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Abstract
Flaviviruses enter their host cells by receptor-mediated endocytosis, a well-orchestrated process of
receptor recognition, penetration and uncoating. Recent findings on these early steps in the life
cycle of flaviviruses are the focus of this review.
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The Flaviviridae are a family of small, enveloped RNA viruses that is comprised of three
genera: Flavivirus, Hepacivirus, and Pestivirus. More than 70 viruses have been classified in
the genus Flavivirus [1]. The genus includes various noteworthy mosquito- and tick-borne
human pathogens, such as Yellow Fever virus (YFV), dengue virus (DENV), Tick-borne
Encephalitis Virus (TBEV), and West Nile virus (WNV), that are subclassified into several
antigenic complexes and phylogenetic groups [2]. Flaviviruses are typically associated with
mild systemic disease, but can also cause severe symptoms such as hemorrhagic fever,
encephalitis or death. Many of these viruses are resurgent, are spreading to new
environments and are responsible for substantial morbidity and mortality around the globe.
Flaviviruses are primarily transmitted through arthropod vectors. Humans and other
mammals are not known to commonly develop infectious-level viremias and thus are
probably incidental hosts with the exceptions of YFV, DENV and TBEV that are
sufficiently well-adapted to a mammalian host.

1. The flavivirus lifecycle
The basic stages of the flavivirus life cycle include attachment to the cell surface,
internalization into the host cell, transfer of the viral RNA genome into the cytoplasm,
translation of the viral proteins, replication of the genomic RNA, assembly and maturation
of the virions, and ultimately the release of progeny viruses from the cell.

Flaviviruses are lipid-enveloped viruses (Fig. 1A). After recognition and attachment to
specific receptor molecules on the surface of the cell, the virus is internalized into the host
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cell by clathrin-dependent endocytosis. Uncoating is induced by the low pH environment of
the endosomes, where the viral proteins enter into a fusion-active state and initiate the
merging of the viral envelope with the endosomal membrane, thereby releasing the viral
RNA genome into the cytoplasm.

Flaviviruses have a single-stranded, positive-sense, ~11-kb RNA genome with a single open
reading frame that is directly translated into a polyprotein precursor [1]. The polyprotein is
subsequently glycosylated by cellular glycosyltransferases and cleaved by a combination of
viral and host proteases to release three structural (C, prM, and E) and seven non-structural
proteins (NS1, NS2a, NS2b, NS3, NS4a, NS4b, and NS5). NS3 and NS5 are the best-
characterized non-structural proteins that assemble with several other viral and host proteins
to form the replication complex. NS3 combines helicase/NTPase, serine protease, and RNA
triphosphatase activity [3,4]. The functional domains of NS5 include S-adenosyl
methyltransferase and RNA-dependent RNA polymerase activities [5]. The replication
complex is responsible for the synthesis of a negative-sense RNA that acts as the template
for the synthesis of the viral genomic progeny RNA. The viral structural proteins are the
capsid (C) protein that associates with the RNA genome to form the nucleocapsid core, the
envelope (E) protein that functions in receptor binding, membrane fusion, and viral
assembly, and the pre-membrane (prM) protein that facilitates the folding and trafficking of
the E protein during virus particle biogenesis [6,7] (Fig. 1).

The assembly of virions occurs in the endoplasmic reticulum when the newly synthezised
viral proteins and nucleic acid combine to form immature, fusion-incompetent virus
particles [1] (Fig. 1C). The budding into the endoplasmic reticulum is also responsible for
the gain of the host-derived lipid envelope. After assembly, immature virions undergo a
protease- and pH-dependent maturation during their transit from the endoplasmic reticulum
through the trans-Golgi network to the cell surface [8–11]. During maturation, the E proteins
go through a significant positional reorganization while the prM protein is cleaved by the
cellular subtilisin-like endoproteinase furin [9]. The proteolytic cleavage releases the
glycosylated, N-terminal pr fragment from the small, membrane-anchored M portion that
will remain virion-associated. The pr peptide is subsequently shed from the virion during the
exocytotic release of virus progeny [11]. The removal of the previously covalently attached
pr peptides from the virions primes the viral particles in their mature, metastable structural
state (Fig 1B) ready for the low-pH triggered fusion events during the upcoming cell entry
[12,13].

2. The structure of the flavivirus particle
Mature, fusion-competent flavivirions are roughly spherical with a diameter of about 500 Å
(Figs. 1A and 1B). Their nucleocapsid core, formed by the RNA genome and multiple
copies of the highly basic, largely α-helical C protein [14], is surrounded by a host-derived
lipid bilayer and a smooth, spikeless outer glycoprotein shell [1]. The outer protein shell has
icosahedral symmetry and is composed of 180 copies, each, of the membrane-anchored M
and E glycoproteins.

The E protein has an important role in the replication and maturation process of the virus,
being involved in receptor binding, membrane fusion and virus assembly. On the viral
surface, sets of three E head-to-tail homodimers are tightly associated into 30 rafts that form
a herringbone pattern [15] (Figs. 1B and 2A). Each E monomer is structurally divided into a
two-helix transmembrane region and an elongated ectodomain that stretches out along the
viral lipid envelope (Fig. 2B). An α-helical stem region connecting the C-terminus of the E
ectodomain with its transmembrane anchor lies essentially flat against the lipid bilayer
underneath the ectodomain, half-buried in the outer lipid leaflet, and might alleviate
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electrostatic repulsion forces between the E ectodomain and the membrane [15,16] (Fig.
2B). The ectodomain has three distinct, structurally defined domains (DI to DIII) that are
joined by flexible hinges [17,18] (Fig. 2). The eight-stranded β-barrel of the central domain
DI is flanked by DII and DIII and participates in the conformational changes induced by
endosomal acidification during cell entry [19,20]. A four-stranded hinge connects DI and the
finger-like oligomerization domain DII, that is formed by two large, highly β-structured
loops connecting adjacent strands of the DI β-barrel. DII contains a hydrophobic fusion loop
at its tip hidden at the dimer interface in a hydrophobic pocket that is supplied by DI and
DIII of the second E monomer of the homodimer (Fig. 2B). This fusion loop is
indispensable for virus-cell membrane fusion [21]. The immunoglobulin-like C-terminal
domain DIII is connected to DI by a single polypeptide linker and undergoes a major
positional rearrangement during cell entry [17,19,20] (Figs. 2B and 2C). DIII projects
slightly above the general viral surface [15] and is the proposed receptor binding domain
[2,22–24]. The three E monomers per icosahedral asymmetric unit (Figs. 1B and 2A) are
situated in distinctly different chemical environments that influence their availability for
antibody or receptor binding. Buried under the E protein layer is the M protein, also
anchored in the viral envelope by two antiparallel transmembrane helices [16] (Fig. 2B). The
small, predominantly α-helical M protein is the product of proteolytic processing of the prM
protein by the cellular protease furin during virus maturation. Neither M nor E interact
directly with the nucleocapsid core in the mature virion.

The E proteins on the surface of immature, newly synthesized flavivirus particles are
icosahedrally arranged in 60 trimeric spikes composed of prM/E heterodimers [25,26] (Fig.
1C). The pr peptide components [27] of the prM proteins cover the fusion peptides in DII of
the E glycoproteins to prevent premature fusion [11,26,28]. These immature particles are
fusion-incompetent and non-infectious [29]. However, they can be rendered infectious by
entering Fc receptor-bearing cells as virus-antibody complexes [30]. The maturation of these
virions seems to belatedly occur in the endosomal environment, although the mechanism for
shedding the pr peptide under these circumstances is unclear.

Whereas the proteolytic processing of prM is a necessary step in the virus life cycle [8–10],
studies have shown that complete maturation is not required for infectivity or fusion activity
[29]. Partially matured particles that are heterogeneous in residual prM content and in the
arrangement of E proteins on the virion, are present in flavivirus populations [31–34]. These
can be infectious, presumably by attaching to cells via mature surface portions and
subsequently completing maturation in the endosomal compartment.

3. The early stages of the flavivirus life cycle
The early stages in the life cycle of flaviviruses involve entry into susceptible cells by
receptor-mediated endocytosis with the ultimate goal to release the RNA genome from the
protective envelope and protein shell into the cytoplasm. Receptor recognition,
internalization and uncoating involve the formation and release of numerous specific
molecular interactions and large-scale re-organization of the structural proteins and their
domains on the viral surface. In flaviviruses, these seemingly simple, but not well
understood mechanisms are mediated by the membrane-anchored E protein that combines
both receptor binding and fusogenic activity.

3.1 Receptor recognition and attachment
The entry of flaviviruses into their target cells is mediated by the interaction of the E
glycoprotein with cellular surface receptor molecules. Receptor recognition and attachment
is likely to be a process in which multiple cellular receptor molecules are used in
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combination or consecutively to gain entry. Receptor usage is both cell-type and virus-
specific and contributes to host range, tissue tropism and viral pathogenicity.

After vector inoculation of flaviviruses, the initial round of viral replication is considered to
be primarily supported in dendritic cells (DC) of the skin [1,32,35–38]. Infected DCs
migrate to draining lymph nodes, and a second round of replication occurs in lymphoid
tissues leading to the viremic stage, when virus enters the circulation and spreads to internal
organs through unknown mechanisms. Monocytes and macrophages are thought to be the
major target cells in DENV infection and replication, but studies have further suggested a
wide variety of cells as potential targets: B lymphocytes, T lymphocytes, hepatocytes,
endothelial cells, epithelial cells, and fibroblasts [37,39–45]. For WNV, neurons or
macrophages are proposed to be the physiologically relevant target cell types [46,47].
Various putative attachment factors and/or receptor elements have been implicated for
flaviviruses, most of which are poorly characterized and are of unclear physiological
relevance.

Highly sulfated, negatively charged glycosaminoglycans, such as heparan sulfate, can be
utilized by several flaviviruses as low-affinity attachment factors that concentrate the virus
on the cell surface, mainly mediated by DIII of E [48–55]. Similar to observations made for
other Flaviviridae, low-density lipoprotein receptor may play a role as an attachment
receptor of non-heparan sulfate adapted JEV strains in mammalian cells, and might be
responsible for the neurovirulence of the virus [56]. Another cell surface carbohydrate
determinant identified for DENV interaction with mammalian cells is the terminal
disaccharide of a glycosphingolipid, neolactotetraosylceramide [57].

Putative primary protein receptors for flaviviruses are DC-SIGN (Dendritic Cell-Specific
Intercellular adhesion molecule-3 (ICAM3)-Grabbing Non-integrin) (or CD209) on
monocyte-derived dendritic cells and DC-SIGNR on microvascular endothelial cells
[32,37,58,59]. These tetrameric C-type lectins bind mannose-rich N-linked glycans with
high affinity and have been shown to mediate DENV and WNV infection as attachment
factors, presumably requiring the existence of additional entry receptor molecules for virus
internalization. For DENV, cryoEM studies on the virus-receptor complex showed that DC-
SIGN preferentially utilizes carbohydrate moieties at Asn67 in DII, a site unique to DENV
[60]. Another Ca2+-dependent lectin, the mannose receptor, that carries a ligand specificity
different from DC-SIGN and is constitutively internalized by clathrin-mediated endocytosis,
has been shown to bind DENV, JEV and TBEV and is proposed to be an internalization
receptor of DENV in human macrophages [61]. The glycosylation pattern (the number,
distribution, and structure of carbohydrate moieties) on the viral surface varies among
different flaviviruses or even among different strains of the same virus and influences cell/
tissue tropism, infectivity and infection efficiency [38,58,62–67].

The presence of a classic RGD motif in DIII of the YFV-17D envelope protein and similar
motifs in other flaviviruses suggested a mechanism for interaction with integrins [68].
However, DC infection with the YFV-17D vaccine strain does not depend on the RGD
motif, nor on DC-SIGN or on various integrins [38]. For WNV and JEV, αvβ 3 integrin has
been documented as a functional receptor in permissive mammalian cells apparently
mediated by DIII and likely in a non-RGD-dependent manner [23]. However, the cellular
receptors on neurons or macrophages remain unknown. Similarly, it has been suggested that
RGD-dependent integrin binding is not essential for entry of Murray Valley encephalitis
virus and that multiple and/or alternative receptors may be involved in its cell entry [69].
Recent studies have reported that WNV entry into embryonic mouse fibroblasts and hamster
melanoma cells is independent of αvβ3 integrin, suggesting alternative receptor molecules
for different cell types or strain differences [70]. Another cell adhesion molecule, the 37/67-
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kDa high-affinity laminin receptor has been described as a DENV-1 specific binding protein
on human liver cells [71]. However, DENV serotypes 2 and 3 have also been shown to
interact with this receptor protein extracted from porcine kidney cells [72]. These
contrasting results suggest that differential receptor usage by flaviviruses might depend on
cell-specific posttranslational modifications of the receptor molecule itself and not only on
viral factors [73]. In mosquito cells, a closely related laminin-binding protein may be
involved in DENV-3/4 infection [73].

Hsp90 and Hsp70, heat shock proteins associated with membrane microdomains (or lipid
rafts), participate in DENV entry as a receptor complex in human neuroblastoma and
monocytic cell lines as well as in human monocytes/macrophages [74], but do not play a
role for internalization into liver cells [75]. A related stress protein, the glucose-regulated
protein GRP78 or BiP, involved in the unfolded protein response, has been identified as a
minor receptor element for DENV-2 internalization into human liver cells [75,76]. Hsp70
might serve as the putative receptor of JEV in mouse neuroblastoma cells [77]. Two heat
shock related proteins (gp45 and a 74-kD protein) were indicated as part of the DENV
receptor complex in mosquito cells [78], while others hypothesize that heat shock cognate
protein 70 (HSC70) mediates JEV entry into mosquito cells as a penetration receptor [79].
Apart from the above, several proteins of varying molecular mass and of unknown identity
have been described as putative flavivirus receptors in different cell lines and cell types.

Alternatively to direct attachment of the E glycoprotein to a receptor, flaviviruses can infect
monocytes and macrophages in an antibody-dependent manner by binding as virus-antibody
complexes to immunoglobulin Fcγ receptors that recognize the constant region of IgG
molecules [30,80,81].

3.2 Internalization and fusion
Flaviviruses enter their target cell by receptor-mediated, clathrin-dependent endocytosis
[82,83]. The receptor-bound virus is internalized via pre-formed clathrin-coated pits that bud
into the cytosol and deliver their cargo to early endosomes. Single particle-tracking in living
cells showed that these early endosomes mature to late endosomes, in which membrane
fusion seem to take place predominantly [82]. However, the requirement for endocytic
trafficking, specifically the maturation stage of the endosome at which virus fusion occurs,
appears to vary between different flaviviruses and/or virus strains [82–84], possibly
dependent on the pH threshold for fusion of the particular virus.

Upon exposure of the virion to mildly acidic pH in endocytic vesicles a series of molecular
events leading to membrane fusion is evoked that have currently been detailed or inferred
using biochemical and structural approaches (Fig. 3). The E proteins on the viral surface
rearrange from a pre-fusion homodimeric array (Figs. 1B, 2A and 2B) to fusion-active
homotrimers. Large-scale conformational changes in the E domain arrangement, made
possible by the flexible hinges between the three E domains, bring the viral and the target
membrane in close proximity and facilitate the fusion of the two bilayers [12]. The
formation of a fusion pore results in the release of the viral RNA genome into the cytoplasm
for initiation of replication and translation (Fig. 3).

Fusion of flaviviruses with liposomes occurs on a time scale of a few seconds, is strictly
dependent on mildly acidic pH (pH threshold ~6.6) and does not require a protein or
carbohydrate receptor in the target lipid membrane [29,85,86]. Exposure of the virus alone
to low pH results in inactivation of its fusion activity. The lipid composition of the target
membrane influences fusion efficiency and pH threshold [13,29,87,88]. Studies have
suggested that flaviviruses utilizes cholesterol-rich lipid rafts (membrane microdomains
enriched with cholesterol und glycosphingolipids) during initial stages of internalization
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presumably by interacting with raft-associated proteins for attachment or signaling [70,74].
However, while WNV fusion activity is strongly promoted by the presence of cholesterol in
the target membrane, the presence of lipid rafts might not be essential for fusion [29].

The molecular mechanisms prompting viral fusion are not well understood, but histidine
residues have been hypothesized to function as sensors of pH that trigger conformational
changes in viral fusion proteins. The binding of protons is to lower the energetic barrier
separating the pre-fusion from the post-fusion conformation or to provide activation energy
[12]. All E domains contain histidine residues that could potentially function as pH sensors
[18], either by specifically or cumulatively increasing the surface net charges upon
acidification. Studies of TBEV subviral particles identified a conserved histidine at the
interface between DI and DIII of E as the critical pH sensor required for the initiation of
viral membrane fusion [89], but mutational studies on WNV do not support a requirement
for any single histidine of E and suggest that non-histidine residues of the E protein might be
involved in initiating the pH-dependent exposure of the hydrophobic fusion loop [90].

The flavivirus E glycoprotein with its three domains, each largely adopting β-sheet folds,
has been assigned as a class II fusion protein [91] (Fig 2). Triggered by low pH, the E
proteins undergo extensive conformational and positional transformations that drive
membrane fusion, expose the fusion loop to interact with the target membrane, and establish
a close positioning of viral and target membranes leading to fusion pore formation [13] (Fig.
3). The pre-fusion conformation of E at neutral pH (Figs. 2A and 2B) and the structure of
the E ectodomain at low pH, after fusion completion (Fig. 2C), is known for several
flaviviruses [18]. The post-fusion structure is a trimeric arrangement of E, with the E
monomers parallel to one another and with their long axis oriented perpendicular to the
plane of the membrane [13] (Fig. 2C). The fusion peptides are exposed on one end of the
trimer, suitable for penetrating into the outer leaflet of the associated lipid bilayer.
Hydrophobic grooves, in which the stem regions are predicted to bind, are generated by the
trimerization and extend along the interface of two neighboring DIIs towards the fusion
loop. Compared to the pre-fusion dimer (Fig. 2B), DIII of E has undergone a major
rotational displacement to the side of DI and towards DII (Fig. 2C). The fold-back of DIII
along the sides of the trimer brings the transmembrane domains in the viral envelope
spatially close to the fusion peptide at the tip of DII that is embedded in the target membrane
(Fig. 3). At the same time, the membranes are locally deformed and destabilized.

The oligomerization state of the post-fusion E structure suggests the presence of a pre-fusion
trimeric arrangement of E. The formation of such fusogenic E trimers has to be preceded by
the protonation-dependent disruption of the raft arrangement on the surface of the virion,
and the dissociation of E dimers into monomers [92] (Fig. 3B). The resultant exposure of the
fusion loop on the tip of the outward projected DII allows its insertion in the outer leaflet of
the target membrane, thereby anchoring the E protein simultaneously in viral and target
membrane, followed by the reassociation of E molecules into trimers [13] (Figs. 3B and 3C).
Trimerization has been shown to be essential for fusion activity of synthetic fusion peptides
derived from TBEV [93]. The large-scale reorganization of E molecules is aided by the
release and extension of the E stem region away from the viral membrane [94] supporting
the idea of formation of an extended “pre-hairpin” intermediate [12] before its collapse into
a fold-back conformation (Fig. 3). The release of the E stem region from the viral lipid
envelope is a pre-requisite for the conversion into the post-fusion E trimer, in which the
stem is stretched out along the newly generated groove between associated DII domains
(Fig. 2C). The irreversible fold-back conversion of the E protein into the post-fusion hairpin-
like structure requires the rotational repositioning of DIII and zipping up of the stem
bringing the E transmembrane helices in the viral membrane in juxtaposition with the target
membrane-anchored fusion loop [19,20] (Fig. 3). The fusion process progresses via a
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hemifusion intermediate to the formation of the post-fusion E trimer and opening of the
fusion pore [95]. The free energy liberated by the rearrangement of the viral surface proteins
from a metastable homodimer to a more stable homotrimer formation is likely used to
overcome the kinetic barrier hindering fusion of the two membrane bilayers [12,13]. The
number of E trimers necessary for the cooperative formation of the fusion pore is still a
matter of debate [13,95,96].

4. Concluding remarks
Significant advances towards understanding flavivirus cell entry have been made and a
series of conformational events can be inferred from available structures and biochemical
data. However, further studies will be necessary to dissect the kinetics of the virus-cell
fusion pathway and to understand the order of the large, conformational changes at a
molecular level. The information obtained from structure can provide insight for the
development of preventive and therapeutic means against the spread and effect of
pathogenic flaviviruses, allowing the design and targeting of antiviral agents or vaccines.
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Fig. 1.
The flavivirion structure. (A) 3D rendering of a cryoEM density map of DENV (kindly
provided by Wei Zhang, Institute of Molecular Virology, University of Minnesota, USA).
The cut-out window allows the view inside the virion at the nucleocapsid core (magenta/
orange) composed of the C protein and the RNA genome. The core is surrounded by a host-
derived lipid envelope (green). The outer icosahedral shell of the virus (blue) is formed by
two membrane-anchored glycoproteins, E and M. (B) Prefusion arrangement of the E
glycoprotein on the surface of the mature flavivirion, viewed down an icosahedral twofold
axis. Domains DI, DII, and DIII of each E monomer are colored red, yellow, and blue,
respectively. The fusion loop is shown in green. A total of 180 E monomers are associated
in 30 rafts of three, nearly parallel E homodimers that form a distinct herringbone pattern.
One icosahedral asymmetric unit (ASU), the smallest unit from which the particle can be
generated by applying icosahedral symmetry, is outlined by a black triangle. The positions
of the neighboring icosahedral five-, three- and twofold symmetry axes are marked with
symbols (pentagons, triangles, and ovals, respectively). Each ASU contains the equivalent of
three E monomers. (C) Arrangement of the E glycoproteins and pr peptides on the surface of
an immature, fusion-incompetent flavivirion, viewed down an icosahedral twofold axis.
Domains DI, DII, and DIII of each E monomer and the fusion loop are colored as in (A).
The pr peptide is shown in magenta. One ASU is outlined by a black triangle and the
positions of the symmetry axes are indicated. The E proteins are icosahedrally arranged in
60 trimeric spikes, composed of prM/E heterodimers. The pr peptide of the prM protein
covers the fusion peptide in DII of E (on the tip of each spike) to prevent premature fusion.
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Fig. 2.
The oligomeric structure of the E glycoprotein. (A) Raft organization of three E homodimers
as observed for mature flavivirions. The relative positions of the neighboring icosahedral
symmetry axes are indicated by symbols. The elongated E ectodomain has three distinct,
structurally defined domains that are joined by flexible hinges. DI, DII, and DIII are colored
red, yellow, and blue, respectively. The fusion loop is shown in green. Two E monomers
forming the central homodimer at the icosahedral twofold axis are emphasized by shadows.
(B) The prefusion head-to-tail homodimer arrangement of the E glycoprotein shown from
the top (looking towards the center of the virus) and from the side after a 90° rotation around
its long axis. One monomer is rendered as a ribbon diagram, showing its three domains
largely adopting β-sheet folds. The other monomer is represented as a surface shaded
volume. The fusion loop of one E protein is buried in a hydrophobic pocket at the DI–DIII
interface of the other E molecule. The side view shows that each E monomer is structurally
divided into the ectodomain that elongates parallel to the viral lipid envelope and a two-
helix transmembrane anchor (dark green). The α-helical stem region (purple), half-buried in
the outer lipid leaflet, connects the C-terminus of the E ectodomain with the transmembrane
helices. The M protein (orange) also contains two antiparallel transmembrane helices and is
essentially buried under the E protein layer. The stem-anchor region is only shown for the E
monomer depicted as a ribbon diagram. Similarly, only one M protein is illustrated. (C) The
postfusion homotrimer arrangement of the E glycoprotein shown from the top and from the
side after a 90° rotation. The E monomers are oriented parallel to one another with their
fusion peptides exposed on one end of the trimer. DIII of E has undergone a major rotational
displacement to the side of DI and towards DII. The stem region (dashed purple line) is
predicted to bind in a hydrophobic groove that extends along the interface of two
neighboring DIIs of the E trimer towards the fusion loop. The irreversible fold-back
conversion of the E protein into the post-fusion hairpin-like structure and zipping up of the
stem brings the E transmembrane helices (connected via the stem to DIII of the ectodomain)
in juxtaposition with the membrane-embedded fusion loop at the tip of DII.
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Fig. 3.
Schematic of the proposed steps of the flavivirus membrane fusion process, modified from
the original figure drawn by Stiasny et al. (2009) [18]. Domains DI, DII, and DIII of E are
colored red, yellow, and blue, respectively. The fusion loop at the distal end of DII is
indicated in orange. The stem region is shown in purple and the transmembrane helices in
green. The outer/inner leaflets of the viral lipid envelope and the target membrane are
colored yellow/blue and gray/red, respectively. (A) Pre-fusion E homodimers on the virus
surface. (B) Low endosomal pH weakens inter- and intramolecular E contacts and induces
the outward extension of the stem region, followed or accompanied by the dissociation of
the E dimers into monomers. The outward projection of the E monomers allows the
interaction of the fusion loop with the endosomal target membrane. (C) E trimer formation,
back-folding of DIII, and ‘‘zipping-up’’ of the stem. (D) Hemifusion intermediate in which
only the outer leaflets of viral and target membranes have mixed. (E) Formation of the post-
fusion E trimer and opening of the fusion pore allows the release of the C protein-associated
RNA genome (nucleocapsid) into the cytoplasm.
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