance.

Figure 2(c) is the low-height tree constructed in our experiment using the proposed method,
where subject 14 is chosen as the root and we uniformly sample the angular-spherical
coordinates, together with two poles, to construct N = 4, 952 landmarks on this subject to

start the propagation. We also define total average error as . Figure
3 shows the the Δ average errors Δi for all 40 subjects and Δj for all 4, 952 landmarks, with
the horizontal lines being the total average error Δ = 0.479.

To further evaluate the proposed method, we conduct a quantitative comparison with three
other methods: (M1) a pairwise method with a fixed template, (M2) the groupwise method
developed in [11,12], and (M3) the MST-based shape-organization method developed in
[10]. For M1, we choose a subject as the fixed template and then correspond all the other 39
subjects to this template, as illustrated in Fig. 2(b). By selecting different templates, the
resulting total average error Δ ranges from 0.509 to 0.684. For the proposed method, the
total average Δ = 0.479 (the horizontal lines in Fig. 3) is better than the result from M1 using
the best template (subject 29). Note that, in practice, we do not have ground-truth labels and
we may not be able to find this best template.
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For M2, we downloaded the source code from
http://www.ia.unc.edu/dev/tutorials/InstallLib/index.htm and also identify N = 4, 952
landmarks on each subject, by including the sulcal depth as an attribute in the similarity
metric defined in this code. As shown in Table 1, its resulting total average error Δ = 0.791
is also higher than the proposed method. M2 is a groupwise method and by reading all
subjects at once, it takes 11GB of memory in our experiments, while the proposed method
takes no more than 2GB of memory.

For M3, we use the same dissimilarity measure in Section 3.1 to construct an MST as shown
in Fig. 2(a) and also use uniformly sampled N = 4, 952 landmarks on the root subject
(subject 37) to start the propagation. From Table 1, its resulting total average error Δ = 0.532
is also higher than the proposed method. This is mainly caused by the accumulation error

during the propagation. Figure 4 visualizes the error  for all 4, 952 landmarks on subject
18, by using each of the three comparison methods and the proposed method: red area

indicates  and green area indicates . This is shown on the spherical representation
of the subject for clarity. These experiments show that the corresponded landmarks
identified by the proposed method show better consistency in terms of the true labels than
the other three comparison methods.

5 Conclusion
We have developed a new method for corresponding highly convoluted 3D cortical surfaces.
A new shape similarity measure between a pair of cortical surfaces was developed by using
Freesurfer co-registration results. The cortical surfaces are then organized into a low-height
tree where parent-child pairs represent similar subjects. Multiple shape correspondence was
obtained by propagating the pairwise correspondence from the root to the leaves in the
constructed tree. Experiments on 40 LONI LPBA40 images showed that the proposed
method produces a better performance than three other existing shape-correspondence
methods. The shape dissimilarity measure based on the Freesurfer registration is
computationally expensive. In the future, we plan to develop more efficient algorithms to
measure such pairwise dissimilarity for shape organization.
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Fig. 1.
An illustration of the left hemisphere of cortical surfaces and their co-registration. (a) The
pial surface of a subject. (b) The inflated version of the pial surface (a). (c) The spherical
mapping, S̃, of (a). (d) Spherical mapping of a second subject. (e) Deformed version of (d)
after co-registration with (c).
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Fig. 2.
The shape-organization trees constructed from LONI LPBA40 dataset using (a) the MST-
based method in [10], (b) the pairwise method with a fixed template, and (c) the proposed
method. In (b) and (c), the ellipsis represents all the unlisted subjects, which are directly
linked to the root as its children.
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Fig. 3.

Average of the error  in terms of (a) each subject and (b) each set of corresponded
landmarks, for the correspondence obtained by the proposed method.
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Fig. 4.

A visualization of the error  on the spherical mapping of one subject (subject 18): red area

indicates  and green area indicates . The top and bottom rows show the views that
are the same as and diametrically opposite to the one used in Fig. 1(c), respectively. (a–d)
the results from M1, M2, M3, and the proposed method, with green area accounting for
75.4%, 75.5%, 75.7% and 77.2% of the sphere, respectively.
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