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Abstract
There is increasing evidence that traumatic brain injury (TBI) induces hypofunction of the striatal
dopaminergic system, the mechanisms of which are unknown. In this study, we analyzed the
activity of striatal tyrosine hydroxylase (TH) in rats at 1 day, 1 week, and 4 weeks after TBI using
the controlled cortical impact model. There were no changes in the level of TH phosphorylated at
serine 40 site (pser40TH) at 1 day or 4 weeks. At 1 week, injured animals showed decreased
pser40TH to 73.9±7.3% (p≤0.05) of sham injured rats. The in vivo TH activity assay showed no
significant difference between injured and sham rats at 1 day. However, there was a decreased
activity in injured rats to 62.1±8.2% (p≤0.05) and 68.8±6.2% (p≤0.05) of sham injured rats at 1
and 4 weeks, respectively. Also, the activity of protein kinase A, which activates TH, decreased at
1 week (injured: 87.8±2.8%, sham: 100.0± 4.2%, p≤0.05). To study the release activity of
dopamine after injury, potassium (80 mM)-evoked dopamine release was measured by
microdialysis in awake, freely moving rats. Dialysates were collected and analyzed by high-
performance liquid chromatography. There were no significant differences in dopamine release at
1 day and 4 weeks between sham and injured groups. At 1 week, there was a significant decrease
(injured: 0.067±0.015 μM, sham: 0.127 ± 0.027 μM, p ≤ 0.05). These results suggest that TBI-
induced dopamine neurotransmission deficits are, at least in part, attributable to deficits in TH
activity.
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1. Introduction
The effects of traumatic brain injury (TBI) on the dopamine system have been shown in
various studies in the past (Bales et al., 2009). Several pharmacological treatments aimed at
the dopamine system have been reported to be beneficial in improving cognitive functions in
animals and humans. Catecholamine agonist therapy shows motor and cognitive
improvement in both humans and animals (Phillips et al., 2003). Methylphenidate (Kline et
al., 1994, 2000) and D-amphetamine (Feeney et al., 1981; Hornstein et al., 1996), which
increase synaptic dopamine levels by inhibiting dopamine transporter (DAT) function, have
shown to enhance functional outcome after experimental TBI. Also, L-DOPA (Kraus and
Maki, 1997; Koeda and Takeshita, 1998; Lal et al., 1988), which increases dopamine
synthesis, and amantadine (Sawyer et al., 2008; Dixon et al., 1999), which increases
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extracellular dopamine concentrations by inhibition of reuptake and facilitation of dopamine
synthesis (Von Voightlander and Moore, 1971; Bak et al., 1972; Gianutsos et al., 1985),
both facilitate functional recovery after TBI.

Neurochemical studies also suggest that there are alterations in the levels of striatal
dopamine and proteins that synthesize and transport dopamine after injury. Dopamine levels
increase acutely in the striatum (Massucci et al., 2004; McIntosh et al., 1994), and
electrically evoked dopamine release as measured by fast scanning cyclic voltammetry is
later decreased in the striatum following TBI (Wagner et al., 2005, 2009). Protein levels of
tyrosine hydroxylase (TH) increase chronically (Yan et al., 2007), and DAT decreases
chronically after TBI (Wagner et al., 2005), possibly reflecting compensatory changes for
recovery of the dopaminergic system.

Tyrosine hydroxylase is a rate-limiting synthesis enzyme for dopamine and norepinephrine.
However, striatal tissue contains very small level of norepinephrine and TH represents the
presence of dopaminergic fibers (Hokfelt et al., 1977; Anden et al., 1964). The activity level
of striatal TH after TBI has not been previously reported. We provide evidence here for the
first time that striatal dopamine neurotransmission deficits after TBI may be attributable to
deficits in tyrosine hydroxylase activity. Increased activity of TH has previously been
associated with phosphorylation of TH at serine 40 site (pser40TH), but not serine 19 site
(pser19TH) (Lindgren et al., 2000; Harada et al., 1996). Thus, we monitored pser40TH and
pser19TH levels by Western blotting at 1 day, 1 week, and 4 weeks after injury. Activity
levels of striatal cAMP-dependent protein kinase A (PKA), a major kinase for TH, were also
measured at these time points. In vivo activity level of TH and potassium stimulus-evoked
dopamine release, which are parameters that could be affected by dopamine synthesis, were
also monitored at 1 day, 1 week, and 4 weeks following injury.

2. Results
2.1. Western blots: tyrosine hydroxylase phosphorylation after TBI

To characterize the changes in dopamine synthesis, Western blot assay was used to detect
phosphorylated TH in the striatum. The levels of pser19TH and pser40TH at 1 day, 1 week,
and 4 weeks after CCI or sham injury were analyzed. For pser19TH levels, no statistically
significant difference was found at any time point (Fig. 1). For pser40TH levels, there were
no alterations at 1 day. At 1 week, pser40TH of CCI injured striatum showed a significant
decrease (sham: 100±8.5%, injured: 73.9±7.3%, p≤0.05) (Fig. 2). By 4 weeks, this
difference was no longer significant. In addition, dopamine decarboxylase (DDC) protein
levels were monitored to assess the possibility of its alteration affecting dopamine synthesis
downstream to TH after TBI. There were no significant alterations for DDC levels in the
striatum at 1 day, 1 week, and 4 weeks after injury [data not shown].

2.2. PKA activity assay
The activity levels of PKA in striatum after TBI was determined at 1 day, 1 week, and 4
weeks (Fig. 3). There was no significant difference between sham and injured striatum at 1
day (sham: 100.0±5.9%, injured: 110.0 ± 5.2%). At 1 week, there is a decrease of PKA
activity in injured rats (sham: 100.0±4.2%, injured: 87.8± 2.8%). This decrease was reversed
by 4 weeks, and no significant changes were shown in injured rats compared to sham rats
(sham: 100.0±3.2%, injured: 102.3±6.0%).

2.3. In vivo tyrosine hydroxylase activity
After Inhibition of DDC activity by NSD-1015 injection, L-DOPA accumulation was
detected by HPLC in striatal tissue. The accumulation of L-DOPA was used to assess TH
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activity level. At 1 day after CCI (Fig. 4a), there is a no change TH activity (sham:
100.0±9.7%, injured: 138.0±17.9%). At 1 week after CCI (Fig. 4b), TH activity was
decreased significantly in the CCI injured animals compared to sham animals (sham:
100.0±10.6%, injured: 62.1± 8.2%, p≤0.05). TH activity remains decreased up to 4 weeks
(sham: 100.0±5.2%, injured: 68.8±6.2%, p≤0.05) (Fig. 4c).

2.4. Microdialysis for dopamine release and dopamine metabolites
To assess the changes in striatal extracellular dopamine and dopamine metabolites,
microdialysis was used in conjunction with high-performance liquid chromatography
(HPLC). At 1 day after CCI (Fig. 5a), the peak levels of injured striatal dopamine after 80
mM potassium stimulus was not statistically different from peak sham striatal dopamine
(sham: 0.105±0.032 μM, injured: 0.153±0.056 μM). The basal levels of DOPAC (Fig. 6a)
were also not significantly different between the sham and injured animals (sham: 0.829 ±
0.043 μM, injured: 1.148± 0.130 μM). However, baseline HVA levels of injured animals
were significantly higher compared to the levels of sham animals (sham: 0.547±0.046,
injured: 0.789±0.079, p≤0.05) (Fig. 7a).

At 1 week after CCI (Fig. 5b), the peak levels of potassium-evoked striatal dopamine release
showed a statistically significant decrease (sham: 0.127±0.027 μM, injured: 0.067± 0.015
μM, p≤0.05). There was no difference between DOPAC levels of sham and injured animals
(sham: 0.872±0.114 μ injured: 0.661±0.126 μM) (Fig. 6b). HVA levels were also not
significantly different between the sham and injured animals (sham: 0.569±0.074 μM,
injured: 0.520±0.112 μM) (Fig. 7b). By 4 weeks after CCI (Figs. 5c, 6c, 7c), there are no
significant differences between the sham and injured groups for potassium stimulated
dopamine (sham: 0.191±0.017 μM, injured: 0.151 ± 0.024 μM). Also, the baseline values of
dopamine metabolites showed no significant differences: DOPAC (sham: 0.937±0.061 μM,
injured: 0.943±0.078 μM), and HVA (sham: 0.672±0.061 μM, injured: 0.703±0.097 μM).

3. Discussion
In this study, we demonstrated for the first time a deficit in striatal TH activity 1 week
(subacute) and 4 weeks (chronic) after TBI in rats as indicated by decreased tissue levels of
L-DOPA. There was decreased pser40TH in injured striatum at 1 week but not at 4 weeks.
Since TH is a rate-limiting enzyme in dopamine synthesis, the decrease in its activity
suggests a dopamine synthesis deficit. However, a previous report of striatal dopamine
content after TBI demonstrates no significant change at 1 week or 4 weeks after injury
(Massucci et al., 2004). Dopamine levels depend on both synthesis and degradation.
Therefore, activities of monoamine oxidase and catechol-O-methyl transferase may be
decreased at these time points, reducing the degradation of dopamine. Future studies are
needed to elucidate TBI induced alterations of various synthesis and metabolizing enzymes
for dopamine.

The Western blot results showing decreased level of pser40TH suggest decreased activity of
TH, since the level of pser40TH correlates with enzymatic TH activity (Lindgren et al.,
2000; Harada et al., 1996; Waymire et al., 1988). However, the level of pser19TH has no
significant decrease. Since the level of pser19TH does not correlate with TH activity
(Jedynak et al., 2002), a specific decrease in pser40TH level is consistent with decreased
activity of TH. Previously reported TH levels (Yan et al., 2007) showed TH increase at 4
weeks post injury. The chronic increase in striatal TH may be a compensatory action of the
striatum. After the TH activity decreases at 1 week after injury, total TH levels may be
upregulated in the striatum at a chronic time point in order to increase the efficiency of
dopamine neurotransmission during recovery. Also, present data on decreased striatal TH
activity after injury contrast with previous study showing increased TH activity in the
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medial prefrontal cortex (Kobori et al., 2006). This implicates that TH activity levels may be
altered differently in a region specific manner.

In this study, decreased activity of PKA is demonstrated at 1 week after TBI. However at 1
day and 4 weeks, there are no significant changes. Since PKA is a major regulator of the
serine 40 site of TH, the activity level of PKA is in agreement with pser40TH levels at 1
day, 1 week, and 4 weeks after injury. Deficits in PKA activity at 1 week after injury may
cause decreased TH phosphorylation, which could then reduce TH activity. It should also be
noted that other kinases such as protein kinase C and protein kinase G may also regulate
pser40TH levels (Dunkley et al., 2004), although less extensively characterized than PKA’s
effect is on pser40TH. At 4 weeks, there is a recovery of PKA activity and pser40TH levels
in injured striatum, but TH activity deficits are still present (Fig. 4c). This suggests that
while TH activity may partially depend on phosphorylation of pser40TH by PKA, other
factors in the setting of injury could contribute to activity deficits.

A decrease in PKA activity has been previously reported in the parietal cortex and
hippocampus at acute time points (15 min to 48 h) using a fluid percussion injury model
(Atkins et al., 2007). In contrast, pser40TH level and PKA activity in our study do not
decrease at 1 day after injury. However, this study and our current study are not directly
comparable due to the differences in brain regions studied, injury models, and time points
after injury. The directionality of PKA activity change may depend strongly on each of these
factors.

Dopamine release induced by potassium stimulation has been used to compare differences
of exocytic release in young and aged rats (Shui et al., 1998; Stanford et al., 2000) and
different dietary treatments (Agut et al., 2000; Wang et al., 2005). Consistent with these
previous studies, potassium stimulation induces dopamine release and decreases
extracellular DOPAC and HVA concentrations in our current data. Dopamine release is not
significantly altered at 1 day after injury but shows a decrease at 1 week after CCI injury
compared to sham injured animals. These data are in agreement with a previous study
showing reduction in medial forebrain bundle-stimulated evoked dopamine release 2 weeks
after CCI injury detected by fast scanning cyclic voltammetry (Wagner et al., 2005). By 4
weeks, there is a recovery of dopamine release in injured animals.

Potassium-stimulated dopamine release depends on newly synthesized dopamine, since
depletion of vesicular stores of dopamine using reserpine does not alter the potassium
evoked dopamine release (Fairbrother et al., 1990). Thus, our microdialysis data showing
decrease of dopamine release associated with a dopamine synthesis deficit at 1 week are
consistent with a decrease in TH activity shown by in vivo activity assay and pser40TH
Western blot results.

The fact that evoked dopamine levels show a decrease in injured animals at 1 week whereas
dopamine metabolites show no change may be due to a combination of release and reuptake.
It should be noted that the extracellular level of dopamine is dependent on activity levels of
dopamine transporters, which rapidly uptake it to presynaptic terminals. However, DOPAC
and HVA do not utilize such rapid reuptake mechanism. Previous study from our group has
shown that dopamine transporter function is not reduced at 2 weeks after TBI (Wilson et al.,
2005). If there is no functional deficit in dopamine transporter also at 1 week, this may
explain the discrepancy between extracellular levels of dopamine and dopamine metabolites
for injured animals.

At 1 day after TBI, there is a significant increase in baseline HVA levels but not DOPAC
levels. Since DOPAC is formed by monoamine oxidase and aldehyde dehydrogenase
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whereas HVA is formed by catechol-O-methyltransferase, differential changes in activities
of these enzymes after TBI may explain this discrepancy.

The results of this study indicate decreased striatal dopamine synthesis and release at a
subacute time point (1 week) after TBI. Deficits in striatal dopaminergic function after TBI
has been implicated by the effectiveness of pharmacological agents that stimulate the
dopaminergic system after TBI. Methylphenidate, D-amphetamine, L-DOPA,
bromocriptine, and amantadine, which increase dopamine levels at the synapse or activate
dopamine receptors, have been effective in improving cognitive outcome after injury
(Barbay and Nudo, 2009; Napolitano et al., 2005). Treatments such as methylphenidate,
which inhibits DAT to increase synaptic dopamine levels, have been shown to improve
electrically evoked dopamine release (Wagner et al., 2009) and behavioral performance
(Kline et al., 2000) in the setting of TBI. These agents lead to functional recovery after TBI
by possibly compensating for the decrease in dopamine neurotransmission after injury.

3. Conclusions
In summary, the results of this study suggest that there is a decreased synthesis of dopamine
at a subacute time point following TBI, and that this may lead to decreased dopamine
release. This alteration in dopamine regulation may be a possible contributor to post TBI
dysfunction of striatal dopamine system.

4. Experimental procedures
4.1. Animals

One hundred and three male Sprague-Dawley rats (Harlan Laboratories) weighing 280–350
g were used for this study. All experiments were in line with the guidelines for Care and Use
of Laboratory Animals set by University of Pittsburgh. The Institutional Animal Care and
Use Committee has approved all the experiments in this study. Animals were housed in 12-h
light/dark cycle with food and water given ad libitum.

4.2. Surgery
Animals were injured by the controlled cortical impact (CCI) device previously described
(Dixon et al., 1991). After intubation, animals were mounted on a stereotaxic frame secured
by incisor bar and ear bars. Mechanical ventilation maintained anesthesia with 2% isoflurane
in 2:1 N2O/O2, while parasagittal craniectomy was made with the center of craniectomy at
(AP: +4.0 mm, L: +2.8 mm). For injured groups, 2.6–3.2 mm deformation depth (severe
injury) at 4 m/s was given while sham groups received only craniectomy.

4.3. Western blot of phosphorylated TH and dopa decarboxylase
Anesthetized rats were sacrificed at 1 day, 1 week, or 4 weeks after surgery (n=6 for each
group). Brains were dissected on a chilled ice plate, and striata ipsilateral to the injury were
frozen in liquid nitrogen and stored in −70 °C until preparation. Tissues were prepared by
sonicating in a lysis buffer (0.1 M NaCl, 0.01 M Tris-HCl (pH 7.6), 0.001 M EDTA (pH
8.0), 1 μg/ml phenylmethylsulfonyl fluoride, Phosphatase Inhibitor Cocktails 1 and 2 (1:100,
Sigma, St. Louis, MO), Protease Inhibitor Cocktail (Complete Mini, Roche Applied Science,
Mannheim, Germany)). The sonicated tissues were centrifuged at 13,000×g for 30 min and
supernatants were used for Western blot. Using a BCA protein assay kit (Pierce, Rockford,
IL), samples containing 40 μg of protein were electrophoresed on 10% SDS-poly-
acrylamide gels, transferred to polyvinylidene fluoride membranes, and blocked by 5%
bovine serum albumin (BSA) (Sigma, St. Louis, MO) in 0.05 M TBS with 0.05% Tween-20
(TBST) for 1 h. The membranes were incubated with anti-pser19TH (1:1000, Millipore),
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anti-pser40TH (1:1000, Millipore), or anti-DDC (1:1000, Sigma, St. Louis, MO) overnight,
then washed with TBST and incubated for 1 h at room temperature with anti-mouse or anti-
rabbit immunoglobulin G-conjugated to peroxidase (1:20,000, Pierce). Membranes were
exposed to chemiluminescence (Western Lighting, Perkins Elmer, Boston, MA) and
pser19TH, pser40TH, and DDC were visualized by exposing the membranes to
autoradiographic X-ray film from 10 s to 1 min. Afterwards, membranes were stripped using
100 mM glycine pH 2.3 at 55 °C for 1 h, incubated with anti-β-actin monoclonal antibody
(1:10,000, Sigma-Aldrich) for 1 h, then incubated with anti-mouse immunoglobulin G-
conjugated to peroxidase. Same steps were taken as described to visualize β-actin blots. To
measure the optical density of Western blots, Scion Image PC software (Frederick, MD) was
used. Optical densities of pser19TH, pser40TH, and DDC were normalized by β-actin of
each blot, and the values displayed are given as a percentage change compared to sham
tissue levels.

4.4. PKA activity assay
The activity level of PKA was found using a commercially available kit (Promega, Madison,
WI). Briefly, the tissue homogenates used for Western blots were suspended in PepTag PKA
5× reaction buffer, Peptag A1 peptide, and PKA activator 5× solutions. These mixtures were
incubated at room temperature for 30 min. The reaction was stopped by placing the mixture
in boiling water for 10 min. Glycerol (30%, 1 μl) was added to the mixture, and samples
were loaded onto 0.8% agarose/Tris–HCl gel. The gels were run at 100 V until separation of
phosphorylated and nonphosphorylated samples became apparent. The gels were then
scanned using Kodak Image Station 440CF. The optical densities of the phosphorylated
product from PKA reaction were then normalized by total protein level in each sample using
NIH Image J software. PKA activity levels were reported with respect to sham striatal PKA
activity levels.

4.5. In vivo TH activity assay
As described in Urbanavicius et al. (2007), in vivo TH activity was assessed by quantifying
L-DOPA accumulation after inhibiting DDC with 3-hydroxybenzylhydrazine (NSD-1015)
(Sigma, St. Louis, MO). Thirty minutes before sacrifice, rats were intraperitoneally injected
with NSD-1015 (100 mg/kg, suspended in 0.9% saline). Striata were dissected out,
immediately frozen in liquid nitrogen, and stored in −70 °C until neurochemical analysis.
On the day of analysis, the tissues were weighed and sonicated in 0.2 M HClO2. The
samples were then centrifuged at 13,000×g for 30 min and supernatants were used to
quantify L-DOPA levels using HPLC.

4.6. Microdialysis
Artificial cerebrospinal fluid (ACSF) with 126.5 mM NaCl, 2.4 mM KCl, 1.1 mM CaCl2,
0.83 mM MgCl2, 27.5 mM NaHCO3, and 0.5 mM KH2PO4 was used for this experiment. In
the high-potassium ACSF, KCl concentration was adjusted to 80 mM and NaCl
concentration was adjusted to 48.9 mM to maintain osmolarity. One day before micro-
dialysis experiment, a microdialysis probe (SciPro, Sanborn, NY) with the following
specifications were used: membrane length: 3 mm, diameter: 0.6 mm, permeability cutoff:
35 kDa. The probe was implanted into the striatum (AP: +0.0 mm, L: +2.8 mm, DV: −4.0
mm) and secured with dental cement. The animals were then disconnected from the
anesthesia apparatus and placed in a Plexiglas chamber as previously described (Dixon et
al., 1997). Microdialysates were collected in awake, freely moving animals. Overnight,
ACSF was continuously perfused at 0.2 μl/min. On the day of the experiment, flow rate was
adjusted to 2 μl/min for 1 h then samples were collected every 20 min into a tube containing
5 μl of 0.3 M HClO2. Samples were immediately analyzed by HPLC. At 60 min (4th
collection time), ACSF was switched to a high-potassium ACSF solution. Forty minutes
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after beginning of stimulus (6th collection time), potassium challenge was stopped and
ACSF was infused. After microdialysis, the rats were sacrificed and the locations of the
probes were verified. For data analysis, micromolar concentrations of dopamine and
dopamine metabolites are reported.

4.7. Neurochemical analysis
Neurochemical measurements were made by HPLC with CoulArray Detector using two
four-channel analytical cells (ESA, Chelmsford, MA, USA). Eight coulometric electrodes
with potentials from −120 to +300 mV in 60 mV increments were used, and C18 column
was used to separate the analytes. Dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC),
and homovanillic acid (HVA) were monitored in microdialysates. From striatal
homogenates for TH activity assay, L-DOPA was monitored. Baseline values of dopamine
below the linear range of detection were assigned values of 0 μM.

4.8. Statistical analysis
The normalized TH activity levels and optical densities of DDC, pser19TH, and pser40TH
were analyzed using unpaired Student’s T test. Baseline values of DOPAC and HVA were
reported as their average level in first three microdialysates detected by HPLC. For
potassium-evoked dopamine release, the peak values were used to compare the sham injured
and CCI injured animals. Statistical analysis for microdialysis data was performed using a
nonparametric Mann-Whitney U Test. All statistical calculations were performed by using
PASW Statistics 19 (SPSS Inc., Chicago, IL) software.
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Fig. 1.
Western blot of striatal pser19TH. The levels of striatal pser19TH after CCI or sham injury
were analyzed by Western blotting. Optical densities of each phosphorylated protein were
normalized by β-actin, and each group had n=6. The levels of TH at 1 day (a), 1 week (b),
and 4 weeks after injury are summarized here. Each normalized optical density±SEM is
displayed. There was no alteration of pser19TH at any of the time points.
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Fig. 2.
Western blot of striatal pser40TH. Optical densities of striatal pser40TH at 1 day (a), 1 week
(b), and 4 weeks (c) after injury are normalized by β-actin and displayed as optical density
±SEM. Although there was no significant change of pser40TH levels between sham and
CCI injured rats at 1 day, there was a significant decrease in injured rats at 1 week (p≤0.05).
At 4 weeks, there is no significant difference between the injured and sham groups.
*p≤0.05.
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Fig. 3.
PKA activity assay. PKA activity levels at 1 day (a), 1 week (b), and 4 weeks (c) after injury
are normalized by sham striatal PKA activity. There were no significant differences between
injured and sham rats at 1 day and 4 weeks. However, 1-week time point showed significant
decrease in injured striatal PKA activity levels compared to shams. *p≤0.05.
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Fig. 4.
TH activity assay. The results of in vivo TH activity assay at 1 day (a), 1 week (b), and 4
weeks (c) after injury are shown. Each group’s striatal DOPA levels are normalized by β-
actin content of tissue homogenates and displayed±SEM (n=6). At 1 day after injury, there
is a trend but no statistically significant increase in TH activity of CCI injured rats compared
to sham rats. At 1 week and 4 weeks after injury, there is a decrease in TH activity in CCI
injured rats compared to sham rats (p≤0.05). *p≤0.05.
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Fig. 5.
Potassium-stimulated dopamine release. The levels of dopamine in microdialysates are
quantified by HPLC at 1 day (a), 1 week (b), and 4 weeks (c). Potassium stimulus duration
is labeled as a line between 4th and 5th collection times. There is no significant alteration at
1 day between CCI injured rats (n=8) and sham injured rats (n=8). At 1 week, there is a
statistically significant decrease in peak dopamine levels of CCI injured rats (n=10)
compared to sham injured rats (n=10). By 4 weeks, there is no significant difference
between CCI injured (n=7) and sham rats (n=7). *p≤0.05.
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Fig. 6.
DOPAC measured by microdialysis. The levels of dopamine metabolite DOPAC are
quantified by HPLC at 1 day (a), 1 week (b), and 4 weeks (c) after injury. There were no
significant differences between CCI injured rats and sham-injured rats at any time point.
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Fig. 7.
HVA measured by microdialysis. The levels of dopamine metabolite HVA are quantified by
HPLC at 1 day (a), 1 week (b), and 4 weeks (c) after injury. There is a significantly higher
average baseline HVA levels in CCI injured rats (n=8) compared to sham injured rats at 1
day (n=8). There were no significant differences between CCI injured rats (n=10) and sham
injured rats (n=10) at 1 week. Similarly, there was no significant difference between CCI
injured rats (n=7) and sham injured rats at 4 weeks. *p≤0.05.
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