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Abstract
Background—Recognition of biological patterns holds promise for improved identification of
patients at risk for myocardial infarction (MI) and death. We hypothesized that identifying high-
and low-risk patterns from a broad spectrum of hematologic phenotypic data related to leukocyte
peroxidase-, erythrocyte- and platelet-related parameters may better predict future cardiovascular
risk in stable cardiac patients than traditional risk factors alone.

Methods and Results—Stable patients (n=7369) undergoing elective cardiac evaluation at a
tertiary care center were enrolled. A model (PEROX) that predicts incident 1-year death and MI
was derived from standard clinical data combined with information captured by a high-throughput
peroxidase-based hematology analyzer during performance of a complete blood count with
differential. The PEROX model was developed using a random sampling of subjects in a
derivation cohort (n=5895) and then independently validated in a nonoverlapping validation
cohort (n=1474). Twenty-three high-risk (observed in ≥10% of subjects with events) and 24 low-
risk (observed in ≥10% of subjects without events) patterns were identified in the derivation
cohort. Erythrocyte- and leukocyte (peroxidase)-derived parameters dominated the variables
predicting risk of death, whereas variables in MI risk patterns included traditional cardiac risk
factors and elements from all blood cell lineages. Within the validation cohort, the PEROX model
demonstrated superior prognostic accuracy (78%) for 1-year risk of death or MI compared with
traditional risk factors alone (67%). Furthermore, the PEROX model reclassified 23.5% (P<0.001)
of patients to different risk categories for death/MI when added to traditional risk factors.

© 2010 American Heart Association, Inc.
Correspondence to Stanley L. Hazen, MD, PhD, Cleveland Clinic, Center for Cardiovascular Diagnostics and Prevention, 9500 Euclid
Ave, NE10, Cleveland, OH 44195. hazens@ccf.org.
†Deceased.
Disclosures Drs Hazen and Brennan report that they are named as coinventors on pending patents filed by the Cleveland Clinic that
refer to the use of biomarkers in inflammatory and cardiovascular disorders. Dr Hazen also is the scientific founder of Cleveland Heart
Labs Inc; has received research grant support from Abbott Laboratories, Lipo-science, and Cleveland Heart Labs; and has received
honoraria and consulting fees from Abbott Laboratories, Merck, Pfizer, Cleveland Heart Labs, Esperion, Takeda, and AstraZeneca. Dr
Tang has received research grant support from Abbott Laboratories. The other authors report no conflicts.

NIH Public Access
Author Manuscript
Circulation. Author manuscript; available in PMC 2011 January 4.

Published in final edited form as:
Circulation. 2010 July 6; 122(1): 70–79. doi:10.1161/CIRCULATIONAHA.109.881581.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Conclusion—Comprehensive pattern recognition of high- and low-risk clusters of clinical,
biochemical, and hematologic parameters provided incremental prognostic value in stable patients
having elective diagnostic cardiac catheterization for 1-year risks of death and MI.
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Despite recent advances in both our understanding of the pathophysiology of cardiovascular
disease and our ability to image atherosclerotic plaque, accurate determination of risk in
stable cardiac patients remains a challenge. The clinically unidentified high-risk patient who
does not undergo aggressive risk factor modification and experiences a major adverse
cardiac event is of great concern.1,2 Similarly, more accurate identification of low-risk
subjects is needed to refocus finite healthcare resources on those who stand most to benefit.
Most current clinical risk assessment tools involve algorithms developed from
epidemiology-based studies of untreated primary prevention populations and are limited in
their application to a higher-risk and medicated cardiology outpatient setting.3 An area of
active investigation is the incorporation of combinations of novel biological markers,
genetic polymorphisms, or noninvasive imaging approaches for additive prognostic value.
4-7 Despite considerable interest, efforts to incorporate more holistic array-based
phenotyping technologies (eg, genomic, proteomic, metabolomic, expression array) for
improved cardiac risk stratification remain in their infancy and have yet to be translated into
efficient and robust platforms amenable to the high-throughput demands of clinical practice.

Blood is a complex but integrated sensor of physiological homeostasis. Perturbations in
blood composition and blood cell function are seen in both acute and chronic inflammatory
conditions. Elevated leukocyte count (both neutrophils and monocytes) has long been
associated with cardiovascular morbidity and mortality.8,9 Leukocyte adhesion, activation,
and degranulation and release of peroxidase-containing granules are key steps in the
inflammatory process and have been implicated in the development and progression of
cardiovascular atheroma.10 Myeloperoxidase, an abundant leukocyte granule protein
enriched within culprit lesions,11 is mechanistically linked with multiple stages of
cardiovascular disease,12 including modification of lipoproteins,13-15 creation of
proinflammatory lipid mediators,14,16 regulation of protease cascades,17,18 and modulation
of nitric oxide bioavailability and vascular tone.19-21 Systemic myeloperoxidase levels are
increased in patients presenting with chest pain22 and suspected acute coronary syndromes23

who subsequently experience near-term adverse cardiovascular events, and alterations in
leukocyte intracellular peroxidase activity are seen in patients with cardiovascular disease.
24,25 Similarly, erythrocytes are critical mediators of both oxygen delivery to tissues and
regulation of nitric oxide delivery and bioavailability within the vascular compartment,26

and platelets are essential participants in atherothrombotic disease.27,28 Thus, numerous
mechanistic and epidemiological ties exist between various components and activities of
circulating leukocytes, erythrocytes, and platelets with processes critical to both vascular
homeostasis and progression of cardiovascular disease.24,25,28-33 Here, we hypothesize that
data derived from a common, high-throughput, peroxidase-based hematology analyzer
(including leukocyte-, erythrocyte- and platelet-related parameters beyond standard
complete blood count and differential) can provide a broad spectrum of novel data
incremental to existing clinical risk assessment in predicting future cardiovascular risks.
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Methods
Study Sample

GeneBank is an institutional review board–approved prospective cohort study at the
Cleveland Clinic with enrollment from 2002 to 2006. Patients were eligible for inclusion if
they were undergoing elective diagnostic cardiac catheterization, were ≥18 years of age, and
were both stable and without active chest pain at time of enrollment. All subjects with a
positive cardiac troponin T test (≥0.03 ng/mL) on enrollment blood draw immediately
before catheterization were excluded from the study. Indications for catheterization included
history of positive or equivocal stress test (46%), to rule out significant coronary artery
disease in the presence of cardiac risk factors (63%), catheterization before surgery or
intervention (24%), recent but historical myocardial infarction (MI; 7%), prior coronary
artery bypass or percutaneous intervention with recurrence of symptoms (37%), history of
cardiomyopathy (3%), or remote history of acute coronary syndrome (0.9%). All subjects
gave written informed consent approved by the institutional review board.

Collection of Specimens and Clinical Data
Patients were interviewed with the use of a standardized demographics and clinical history
questionnaire. Blood samples were taken from the femoral artery at the onset of the
catheterization procedure before the administration of heparin, collected into an EDTA tube,
and stored either on ice or at 4°C until transfer to laboratory (typically within 2 hours) for
immediate hematology analyzer analysis and subsequent processing and storage of plasma at
−80°C. Basic metabolic panel, fasting lipid profile, and high-sensitivity C-reactive protein
levels were measured on the Abbott Architect platform (Abbott Laboratories, Abbott Park,
Ill) in a core laboratory. Samples were identified by barcode only, and all laboratory
personnel remained blinded to clinical data. Follow-up telephone interviews were performed
by research personnel to track patient outcomes at 1 year, with all events (death and MI)
adjudicated and confirmed by source documentation.

Comprehensive Hematology Analyses
Hematology analyses were performed with an Advia 120 hematology analyzer (Siemens,
New York, NY). This hematology analyzer functions as a flow cytometer, using in situ
peroxidase cytochemical staining to generate a complete blood count and differential based
on flow cytometry analysis of whole anticoagulated blood. All hematology measurements
used in the present study were generated automatically by the analyzer during routine
performance of a complete blood count and differential and did not require any additional
sample preparation or processing steps. However, additional steps must be taken to ensure
that the data are saved and extracted appropriately (as outlined in the Materials section in the
online-only Data Supplement) because not all measurements are routinely reported. All
leukocyte-, erythrocyte-, and platelet-related parameters derived from both cytograms and
absorbance data were extracted from instrument data (DAT) files by blinded laboratory
technicians. All hematology parameters used demonstrated reproducible results (with SD
from mean ≤30%) on replicate intraday and interday (>10 times) analyses. Examples of a
leukocyte cytogram and a table listing all hematology analyzer elements recovered and used
for analysis are included in the Materials section in the online-only Data Supplement.

Statistical Analyses and Construction of the PEROX Score
An initial 7466 subjects were consented for hematology analyses. Of these, 7369 (98.7%)
were included in statistical analyses. The 97 subjects not included in statistical analyses
were excluded because they were lost to follow-up, they subsequently asked to be
withdrawn from the study, or their hematology laboratory data failed to meet quality control
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parameters (eg, platelet clumping or hemolyzed sample). The initial data set was stratified
on the basis of whether a patient experienced an adjudicated event (nonfatal MI or death) by
1 year after enrollment. Randomization using a uniform distribution method was performed
to randomly select 80% of patients (derivation cohort) for model building, and the remaining
20% (validation cohort) was set aside for model testing and validation before statistical
analyses. Mean and median differences were assessed with the Student t test and Mann-
Whitney U test, respectively. For the purpose of ranking, univariate hazard ratios (HRs)
were generated for continuous variables or logarithmically transformed continuous variables
(if not normally distributed).

To establish an individual subject’s risk, a score was developed (PEROX) by initially
identifying binary variable pairs that form reproducible high-risk (observed in ≥10% of
subjects with events) and low-risk (observed in ≥10% of subjects without events) patterns
for death or MI at 1-year using the logical analysis of data method.34-36 Using this
combinatorics and optimization-based mathematical method, we derived a single calculated
value for an individual’s overall 1-year risk for death or MI from a weighted integer sum of
high- and low-risk patterns present. Briefly, logical analysis of data was first used to identify
binary variable pairs that form reproducible positive and negative predictive patterns for risk
for death or MI at 1 year. Variables were included on the basis of clinical significance,
perceived potential informativeness, reproducibility (for hematology parameters) as
monitored in interday and intraday replicates, and nonredundancy as assessed by cluster
analysis performed within leukocyte, erythrocyte, and platelet subgroups. More details on
logical analysis of data variable selection and analyses are provided in the Materials section
in the online-only Data Supplement. Criteria for the development of the PEROX model
included 3 equal proportions for each hematology parameter, 2 variables per pattern, and a
minimal prevalence of 10% of the events for high-risk and 10% of nonevents for low-risk
patterns. Patterns were generated through the use of logical analysis of data software
(http://pit.kamick.free.fr/lemaire/software-lad.html)34-36 and tuned for both homogeneity
and prevalence to obtain best accuracy on cross-validation experiments. The weights for
each positive and negative pattern were determined by the following: 1 divided by the
number of high-risk patterns and −1 divided by the number of low-risk patterns,
respectively. An overall risk score for a patient was calculated by the sum of positive and
negative pattern weights. A maximum score of 1 would be calculated in a patient with only
positive patterns; a minimum score of −1 would be present in a patient with only negative
patterns. The original score range was adjusted from ±1 to a range of 0 to 100 by assuming
50 (rather than 0) as the midpoint of equal variance. The PEROX score was thus calculated
as follows: 50×[(1/23 possible high-risk patterns)×(No. of actual high-risk patterns)−(1/24
possible low-risk patterns)×(No. of low-risk patterns)]+50. The reproducibility of the
PEROX score was assessed by examining multiple replicate samples from multiple subjects
both within and between days, revealing intraday and interday coefficients of variance of
53±0.4% and 10±2% (mean±SD), respectively. A more detailed explanation of how the
PEROX score was built and a complete list of all hematology analyzer variables used within
the PEROX score (including an example calculation using patient data) are provided in the
Materials section in the online-only Data Supplement.

Validation of PEROX Score and Comparisons
Kaplan-Meier survival curves for PEROX model tertiles were generated within the
validation cohort for the 1-year outcomes, including death, nonfatal MI, or either outcome,
and compared by log-rank test. Cox proportional-hazards regression was used for time-to-
event analysis to calculate HRs and 95% confidence intervals (CIs) for 1-year outcomes of
death, MI, or either outcome. Cubic splines (with 95% CIs) were generated to examine the
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relationship between PEROX model and 1-year outcomes from the derivation cohort,
superimposed with absolute 1-year event rates observed in the validation cohort.

Receiver-operating characteristic (ROC) curves were plotted and area under the curve
(AUC) was estimated for 1-year outcomes for the validation cohort with the use of risk
scores assigned by the PEROX model along with traditional risk factors (including age,
gender, smoking, low-density lipoprotein [LDL] cholesterol, high-density lipoprotein [HDL]
cholesterol, systolic blood pressure, and history of diabetes mellitus) and compared with risk
models incorporating traditional risk factors alone. To obtain an unbiased estimate of AUC,
resampling (250 bootstrap samples from the validation cohort) was performed. For each
bootstrap sample, AUC values were calculated for traditional risk factors with and without
PEROX. AUCs were compared by using a method of comparing correlated ROC curves to
calculate P values for each bootstrap sample.37 The Friedman test blocked on replicate was
also used to compare AUCs of 250 bootstrap samples.38 In addition, the net reclassification
improvement (NRI) was determined by assessing net improvement in risk classification
(higher predicted risk in subjects with events at 1 year, lower predicted risk in subjects
without events at 1 year) using a ratio of 6:3:1 for low-, medium-, and high-risk categories.
39 Consistency of risk stratification was also evaluated by applying ROC analyses to models
composed of traditional risk factors alone or in combination with the PEROX risk score
within the entire cohort, as well as within primary prevention and secondary prevention
subgroups. Statistical analyses were performed with SAS 8.2 (SAS Institute, Inc, Cary, NC)
and R 2.8.0 (Vienna, Austria). Values of P<0.05 were considered statistically significant.

Results
Clinical and laboratory parameters used in the development of the PEROX model are shown
in Table 1 and were similar between the derivation and validation cohorts. One-year event
rates for incident nonfatal MI or death, individually and as a composite, did not significantly
differ between the derivation and validation cohorts (P=0.37 for MI; P=0.50 for death;
P=1.00 for MI or death). Many traditional cardiac risk factors such as elevations in total
cholesterol, LDL cholesterol, and triglycerides predicted 1-year death or MI as expected.
Reduced diastolic blood pressure and body mass index were associated with a decrease in
risk, likely reflecting confounding by indication bias whereby patients with a higher
prevalence of comorbidities are more likely to be taking medication or undergoing
aggressive interventions. Multiple statistically significant HRs were observed between
various leukocyte, erythrocyte, and platelet parameters and incident 1-year risks for nonfatal
MI and death in univariate analyses, consistent with multiple prior individual reported
associations with various hematologic parameters30-33 (see the Materials section in the
online-only Data Supplement).

Comprehensive Hematologic Profile Patterns Identify Patient Risk for MI or Death
In the derivation cohort, 23 high-risk patterns (Table 2) were identified in patients who were
more likely to experience death (>3.6-fold risk) or MI (>1.4-fold risk) over the ensuing year.
Unique discriminating patterns in those who died included variables derived from multiple
erythrocyte- and leukocyte (peroxidase)-related parameters, as well as plasma levels of C-
reactive protein. High-risk patterns for MI included multiple erythrocyte, leukocyte
(peroxidase), and platelet parameters; traditional risk factors; and blood chemistries (Table
2). Variables common to both high-risk death and MI patterns included age, hypertension,
mean red blood cell hemoglobin concentration, hemoglobin concentration distribution
width, hypochromic erythrocyte cell count, and peroxidase y sigma (a peroxidase-based
measure of neutrophil size distribution).
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An additional 24 low-risk patterns (Table 3) were observed in patients less likely to
experience death (<0.34-fold risk) or MI (<0.57-fold risk). Variables that were shared
between low-risk patterns for both death and MI risk included C-reactive protein levels,
absolute neutrophil count, mean platelet concentration (a flow cytometry determined index
of platelet granule content), and monocyte/polymorphonuclear valley (a measure of
separation among clusters of peroxidase-containing cell populations). In general, the low-
risk patterns for incident 1-year death and MI risk are dominated by multiple diverse
hematology analyzer variables of all 3 blood cell types (erythrocyte, leukocyte, and platelet)
and age.

A composite PEROX model for prediction of incident 1-year death or nonfatal MI risk was
generated within the derivation cohort by summing individual high- and low-risk patterns
for death and MI individually. The reproducibility of the PEROX model was assessed by
examining multiple replicate samples from multiple subjects both within and between days,
revealing intraday and interday coefficients of variance of 5±0.4% and 10±2% (mean±SD),
respectively. Stability of high- and low-risk patterns used for construction of the PEROX
score and model validation analyses with the Somers D rank correlation40 and Hosmer-
Lemeshow statistic41 are provided in the Materials section in the online-only Data
Supplement.

The PEROX Model Predicts Incident 1-Year Risks for Nonfatal MI and Death
Within the derivation cohort, the PEROX model ROC curve analyses for the 1-year end
points of death, MI, and the composite of death or MI demonstrated AUCs of 80%, 66%,
and 75%, respectively. For the composite end point, an ROC curve potential cut point was
identified that was virtually identical to the top tertile cut point within the derivation cohort.

Initial characterization of the performance of the PEROX score within the validation cohort
included time-to-event analysis for death, MI, or the composite of either event using risk
score tertiles to stratify subjects into equivalently sized groups of low, medium, and high
risk (Figure 1A through 1C). For each outcome monitored, increasing cumulative event rates
were noted over time within increasing tertiles (log-rank P<0.001 for each outcome). Figure
1D through 1F demonstrates the relationship between predicted (and 95% CI) absolute 1-
year event rates estimated by PEROX score within the validation cohort. Also shown are
actual event rates plotted in deciles of PEROX scores for both the derivation and validation
cohorts. Observed event rates from the derivation cohort were similar to those observed in
the validation cohort (Figure 1D through 1F), and strong tight positive associations were
noted between increasing risk score and risk for experiencing nonfatal MI, death, or the
composite adverse outcome.

Relative Performance of the PEROX Model for Accurate Risk Assessment and
Reclassification of Patients

In additional analyses within the validation cohort, ROC curve analyses were performed
comparing the accuracy of traditional cardiac risk factors alone and with PEROX for the
prediction of 1-year death or MI. Traditional risk factors alone showed modest accuracy
(AUC=67%) for 1-year death or MI, whereas the addition of the PEROX risk score to
traditional risk factors significantly increased prognostic accuracy (AUC=78%; P<0.001).
To further evaluate the validity of the PEROX score, resampling (250 bootstrap samples
from the validation cohort, n=1474) was performed and ROC analyses for each bootstrap
sample was calculated for the prediction of 1-year death or MI risk. Compared with
traditional risk factors alone, the PEROX score demonstrated superior prognostic accuracy
among subjects within the independent validation cohort (Figure 2). When PEROX risk
score categories were defined by tertiles (in which approximately equal proportions of
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subjects within the entire cohort are stratified into each risk bin), the 1-year event rate for
death/MI among subjects stratified within high– versus low–PEROX-risk groups was 14%
versus 2%, a 7-fold risk gradient. Results of Cox proportional-hazards regression for time-
to-event analyses within the validation cohort (n=1434) are shown in Table 4 and reveal that
the PEROX risk score significantly predicts the major adverse cardiac end points of death,
MI, or the composite end point even after adjustment for traditional risk factors. Subjects
with a high (top tertile) PEROX risk category relative to low (bottom tertile) PEROX risk
show an HR of 6.5 (95% CI, 4.9 to 8.6) for 1-year death/MI. The potential clinical utility of
the PEROX risk score was further compared with traditional risk factors in reclassifying
patients into risk groups. As shown in Table 5, adding the PEROX score significantly
improves risk classification at the 1-year follow-up for death (NRI=19.4%; P<0.001), MI
(NRI=15.6; P=0.002), or both events (NRI=23.5; P<0.001) compared with traditional risk
factors alone. These findings are consistent among either primary or secondary prevention
subjects (Table 6).

Discussion
Studies by our group25 and Buffon et al24 previously implicated intracellular peroxidase
content of leukocytes in cardiovascular risk stratification of patients. From these preceding
observations and the numerous mechanistic links between myeloperoxidase,12,42

monocytes,43,44 and neutrophils45 for atherosclerosis and acute coronary syndromes, we
hypothesized that data derived from a peroxidase-based hematology analyzer would harbor
clinically useful information related to cardiovascular disease prognosis. As the analyses
unfolded, it became clear that patterns generated by a combination of clinical information
and alternative hematology measures could provide significant incremental value. In
particular, review of the components contributing to the high- and low-risk patterns that
contribute to the PEROX model reveals that a number of erythrocyte- and leukocyte-related
phenotypes, as well as a smaller number of platelet-related parameters, provided prognostic
value in identifying individuals in this population at both increased and decreased risk for
near-term adverse cardiac events. The present studies show that alterations in multiple subtle
phenotypes within leukocyte, erythrocyte, and platelet lineages can provide prognostic
information relevant to cardiovascular health and atherothrombotic risk, consistent with the
numerous mechanistic links to cardiovascular disease pathogenesis for each of these
hematopoietic lineages. Hematology analyzers are some of the most commonly used
instruments within hospital laboratories. Our studies show that information already captured
by these instruments during routine use (but not typically reported) can aid in the clinical
assessment of a stable cardiology patient, dramatically improving the accuracy with which
subjects can be risk classified at both the high- and low-risk ends of the spectrum. Blood is a
dynamic integrated sensor of the physiological state. A hematology analyzer profile serves
as a holistic assessment of a broad spectrum of phenotypes related to multiple diverse and
mechanistically relevant cell types from which we can recognize patterns, like fingerprints,
that provide clinically useful information in the evaluation of cardiovascular risk in subjects.

Another intriguing finding in the present studies is how much hematology parameters,
especially from erythrocyte and leukocyte lineages, contribute to the prognostic value of the
PEROX model. This observation strongly underscores the growing appreciation that
atherosclerosis is a systemic disease, with parameters in the blood combined with
biochemical profiles of systemic inflammation being strongly linked to disease
pathogenesis. Although many of the patterns identified as low-and high-risk traits within
subjects are of unclear biological meaning, a large number are made up of elements with
recognizable mechanistic connections to disease pathogenesis. As a group, all patterns
reported appear to be robust, reproducible, and present in multiple independent samplings of
the independent validation cohort. The identification of reproducible high- and low-risk
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patterns among the clinical, laboratory, and hematologic parameters monitored further
indicates the presence of underlying complex relationships between multiple hematologic
parameters, clinical and metabolic parameters, and cardiovascular disease pathogenesis.

Much interest focuses on the idea that array-based phenotyping will play an ever-increasing
role in the future of preventive medicine, serving as a powerful method to improve risk
classification of subjects and ultimately individualize tailored therapies. Rather than use
research-based arrays (genomic, proteomic, metabolomic, expression array) that are no
doubt powerful and extremely useful, we decided to use a robust, high-throughput
workhorse of clinical laboratory medicine that is already in broad clinical use: the
hematology analyzer. The hematology analyzer selected is commonly available worldwide
and has the added advantage of being a flow cytometer that uses in situ peroxidase
cytochemical staining for identifying and quantifying leukocytes, an added phenotypic
dimension relevant to disease pathogenesis. Although the precise risk score developed here
should be considered only proof of concept, the holistic approach taken illustrates that in the
outpatient cardiology setting, these hematologic data may add prognostic information.

Limitations of the study are worth noting. Foremost, although the study population
examined is large and replication of the findings is observed within multiple samplings of an
entirely distinct, nonoverlapping validation cohort of subjects, the generalizability of these
findings to other populations remains to be tested. The population examined, although stable
and without evidence of myocardial necrosis (ie, cardiac troponin T negative), was
nonetheless selected by referral for elective diagnostic coronary angiography. Furthermore,
although the PEROX score predicted incident MI risk, it is notable that the PEROX offers
lower discrimination for MI than for death. In this regard, it would be helpful to know the
causes of death and the C statistic for cardiovascular mortality because only all-cause
mortality data were available. It should also be noted that the present study represents a
large, single-center study with ≈90% whites and a high degree of cardiovascular risk factors
and comorbidities, some of which (eg, left ventricular function, measures of fitness or
frailty, pulmonary diseases, performance of stress test) were not available in all subjects and
therefore not included in the model. Several alternative populations (such as community-
based or previously untreated populations) will be particularly interesting to examine with
the PEROX model. Similarly, patients in whom complete blood count is already being
measured (eg, those presenting with chest pain and suspected acute coronary syndromes)
represent a particularly attractive cohort to monitor, given the high-throughput nature of the
hematology analyzer and the existing availability of the data. One might hypothesize that
additional platelet parameters, for example, might add to rapid risk screening in such a
cohort. Whereas the process for generating the PEROX score may be applied elsewhere, in
each setting, it is essential to incorporate additional key clinical variables when available,
and it may be necessary to modify the PEROX model or to recalibrate the PEROX score
based on local distributions of clinical and hematologic variables.

Conclusion
The results from the present studies suggest that the expanded use of more comprehensive
hematology analyzer profiling of blood holds promise for improved risk stratification, more
efficient targeting of preventive risk reduction efforts, and potential for monitoring of
therapeutic responses in the future.

CLINICAL PERSPECTIVE

Array-based phenotyping may improve risk classification of subjects and help tailor
therapies. In this study, rather than use research-based arrays (genomic, proteomic,
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metabolomic, expression array), we used a robust and clinically validated high-
throughput workhorse of clinical laboratory medicine, the hematology analyzer, to
generate a comprehensive array of hematologic data. Using an established data-mining
methodology (logical analysis of data), we generated a risk score (the PEROX score) that
is based on reproducible high- and low-risk patterns of combinations of clinical and
biochemical/hematology variables among subjects undergoing elective diagnostic cardiac
catheterization. Within an independent nonoverlapping validation cohort, the PEROX
risk score demonstrated superior prognostic accuracy for 1-year risk of death or
myocardial infarction compared with traditional risk factors alone and significant net
reclassification index. The results from the present studies suggest that expanded use of
existing tools in profiling clinical and blood patterns holds promise for improved risk
stratification.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Kaplan-Meier curves and composite risk for 1-year outcomes based on tertiles of PEROX
risk score in the validation cohort. Kaplan-Meier curves for cumulative probability of death
(A), MI (B), or either event (C) according to low, medium, and high tertiles of PEROX
score. Spline curves (solid line) with 95% CIs (dashed line) showing association between
cumulative event (y axis) for death (D), MI (E), and death or MI (F) for PEROX score (x
axis) are shown. Also illustrated are the absolute event rates per decile of PEROX score
within the derivation (red solid circle) and validation (blue solid circle) cohorts. Vertical
dotted lines indicate the tertile cut points separating low (<40), medium (≥40 to <48), and
high (≥48) PEROX scores.
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Figure 2.
Validation analysis of PEROX risk score. Models were assessed for their association with 1-
year incident risk of MI or death. Models were made up of traditional risk factors alone
(including age, gender, smoking, LDL cholesterol, HDL cholesterol, systolic blood pressure,
and history of diabetes mellitus) vs traditional risk factors plus PEROX score. Resampling
(250 bootstrap samples from the validation cohort, n=1474) was performed. All data
analyses, including ROC analyses and AUC determinations, were separately recalculated at
each resampling for models with/without PEROX score. The AUCs calculated from the
bootstrap samples are compared by the use of side-by-side box plots in which boxes
represent interquartile ranges (defined as the difference between the first and third quartiles)
and whiskers represent the 5th and 95th percentile values.
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Table 1

Clinical and Laboratory Parameters

Derivation Cohort (n=5895) Validation Cohort (n=1474) Death at 1 y, HR
(95% CI)

MI at 1 y, HR
(95% CI)

Traditional risk factors

 Age, y* 64.1±11.3 64.1±10.9 1.88 (1.65–2.14)† 1.14 (0.99–1.32)

 Male, n (%)* 4021 (68) 1024 (69) 0.93 (0.73–1.18) 1.21 (0.88–1.66)

 History of hypertension, n
(%)*

4335 (74) 1075 (73) 1.67 (1.24–2.25)† 1.53 (1.07–2.19)†

 Current smoking, n (%)* 770 (13) 162 (11)† 0.90 (0.63–1.29) 1.28 (0.87–1.89)

 History of smoking, n (%) 3869 (66) 995 (68) 1.35 (1.04–1.74)† 0.90 (0.67–1.20)

 Diabetes mellitus, n (%)* 2054 (35) 544 (37) 2.09 (1.66–2.62)† 1.55 (1.17–2.06)†

 History of CVD, n (%) 4056 (71) 1017 (71) 2.95 (1.85, 4.70)† 2.41 (1.39–4.19)†

Laboratory measurements

 Fasting blood glucose, mg/
dL*

111±47 112±43 1.23 (1.13–1.33)† 1.27 (1.16–1.39)†

 Creatinine, mg/dL* 1.1 (0.8–1.1) 1.1 (0.8–1.1) 1.57 (1.48–1.67)† 1.22 (1.09–1.37)†

 Potassium, mmol/L* 4.2 (4.0–4.5) 4.2 (4.0–4.5) 1.10 (1.04–1.17)† 0.97 (0.84–1.12)

 C-reactive protein, mg/dL* 3.0 (1.7–5.9) 3.0 (1.6–5.5) 1.92 (1.71–2.16)† 1.21 (1.05–1.40)†

 Total cholesterol, mg/dL 176±43 178±43 0.71 (0.62–0.81)† 0.93 (0.80–1.07)

 LDL cholesterol, mg/dL 100±36 101±36 0.78 (0.69–0.89)† 0.97 (0.84–1.13)

 HDL cholesterol, mg/dL* 46±14 46±14 0.84 (0.74–0.95)† 0.71 (0.60–0.84)†

 Triglycerides, mg/dL* 160±119 163±120 0.82 (0.71–0.96)† 1.07 (0.96–1.19)

Clinical characteristics

 Systolic blood pressure, mm
Hg*

135±21 136±22† 0.96 (0.85–1.07) 1.17 (1.02–1.34)†

 Diastolic blood pressure, mm
Hg

75±12 75±13 0.81 (0.73–0.90)† 0.97 (0.85–1.12)

 Body mass index, kg/m2* 30±6 30±6 0.78 (0.68–0.89)† 0.90 (0.78–1.05)

 Aspirin use, n (%) 4270 (72) 1087 (73) 0.64 (0.51–0.81)† 0.93 (0.68–1.27)

 Statin use, n (%) 3450 (59) 869 (59) 0.82 (0.65–1.03) 0.70 (0.53–0.92)†

Events

 Death at 1 y, n (%) 242 (4) 54 (4)

 MI at 1 y, n (%) 148 (3) 44 (3)

CVD indicates cardiovascular disease. Data are shown as mean±SD for normally distributed continuous variables, median (interquartile range) for
nonnormally distributed continuous variables, or number in category (percent of total in category) for categorical variables. HRs were calculated
per SD (for normally distributed variables). For variables with nonnormal distribution (creatinine, potassium, C-reactive protein), values were log
transformed, and HRs were calculated per log of SD.

*
Variables ultimately included in the PEROX model.

†
P<0.05.
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Table 2

High-Risk Patterns in PEROX Model for 1-Year Death or MI

Pattern n Rate, % HR (95% CI)

Death, high risk

 1 Hgb content distribution width >3.93 and RBC hgb concentration mean <35.07 815 13* 4.94 (3.88–6.30)

 2 Hypochromic RBC count >189 and Hgb content distribution width >3.93 658 13* 4.47 (3.48–5.73)

 3 Mean corpuscular Hgb concentration <34.38 and perox d/D <0.89 466 14* 4.46 (3.42–5.81)

 4 Hypochromic RBC count >189 and macrocytic RBC count >192 588 13* 4.37 (3.39–5.64)

 5 Mean corpuscular Hgb concentration <33.00 and mononuclear central x channel
<14.38

422 14* 4.37 (3.33–5.74)

 6 Age >67 and hematocrit <36.45 515 13* 4.08 (3.13–5.32)

 7 Mononuclear polymorphonuclear valley <18.50 and peroxidase y sigma >9.48 474 13* 3.85 (2.93–5.07)

 8 Mononuclear central x channel <14.38 and peroxidase y mean >19.02 494 12* 3.68 (2.80–4.85)

 9 C-reactive protein >13.75 and history of hypertension 531 12* 3.63 (2.77–4.76)

MI, high risk

 1 Mean platelet concentration >27.89 and potassium <3.85 332 5† 2.17 (1.33–3.56)

 2 Triglycerides <130 and age >76 464 5† 1.94 (1.23–3.04)

 3 RBC distribution width >13.83 and lymphocyte count >1.75 371 5† 1.93 (1.18–3.17)

 4 Hypochromic RBC count >56 and diabetes mellitus 1212 4† 1.91 (1.37–2.68)

 5 Body mass index <24.7 and neutrophil count <3.58 446 4† 1.91 (1.20–3.03)

 6 Systolic blood pressure >150 and history of hypertension 1163 4† 1.89 (1.35–2.66)

 7 Polymorphonuclear cluster x axis mode >29.87 and RBC distribution width >13.22 729 4† 1.80 (1.22–2.67)

 8 Hgb distribution width >2.69 and peroxidase y sigma >8.59 842 4† 1.79 (1.23–2.61)

 9 Platelet concentration distribution width <5.39 and RBC hgb concentration mean
<34.69

870 4† 1.79 (1.23–2.60)

 10 Mean corpuscular hemoglobin >32.60 and male 500 4† 1.78 (1.13–2.81)

 11 Lymphocyte count <0.96 and potassium >4.4 387 4† 1.73 (1.04–2.87)

 12 Platelet concentration distribution width >6.04 and monocyte count >0.46 119 4† 1.7 (0.71–4.06)

 13 Neutrophil cluster mean y <71.19 and current smoker 447 4† 1.69 (1.04–2.74)

 14 Mean platelet concentration >23.19 and basophil count >0.12 178 3† 1.36 (0.61–3.03)

Hgb indicated hemoglobin; RBC, red blood cell. Shown above are high-risk patterns present in the population, with n representing the number of
patients in the derivation cohort in each pattern. The event rate within each pattern and HR (95% CI) are shown for each pattern based on univariate
Cox models for ranking purposes. Units for each variable are shown in Table 1.

*
Death rate.

†
MI rate.
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Table 3

Low-Risk Patterns in PEROX Model for 1-Year Death or MI

Pattern n Rate, % HR (95% CI)

Death, low risk

 1 RBC hgb concentration mean >35.07 and hematocrit >42.25 1443 1* 0.18 (0.10–0.31)

 2 Macrocytic RBC count <192 and age <67 2283 1* 0.22 (0.15–0.32)

 3 RBC Hgb concentration mean >35.07 and RBC count >4.42 1494 1* 0.24 (0.15–0.38)

 4 Mean platelet concentration >27.52 and age <67 1651 1* 0.24 (0.16–0.38)

 5 Peroxidase y sigma <8.10 and age <67 1982 1* 0.26 (0.17–0.38)

 6 C-reactive protein <4.0 and hematocrit >42.25 1688 1* 0.26 (0.17–0.40)

 7 Hematocrit >42.25 and perox d/D >0.89 1972 1* 0.27 (0.18–0.40)

 8 Mononuclear polymorphonuclear valley >18.50 and age <67 1750 1* 0.27 (0.18–0.41)

 9 RBC Hgb concentration mean >35.07 and white blood cell count <5.86 1436 1* 0.30 (0.19–0.46)

 10 Neutrophil count <3.96 and age <67 1697 2* 0.34 (0.23–0.49)

MI, low risk

 1 No history of cardiovascular disease and RBC distribution width <13.22 919 1† 0.31 (0.15–0.63)

 2 Lymphocyte/large unstained cell threshold <44.50 and blasts <0.51% 946 1† 0.34 (0.17–0.66)

 3 Systolic blood pressure <134 and basophil count <0.03 743 1† 0.34 (0.16–0.73)

 4 Platelet clumps >41 and fasting blood glucose <92.5 782 1† 0.37 (0.18–0.76)

 5 Hemoglobin distribution width <2.69 and hypochromic RBC count <14 891 1† 0.41 (0.22–0.77)

 6 Hypochromic RBC count <14 and Neutrophil count <5.83 1159 1† 0.43 (0.25–0.74)

 7 Mononuclear central x channel <12.70 and neutrophil y cluster mean >69.30 841 1† 0.44 (0.23–0.82)

 8 Mononuclear polymorphonuclear valley >14.50 and creatinine <0.75 910 1† 0.44 (0.24–0.81)

 9 No history of cardiovascular disease and systolic blood pressure <134 756 1† 0.44 (0.23–0.86)

 10 No. of peroxidase-saturated cells <0.01 and neutrophil count <4.69 781 1† 0.47 (0.25–0.90)

 11 HDL cholesterol >59 and mean platelet concentration <28.56 830 1† 0.49 (0.27–0.90)

 12 Mononuclear central x channel <12.70 and C-reactive protein <5.31 896 1† 0.49 (0.27–0.88)

 13 Mononuclear central x channel <12.70 and basophil count <0.07 961 1† 0.54 (0.31–0.93)

 14 No history of cardiovascular disease and neutrophil cluster mean x <66.07 1261 2† 0.57 (0.36–0.92)

RBC indicates red blood cell; Hgb, hemoglobin. Shown are low-risk patterns present in the population, with n representing the number of patients
in derivation cohort in each pattern. The event rate within each pattern and HR (95% CI) are shown for each pattern based on univariate Cox
models for ranking purposes. Units for each variable are shown in Table 1.

*
Death rate.

†
MI rate.
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Table 4

Unadjusted and Adjusted HR of PEROX Risk Scores for Adverse Cardiac Events at the 1-Year Follow-Up

HR (95% CI) P

Death

 Unadjusted 3.68 (2.72–4.96) <0.001

 Adjusted 3.74 (2.61–5.36) <0.001

MI

 Unadjusted 1.77 (1.31–2.38) <0.001

 Adjusted 2.00 (1.40–2.87) <0.001

Death/MI

 Unadjusted 2.57 (2.06–3.21) <0.001

 Adjusted 2.76 (2.14–3.57) <0.001

Multivariate Cox models were constructed within the validation cohort (n=1434) for the end points of death, MI, or the composite of death or MI
using either the PEROX risk score alone or the PEROX risk score adjusted for traditional risk factors including age, gender, smoking, LDL
cholesterol, HDL cholesterol, systolic blood pressure, and history of diabetes mellitus. The HRs shown correspond to 1-SD increment.

Circulation. Author manuscript; available in PMC 2011 January 4.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Brennan et al. Page 19

Table 5

Reclassification Among Subjects Who Experienced Versus Did Not Experience Adverse Clinical Event at the
1-Year Follow-Up

IDI Event-Specific Reclassification

% P NRI, % P

Death

 Without PEROX … … … …

 With PEROX 0.316 <0.001 0.194 <0.001

MI

 Without PEROX … … … …

 With PEROX 0.140 <0.001 0.156 0.002

Death/MI

 Without PEROX … … … …

 With PEROX 0.220 <0.001 0.235 <0.001

Both NRI and integrated discrimination improvement (IDI) were used to quantify improvement in model performance. P values compare models
with and without PEROX risk scores. Both models were adjusted for traditional risk factors including age, gender, smoking, LDL cholesterol, HDL
cholesterol, systolic blood pressure, and history of diabetes mellitus. Cutoff values for NRI estimation used a ratio of 6:3:1 for low-, medium-, and
high-risk categories. The risk of adverse cardiac events was estimated with the Cox model.
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Table 6

AUC Values of Models With/Without PEROX Risk Scores for Adverse Cardiac Events at the 1-Year Follow-
Up Stratified According to Primary Versus Secondary Prevention Status

Primary Prevention (n=1859) Secondary Prevention (n=5510)

Death events, n 40 256

 Without PEROX 69 70

 With PEROX 81 80

 P 0.009 <0.001

MI events, n 23 169

 Without PEROX 58 62

 With PEROX 71 68

 P 0.072 0.007

Death/MI events, n 63 416

 Without PEROX 64 65

 With PEROX 78 75

 P <0.001 <0.001

ROC curves and AUCs were calculated for 1-year death, MI, and combined death or MI end points. ROC curves for the models with/without
PEROX were constructed, and the corresponding AUC values were compared. One-year predicted probabilities of an adverse cardiac event were
estimated from the Cox model. P values shown represent a comparison of AUC values estimated from models with and without PEROX risk score
among primary prevention or secondary prevention subjects within the whole cohort (n=7369). Both models were adjusted for traditional risk
factors including age, gender, smoking, LDL cholesterol, HDL cholesterol, systolic blood pressure, and history of diabetes mellitus.
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