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Abstract
We present a three-dimensional mathematical framework for modeling the evolving geometry,
structure, and mechanical properties of a representative straight cylindrical artery subjected to
changes in mean blood pressure and flow. We show that numerical predictions recover prior
findings from a validated two-dimensional framework, but extend those findings by allowing
effects of transmural gradients in wall constituents and vasoactive molecules to be simulated
directly. Of particular note, we show that the predicted evolution of the residual stress related
opening angle in response to an abrupt, sustained increase in blood pressure is qualitatively similar
to measured changes when one accounts for a nonlinear transmural distribution of pre-stretched
elastin. We submit that continuum-based constrained mixture models of arterial adaptation hold
significant promise for deepening our basic understanding of arterial mechanobiology and thus for
designing improved clinical interventions to treat many different types of arterial disease and
injury.
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1 Introduction
Stimulated in large part by the work of Rodriguez et al., 1994, the past decade and a half has
seen increasingly greater attention directed toward mathematically modeling soft tissue
growth (i.e., changes in mass) and remodeling (i.e., changes in microstructure), particularly
in arteries. Such modeling is made challenging by the intrinsic complexities of arterial
mechanics, including its composite make-up and associated active smooth muscle
contractility plus nonlinear, anisotropic, pseudo-elastic passive behaviors over finite
deformations (Humphrey, 2002). Whereas the “kinematic growth” approach of Rodriguez
and colleagues has been embraced and extended by various investigators to model arterial
responses to sustained alterations in blood pressure and flow (e.g., Taber & Eggers, 1996,
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Rachev, 1997, Taber, 1998, Rachev, 2000), Humphrey & Rajagopal, 2002 suggested that
this approach focuses primarily on consequences of growth and remodeling (G&R), not
underlying mechanisms. Hence, they proposed a fundamentally different approach, one
based on modeling changes in the rates and extents of cellular and extracellular matrix
turnover in response to perturbations of mechanical stimuli from normal. Moreover, they
introduced the concept of a constrained mixture model wherein different structurally
significant constituents are constrained to move together with the mixture (i.e., artery), but
are allowed to possess different natural (stress-free) configurations, material behaviors, and
rates of turnover.

The goal of this paper is to extend to 3-D the prior 2-D constrained mixture model for
arterial G&R proposed by Baek et al., 2006 for cerebral aneurysms and extended by
Valentín et al., 2009, Valentín & Humphrey, 2009a, and Valentín & Humphrey, 2009b for
cerebral arteries. Whereas 2-D frameworks provide information on arterial adaptations that
is of most importance clinically (i.e., changes in caliber and structural stiffness), advantages
of a 3-D framework include the ability to account for gradients in the distribution and
prestretch of individual structurally significant constituents, particularly elastin (Cardamone
et al., 2009), and similarly gradients in the concentration of non-structurally significant
constituents (e.g., oxygen, vasoactive molecules, growth factors, and proteases). We confirm
the consistency of predictions by the proposed 3-D model with prior 2-D results for
sustained alterations in mean blood pressure and flow, and show advantages of a 3-D model
in predicting changes in the residual stress related opening angle. Because of a continuing
lack of some of the essential data on cell and matrix turnover, many results are presented
parametrically based on the best data available.

2 The Mass Change Function – Jm

We assume that the three primary structurally significant constituents comprising the wall of
the basilar artery are elastin, four families of fibrillar collagens (oriented axially,
circumferentially, and symmetrically oblique; Wicker et al., 2008, and smooth muscle. Data
consistently reveal that effective elastin cannot be not produced during maturity even though
it is removed via normal aging processes as well as in diseases such as hypertension. In
contrast, fibrillar collagens and smooth muscle turnover continuously throughout maturity,
which emphasizes the importance of tracking individual balances or imbalances in
production and removal. For more information on histology, pathology, and
mechanobiology of arteries, see Humphrey, 2002 and Humphrey, 2008a.

Consider first the change of total mass during G&R. Mass balance for individual
constituents k that are constrained to move with a mixture that deforms quasi-statically can
be written at any G&R time τ ∈[0,s], where s is the current time, as

(1)

where Mk the mass of constituent k and  is its net rate of production or removal. Summing
Eq. (1) for all constituents, we have

(2)

which can be used to find the total mass . Hence,
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(3)

Total volumes between two instants, e.g. between τ = 0 and τ = s , are given by the overall
Jacobian, V(τ) = Jm(τ)V(0) for all τ ∈[0,s]. Using this relation and assuming that the mass
density of the mixture is constant over all past times and throughout G&R (Humphrey &
Rajagopal, 2002), that is, ρ(τ) ≈ ρ(0) for all τ ∈[0,s], Equation (3) becomes

(4)

or,

(5)

The right hand side of Eq. (5) represents the total change in mass over time and gives us
relatively simple expression for the mass change function

(6)

3 Kinematics
Consistent with prior 2-D constrained mixture models, we assume that the mechanical
properties and “deposition stretches” of newly synthesized constituents (i.e., fibrillar
collagens and smooth muscle) remain the same despite changes in overall tissue geometry or
loading. We denote individual deposition stretches (or pre-stretch in the case of elastin
because it is only produced during the perinatal period) by, Gk (τ) , which as illustrated in
Figure 1 is defined relative to constituent-specific natural configurations rather than an
overall mixture configuration (cf. Humphrey & Rajagopal, 2003). That is, Gk (τ) quantifies
mappings from natural (stress-free for each constituent) to intermediate (in vivo, loaded
mixture) configurations at each deposition time τ ∈[0,s]. Henceforth, τ = 0 denotes the
instant at which the mechanical loading is perturbed from normal in maturity and s denotes

the current G&R time. Note, too, that the deformation gradient  quantifies mappings
from natural configurations of constituent k at time τ to a current mixture configuration at

time s, and the deformation gradient  similarly quantifies mappings for each constituent k
between its natural configurations at times τ and s . Moreover,  quantifies mappings within
in vivo mixture configurations between τ and s. Because the total mixture mass density is
assumed to remain constant, that is, ρ(s) ≅ ρ(0) , despite expected changes in total mass
(Humphrey & Rajagopal, 2002), we have

(7)

Hence, J(s) represents local volume change within the in vivo configuration. Note from
Figure 1 that
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(8)

or

(9)

To define orientations of 1-D constituents (e.g., fibrillar collagen and smooth muscle, which
are assumed to have a fibrous structure), let the unit vector mk (τ) denote the orientation of
constituent k in any in vivo mixture configuration at time τ ∈[0,s]. The change in constituent
orientation between two times is thus

(10)

Given the definitions in Eqs. (8) and (9), it is possible to write the following

(11)

If we let the deposition stretch tensor be written

(12)

then we have the result

(13)

or, by use of Eq. (10), one obtains the following relation between natural and current
mixture configurations,

(14)

Having identified , which will be fundamental to the constituent specific stress response

function, note that the right Cauchy–Green tensor is .

Finally, we define possible deformation gradients F from the current to an unloaded mixture
configuration (i.e., using the current configuration as the reference; see Cardamone et al.,
2009). Hence, considering motions relative to the in vivo configuration, the deformation
gradient is simply F = I, where we emphasize that taking the in vivo configuration, not the
unloaded configuration, as the reference is convenient both computationally and
biologically. Conversely, considering the deformation to an unloaded mixture configuration
yields F ≠ I , as will be used below.
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4 Kinetics of G&R
The mass of each constituent may change due to stress-mediated changes in local production
and removal. Although our model builds upon prior work (Humphrey & Rajagopal, 2002,
Baek et al., 2006, and Valentín et al., 2009), we postulate changes in mass rather than mass
density as done previously. Focusing directly on mass better reflects the underlying biology
because cells produce mass, not mass density, and it is straightforward to implement in the
case of a uniform cylindrical vessel. Hence, let the evolution of mass for constituent k be
given by (cf. Baek et al., 2006)

(15)

where Mk (s) is the total mass of constituent k existing at G&R time s, Qk ∈[0,1] accounts
for fractions of material produced at or before time τ = 0 that survive to time τ = s , with Qk

(0) = 1 by definition, mk (τ) > 0 is the true mass production rate (cf. the net mass production

rate  which can be negative, zero, or positive), and qk ∈[0,1] accounts for fractions of
material produced at time τ that survive to time τ = s .

Production Function
Similar to prior studies (Valentín et al., 2009), we also let the true rate of mass production /
removal depend on differences from normal (homeostatic) values for both wall stress and
the concentration of effector molecules, namely

(16)

where  is the basal rate,  is a gain-type rate parameter that models wall stress-mediated
changes (note: increased wall stress or stretch of smooth muscle cells promotes the

production of collagen and proliferation of cells), and  is a gain-type rate parameter
responsible for constrictor-mediated changes (note: increased wall shear stress upregulates
endothelial cell production of nitric oxide, an inhibitor of collagen synthesis and smooth
muscle cell proliferation, whereas decreased wall shear stress upregulates endothelial cell
production of endothelin-1, a promoter of collagen synthesis and smooth muscle cell
proliferation). Although 3-D problems allow one to develop such relations based on
individual components of stress and transmural distributions of endothelial derived
molecules, for illustrative purposes we employ the following scalar metric for Cauchy stress,

(17)

where  and tSMC are the total stress in the four families of collagen fibers and
smooth muscle, respectively, while  is a homeostatic value. The concentration effect is
similarly simplified by considering a lumped parameter ratio C of constrictor (e.g.,
endothelin-1 or angiotensin II) to dilator (e.g., nitric oxide or prostacyclin), hence
differences in this concentration from the basal value CB are denoted

(18)
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where C(τ) depends on changes in the blood flow induced wall shear stress (with high wall
shear stress upregulating dilators and low wall shear stress upregulating constrictors), thus

(19)

Here, CS is a scaling factor and τw and  are wall shear stresses experienced by the
endothelial cells at G&R time τ ∈[0,s] and the homeostatic state, respectively.

Furthermore, we considered the influence of distributions through the wall (i.e., for all r ∈
[ri,ro]) of this vasoconstrictor / vasodilator ratio. As a first approximation, let

(20)

Here, Cmax and Cmin are constrictor/dilatator ratios at the inner and outer radius,
respectively, while Kd defines the nonlinearity of the prescribed distribution. The maximum
occurs at the inner wall because the associated vasoactive molecules (e.g., NO and ET-1) are
produced primarily by the endothelium. Results would be more accurate if the diffusion of
constrictors and dilatators was modeled directly, but this will require additional data.
Inclusion of diffusion will thus be left for future work.

Removal Function
We also consider the same first-order-kinetic relation as used previously (Valentín et al.,
2009), namely

(21)

where Kk (τ̃) are rate-type parameters for mass removal with units of day−1. The functions
Qk are just special cases of qk with integration limits of τ̃ ∈[0,s]. It is well known that rates
of protein degradation / denaturation and cell death can depend on the level of stress
(Humphrey, 2008a), hence we let the rate parameter depend on the level of tension
experienced by constituent k, namely

(22)

 is an initial value for the rate parameter and ζ is difference in fiber tension from its
homeostatic value,

(23)
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5 Constitutive Formulation and Stress Analysis
Arteries typically exhibit a nonlinear, anisotropic, nearly elastic behavior under passive
conditions but they also generate smooth muscle contractile stress under active conditions,
hence the stress response is assumed as

(24)

where W is the stored energy function for the elastic response and tactive is the smooth
muscle contractility, which acts primarily in the circumferential direction. By the rule of

mixtures, the stored energy is decomposed conceptually as  with ϕk a constituent
mass fraction. Following Baek et al., 2006, the stored energy for a constituent k that is
allowed to turnover continuously can be written

(25)

Hence,  herein because the evolving mass fractions are accounted for naturally by
the production / removal functions.

Constituent specific stored energy functions are assumed as follows. For elastin, it is
customary to use a neoHookean response (Dorrington & McCrum, 1977)

(26)

with c1 a material parameter. Because structurally effective elastin is only produced during
the perinatal period, and it is very stable biologically (Langille, 1996), let

(27)

Generally, the pre-stretches built into elastin during development and maturation vary across
the arterial wall (cf. Figure 2). To include such variations, we prescribe a nonlinear
distribution function for elastin pre-stretches suggested previously (Cardamone et al., 2009)

(28)

where K governs the “deposition rate” (e.g., K = 0 implies constant deposition through the
wall, K = 1 a linear distribution, and so forth).

For the other two constituents, fibrillar collagen (defined by four families, with axial,
circumferential, and diagonal orientations, the latter assumed to initially be 45 and 135
degrees from the axial direction) and passive smooth muscle, we assume exponential
behavior
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(29)

with  and  the associated material parameters and . The last term
in equation (24) is taken as (Rachev & Hayashi, 1999)

(30)

where Tmax is the maximum actively generated stress, having units N/m2 , λM is the
circumferential stretch at which active stress is maximum, λ0 is the circumferential stretch at
which active stress goes to zero, C(s) is the aforementioned net ratio of constrictors to

dilators, and  evolving via a first order rate equation (Baek et
al., 2007)

(31)

where rm(active) = r(0) in a normal artery.

6 Formulation of the Axisymmetric 3-D Cylinder
Deformation Gradients for the Mixture

Implementation of the proposed theory for a general 3-D geometry will require finite
element analysis. In contrast, we focus here on a simpler sub-class of 3-D problems, one that
allows a semi-analytical solution and development of increased intuition: the finite extension
and distension of a straight cylindrical segment of an artery. Such problems are clinically
relevant for particular arteries, including common carotids, the infrarenal aorta, and the
basilar artery that is considered herein.

As a first step, therefore, consider the deformation gradient associated with mappings within
mixture configurations between two times τ and s, namely  (recall Figure 1). In general,

(32)

In the case of an axisymmetric cylinder maintained at a fixed in vivo length (cf. Figure 3),
the following relations hold

(33)

thus the deformation is assumed to depend on radius alone, yielding
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(34)

A volume change of the mixture (due to possible mass production or removal) between two
times is given by equation (6), but it was assumed further that

(35)

Hence, Eq. (34) can be written

(36)

Opening Angles
Residual stress is that stress which exists in a body in the absence of externally applied
loads. Although its existence was mentioned indirectly by Bergel, 1960, Fung, 1983 and
Vaishnav & Vossoughi, 1983 independently highlighted the need to calculate and account
for residual stresses in overall stress analyses. Herein, we follow the approach in Cardamone
et al., 2009. There are two different configurations suitable for experimental observation:
excised or excised plus radially cut, which is assumed to be almost stress free. For the
excised configuration (cf. Figure 3), the deformation gradient relative to the intact in vivo
configuration is

(37)

with ρ(τ) and λ(τ) the unloaded radius and axial stretch, respectively, whereas for the excised
and radially-cut configuration we have

(38)

Here, R(τ), Λ(τ), and Θ0(τ) are radius, axial stretch, and opening angle, respectively, for the
instant τ. It is important to note that the deformation gradient given by Equation (24) has to
be taken as in Eq. (37) or (38).

Equilibrium Equations
It has been shown by many that inertial loads are typically negligible in arteries during the
cardiac cycle, hence allowing the elastodynamic problem to be solved via a series of quasi-
static motions. Local equilibrium, in absence of body forces, is
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(39)

which, for an axisymmetric cylinder exhibiting an overall cylindrical orthotropy and
subjected to uniform axial extensions and distensions alone, reduces to one non-trivial
equation in the radial direction:

(40)

where ri and ro are the inner and outer radius, respectively, and P is luminal pressure in the
artery. Although the traction boundary condition in the axial direction cannot be prescribed
exactly, one can enforce a mean boundary condition that requires the sum of axial stresses
over the cross-sectional area to balance the net axial load L, namely

(41)

Finally, from equation (6) and by using the assumption that the overall mass density is
constant during G&R processes (Humphrey & Rajagopal, 2002), we have a third expression
that must be satisfied,

(42)

where l is the length of artery.

7 Simulation Results
To study the general behavior of the model, we simulated G&R for a basilar artery, one of
the key vessels supplying blood to the brain. Material parameters are given in Table 1 (cf.
Valentín & Humphrey, 2009a) or were calculated to satisfy equilibrium and ensure normal
tissue maintenance.

Diverse observations of arterial responses to altered pressure and flow provide an easy check
of results from G&R simulations (Humphrey, 2008b). Assuming mean values of wall shear
stress and circumferential wall stress, homeostatic (h) values are

(43)

If perturbations in blood flow and pressure are given by Q = εQh and P = γPh, and both wall
shear stress and circumferential stress are returned to homeostatic values, then stress-
mediated G&R must produce specific changes in geometry:  and . For
example, when blood flow is 30% below its homeostatic (normal) value, ε = 0.7 and it is
expected that inner radius and thickness should both change as 0.71/3 = 0.8879 of
homeostatic values. Whereas these simple relations provide insight into final values of
geometric changes, they do not inform us with regard to the evolution of these changes. Let
us now consider predictions of the present G&R model for insights into the evolution.
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Sustained Alteration in Pressure
As the first test of our model, consider an abrupt and sustained 50% increase in luminal
pressure, which is relevant to the study of hypertension. Consistent with the aforementioned
discussion, the most conspicuous empirically observed response by the arterial wall to
hypertension is a thickening of the wall and an associated return of circumferential wall
stress toward its normal value (e.g., see Fridez et al., 2003 or Hu et al., 2007). To simulate
such responses, the rate parameters for mass production were studied parametrically over a
range considered previously in 2-D simulations (Valentín & Humphrey, 2009a), that is,

 and .

Figure 4a shows the predicted time course of changes in inner radius, normalized with
respect to the assumed homeostatic value, for different values of the production rate
parameters; note, too, the direct comparison with results obtained from the aforementioned
validated 2-D (membrane) formulation. As expected, the inner radius first increased due to
the increased pressure and distensibility of the wall, but then was restored toward its
homeostatic value over time via vasoactive constriction and cell and matrix turnover in the
vaso-altered configuration. This restoration was achieved to within 0.6% of the homeostatic

value for  and to within 0.1% for ,  and  for the period
considered. Figure 4b shows further that the model predicted wall thickness to increase over
G&R time in response to the increased pressure. Note that the extent of thickening varied,
over the period considered, from 22% to the expected 50%, depending on the specific values
of the production rate parameters. Thickening resulted, in part, from an increased production
of collagen and smooth muscle; associated changes in mixture mass through the wall (inner
versus outer portion of the wall) are shown in Figure 5 for a sub-set of the parameter values.
Albeit not shown, higher values of the production rate parameter for stress-mediated

changes  led to “biological instabilities” after 110  or 350 days 
whereas thickening converged to reasonable values for lower values of the gain parameters.
These biological instabilities suggest a possible unbounded, unbalanced turnover and are
discussed further below. It appears from Figure 4 and Figure 5, therefore, that the best

correspondence with expected behaviors  was achieved in this case

with , , noting that G&R in response to abrupt changes in pressure can be
dramatic within 2 weeks (Hu et al., 2007). Predicted changes in individual mass fractions are
shown in Figure 6a-c for different positions within the arterial wall and for rate parameters
that yielded convergent predictions for inner radius and thickness (cf. Figure 4). Note that
the mass fraction for elastin decreased simply due to the increased production of collagen
and smooth muscle in this case. It is possible that elastin fragments or degrades during long
periods of hypertension (particularly increased pulse pressure), but we did not consider this
possibility here.

Figure 6d shows predicted changes in all three primary mass fractions for the case of ,

, which was one that led to non-convergent predictions. Note the dramatic changes in
the mass fractions of smooth muscle and collagen – the former almost vanished at the inner
and outer radii while the latter nearly vanished within the central region of the wall. One
consequence of loosing smooth muscle is a lower active stress, which forces the wall to seek
a different equilibrium state. Reasons why large values of the production rate parameters led
to unrealistic behaviors need to be investigated further, but these simulations serve to bound
further the acceptable range of parameter values (cf. Valentín & Humphrey, 2009a).

Karšaj et al. Page 11

Int J Eng Sci. Author manuscript; available in PMC 2011 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Returning to one of the convergent predictions , Figure 7 shows the predicted
time course for circumferential stress. As expected, values of stress increased dramatically
and abruptly in response to the prescribed 50% increase in pressure, but subsequent
vasoactive changes and altered turnover rates in vaso-altered configurations quickly returned
the stress toward its homeostatic value. In particular, consistent with the problem
formulation, the mean value of circumferential stress was returned fully to its homeostatic
value by 200 days, with most of the changes happening within the first month. Although
stress returned to near normal values at all locations within the wall, that in the inner portion
of the wall converged to a value slightly lower than homeostatic whereas that in the outer
portion converged to a value slightly greater than homeostatic.

An advantage of a 3-D model is its capability to predict time courses for the unloaded or
almost stress-free configurations (and the associated opening angles), which can be checked
experimentally. Figure 8 shows changes in opening angle (solid lines) over time for

production rate parameters of ,  10 as well as for different distributions of elastin
pre-stretches through the wall (K=0 for constant, K=1 (linear), and K=4 for the distribution
prescribed by equation (28)). Similar to many reports in the literature, the opening angle first
increased, then returned toward baseline. In addition, Figure 8 also shows the predicted
evolution of the in vivo axial stretch (dashed line and right hand ordinate). As it can be seen,
the model predicted dramatic decreases in the axial stretch (from ~1.4 to ~1.2). Such
reductions in the in vivo axial stretch have also been reported for hypertension (Humphrey,
2008b).

Altered blood flow
Sustained increases or decreases in blood flow can result in an increased or decreased
arterial caliber as well as associated changes in wall thickness and axial behavior (Lehman
et al., 1991, Langille, 1996, Rudic et al., 1998). The vasoactive response to altered flow
(e.g., altered production of NO and ET-1 by the endothelium, which in turn affects smooth
muscle contractility) can occur within minutes; if this response is sufficient to restore wall
shear stress to its homeostatic value, then subsequent G&R serves to entrench the artery at
its new size. If the initial vasoactive response is not sufficient to restore wall shear stress to
its homeostatic value, then a series of vasoactive and G&R responses serve to restore all
stresses toward near normal values over longer periods. Regardless, growth and remodeling
processes are fundamental to the long-term adaptation to altered blood flow.

Consider the predicted response of a basilar artery (Table 1) to an abrupt and sustained 30%
reduction in blood flow. Again the time course depends strongly on the G&R rate
parameters. Figure 9 shows predicted changes in caliber and wall thickness. The rapid
change in radius reflects the dominant vasoactive response in this case; the initial increase in
thickness simply reflects the early isochoric thickening due to the reduction in caliber.
Recall from earlier that, in this case, the expected values for inner radius and thickness are
88.79% of the homeostatic values. Figure 9a shows that such results are achieved regardless
of the imposed rate parameters Kσ and KC because vasoactivity dominates; Figure 9b shows
that predicted changes in thickness do depend on the rate parameters and that these changes
are much slower because they depend on cell and matrix turnover. As seen in the figure, the
predicted results are again consistent with those from the aforementioned verified 2-D
model (Valentín & Humphrey, 2009).

Influence of loading time on arterial responses
It is convenient to consider numerically the special cases of abrupt changes in pressure and
flow, which model well some cases of experimental models of hypertension or clinical
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interventions. Nevertheless, such changes often occur over extended periods in normal
pathologies, particularly hypertension. Hence, consider comparisons between abrupt and
gradual changes in pressure, the latter of which was modeled by prescribing pressure
changes using a sigmoidal function

(44)

where Ph is the homeostatic pressure, ΔP is the increase in pressure, τ½ is the half time for
the change, and k1, k2 are parameters. Figure 10b shows results for normalized inner (left y-
axis) and outer (right y-axis) radius and Figure 10c shows results for changes in overall wall

mass, both for the case of , . As expected, results show that differences manifest
mainly in the time course, not the extent, of the predicted changes.

Distribution of Constrictor/Dilator Ratio through the Wall
Next, we prescribed transmural differences in the constrictor to dilator ratio C (cf. equation

(20)) for the problem of a 50% increase in pressure, with ,  . Figure 11 and
Figure 12 reveal a significant influence of the concentration distribution on converged
values of inner and outer radius as well as on the distribution of mass. Different ratios can
induce transmural differences in local G&R, with potentially important consequences on
overall arterial homeostasis. There is a need, therefore, for more data on the diffusion,
consumption, and half-lives of these effector molecules and then their direct incorporation
within 3-D G&R models.

8 Discussion
Previous simulations of arterial adaptations based on 2-D implementations of a general
constrained mixture theory of soft tissue growth and remodeling (Humphrey & Rajagopal,
2002) capture many salient features of disease progression and responses to altered
hemodynamic loads (e.g., Baek et al., 2006, Baek et al., 2007, Valentín et al., 2009, Valentín
& Humphrey, 2009a; Cardamone et al., 2010). Although such studies remain useful, for they
provide clinically important insight into evolving luminal caliber and structural stiffness, 3-
D implementations can yield further insight into the underlying mechanics and
mechanobiology (cf. Alford et al., 2008). We showed herein, for the finite extension and
distension of a cylindrical basilar artery, that our 3-D model recovers verified results from
prior 2-D models while providing increased information, as, for example, on the residual
stress related opening angle. Because 3-D models allow one to examine effects of
transmural distributions of wall constituents and diffusion of important effector molecules
from the endothelium into the wall (e.g., nitric oxide or endothelin-1), there is now a
pressing need for better biological data to inform and extend such models.

Consistent with Cardamone et al., 2009, we examined consequences of postulated
transmural differences in the prestretch of intramural elastin (Figure 2 and Figure 8), which
have a dramatic impact on the predicted opening angle and would likely play an important
role in both aging and adaptations in hypertension. Although experimental determination of
actual transmural distributions of elastin prestretch will be challenging, this factor clearly
merits increased attention. There is similarly a need for better data on transmural
distributions of collagen, including fiber orientation, diameter, and cross-linking as well as
collagen type. Using nonlinear optical microscopy (i.e., second harmonic generation),
Wicker et al., 2008 showed in rabbit basilar arteries that collagen fibers cluster around the
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axial direction in the adventitia (−60 to 0 to 60 degrees) and around the circumferential
direction in the media (−60 to 90 to 60 degrees), each with a near Gaussian distribution.
This finding reveals the need to model predominantly axial and circumferential families of
fibers directly, not just diagonal families as originally proposed by Holzapfel et al., 2000 for
non-cerebral arteries. Although modeling continuous distributions of fiber angles would be
more realistic, fits to biaxial data show that the 4 fiber family model used herein captures
well the pressure-diameter and axial force-extension behavior of the basilar artery (Baek et
al., 2007; Wicker et al., 2008) and hence enables predictive capability. Indeed, in a careful
comparison of multi-fiber family models, Zeinali-Davarani et al., 2009 showed that 4 and 6
fiber family models provide much better fits to biaxial data than 2 or 3 fiber family models
and they give nearly as good of a fit as 8 and 10 fiber family models; hence, 4 fiber family
models represent a practical compromise. Toward this end, note that although the standard
Holzapfel model consists of 2 fiber families, the wall of the carotid artery was originally
modeled as a separate media and adventitia. That is, they effectively modeled the wall with
4 fiber families.

Similar to most prior models of G&R, we did not consider the media and adventitia
separately; there is clearly a need to do so in future 3-D models. Indeed, not only is there a
need to account for different mass fractions of constituents within these two layers (with
smooth muscle and elastin found predominantly within the media and fibrillar collagen
dominating the adventitia), there is a need to account for different distributions of collagen
by type and fiber diameter within these two primary layers. Wicker et al., 2008 showed, for
example, that the circumferentially oriented collagen within the media of the rabbit basilar
artery has a smaller fiber diameter than the more axially and diagonally oriented collagen of
the adventitia. Additional data, including information on collagen type (e.g., the wall
normally consists of about 70% type I and 30% type III collagen) and cross-linking, are thus
needed to refine future models. Moreover, there is a need to understand better the possible
reorientation of collagen fibers in diverse cases of disease progression or altered
hemodynamics (cf. Hariton et al., 2007; Driessen et al., 2008; Karsaj et al., 2009). Baek et
al., 2006 showed, for example, that allowing newly synthesized collagen to be oriented
differently from extant fibers influenced greatly the biological stability of aneurysmal
enlargement. Whereas it is intuitive that collagen fibers will reorient in cases wherein
overall shape changes dramatically, it is less clear in cases of enlargement or thickening that
retains a cylindrical geometry at the same in vivo length, which was considered herein. How
circumferentially oriented smooth muscle cells versus more randomly oriented fibroblasts
orient extracellular matrix upon deposition may differ, but neither is known well. Lacking
guidance from experiments, we did not allow collagen fiber reorientation due to G&R.

There is also a need for more information on stress-mediated collagen production, which
was assumed herein to be promoted primarily by intramural stresses above homeostatic
levels but modified by wall shear stress (i.e., endothelial derived nitric oxide and
endothelin-1 decrease and increase, respectively, collagen production by medial smooth
muscle cells; Humphrey, 2008a). Among others, Baek et al., 2006 also allowed collagen
production to be scaled by the number of cells, which was reasonable for aneurysmal G&R
is likely driven primarily by remnant (myo)fibroblasts having a uniform phenotype. In
contrast, consistent with Valentín et al., 2009 and Cardamone et al., 2010, we did not scale
collagen production by cell number. In cases of hypertension and altered flow, smooth
muscle cells can exhibit considerable phenotypic heterogeneity, meaning some cells
hypertrophy and remain largely contractile while others proliferate and become largely
synthetic (cf. Hu et al., 2008). Moreover, smooth muscle cells and fibroblasts both
contribute to overall collagen production, perhaps to different extents depending of the time
of G&R. There is clearly a need for better data on specific cell mediated collagen production
to guide constitutive formulations for mass production. Related to this, we assumed that the
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production of collagen and smooth muscle depended on the total Cauchy stress in that
constituent (equation 17), not particular components. When the associated gain-type
parameters for collagen were each 10, we found that solutions did not converge to expected
values after long periods (Figure 6d). Albeit not shown, a similar constitutive relation
wherein collagen production depended on the stress borne by both the collagen and the
smooth muscle (which is responsible, in part, for producing the collagen) yielded convergent
solutions for all values of the associated gain parameters considered. There is a pressing
need for both experiments and theoretical investigations to identify the most appropriate
constitutive relations for mass production and removal, which should also delineate effects
of pulsatile versus mean pressure and flow on cell response (cf. Cardamone et al., 2010).
Like most prior studies, we focused our attention on responses to mean values due to the
lack of information on adaptations by cerebral arteries to pulsatile hemodynamics.

In conclusion, we have shown that a 3-D constrained mixture model of arterial growth and
remodeling recovers verified results from prior 2-D simulations while providing additional
insight into the evolution of residual stress opening angles and different degrees of change
within the inner versus the outer wall of the artery. Whereas it was long thought that changes
within the media were most important in hypertension, increasing evidence reveals that
changes are dramatic within the adventitia as well (Humphrey, 2008a). In contrast,
responses to injury (e.g., balloon embolectomy) and the development of atherosclerosis
affect primarily the (neo)intima (Humphrey, 2002). There is a need for continued research
into 3-D models of arterial adaptation that account for and predict the different cell mediated
changes within the different layers of the arterial wall, for only in this way will we truly
understand better how to effectively diagnosis and treat many maladies of the arterial wall
that have a biomechanical basis (Taylor & Humphrey, 2009).
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Figure 1.
Schema of configurations important in arterial growth and remodeling (G&R). The current
(in vivo) mixture configurations track both deformations and G&R of the vessel. The
constituent natural configurations are stress-free separately for each constituent.
Deformations and G&R are often best considered at the generic time τ ∈[0,s].
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Figure 2.
Assumed distributions of elastin pre-stretch through the arterial wall (r_i stands for inner
and r_o for outer radius), which are thought to result during development and subsequent
biological growth to maturation (Cardamone et al., 2009).
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Figure 3.
Assumed configurations of importance for an axisymmetric cylinder representation of an
artery: current pressurized and axially extended (left), excised and unloaded (middle), and
excised, unloaded, and radially cut (right), which renders the artery nearly stress-free.
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Figure 4.
Predicted geometric changes of normalized inner radius (panel a) and normalized thickness
(panel b) over time in response to an abrupt and sustained 50% increase in pressure. Note
the comparison of results for our 3-D formulation with results for a membrane formulation
(marked as 2-D) published in Valentín et al., 2009. Shown, too, are different responses for
different values of the gain-type rate parameters (Kσ and KC).
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Figure 5.
Change in mass relative to original values at different positions within the wall, namely
those closest to the inner or outer radius (superscript i stands for integration region), in
response to a 50% increase in pressure. Note that lower values of the rate parameters (Kσ ≅
1) yielded stable mass production unlike that for higher values (not shown).
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Figure 6.
Predicted time courses of constituent mass fractions for (panel a) elastin, (panel b) smooth
muscle cells (SMC), and (panel c) collagen in response to a 50% increase in pressure given
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modest values of the rate parameters. Note the three different sets of values of the rate
parameters (KC = Kσ = 1 , KC = 1, Kσ = 10 , and KC = 10, Kσ = 1) and the multiple locations
within the wall (inner radius and outer radius). Also shown (panel d) are all three mass
fractions for large values of the rate parameters, which led to unstable results.
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Figure 7.
Predicted time course of the transmural distribution of circumferential stress following a
50% increase in pressure: shown at the inner and outer radius and in contrast to the overall
mean stress. The inserted figure shows the full transmural distribution of circumferential
stress through the wall at time s = 0 days and s = 1000 days.
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Figure 8.
Time course of opening angle (left scale of y axis) and axial stretch (right scale of y axis) for
Kσ = 1, KC = 10 and three different distributions of elastin (constant K=0, linear K=1 and 4th

order curve K=4; recall Figure 2) in response to a 50% increase in pressure.

Karšaj et al. Page 26

Int J Eng Sci. Author manuscript; available in PMC 2011 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 9.
Time course of changes of (panel a) normalized inner radius and (panel b) normalized
thickness in response to a 30% decrease in blood flow. Note the comparison of results for
our 3-D formulation with results for a membrane formulation (marked as 2D) published in
Valentín et al., 2009. Shown, too, are different responses for different values of the gain-
type rate parameters (Kσ and KC).
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Figure 10.
Influence of loading time on G&R: (panel a) two types of loading, that is, an instantaneous
increase in pressure (solid line) and a sigmoidal increase (dotted line) with s½ = 250 days,
(panel b) the change of inner radius (left y –axis) and outer radius (right y –axis) for the
different loadings, and (panel c) the mass change as a function of loading for inner and outer
parts of the wall.
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Figure 11.
Predicted time courses of change of (panel a) inner radius and (panel b) outer radius for
different ratios of vasoconstrictor/vasodilator through the wall.
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Figure 12.
Time courses of mass increase for Kσ = 1, KC = 10 at (panel a) the inner wall and (panel b)
the outer wall for different ratios of vasoconstrictor/vasodilator through the wall.
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Table 1

Parameter values used to simulate G&R of a basilar artery

Geometry and Applied Loads

 ri = 1.42 mm, ρs = 1050 kg/m3, Ph = 95 mmHg, τw
h = 5.06 Pa

Deposition Stretches or Pre-stretches

 Gcollagen = 1.08, Gelastin = 1.4, Gsmc = 1.2,

Muscle Activation Parameters

 TM = 150 kPa, λM = 1.1, λ0 = 0.4, CB = 0.68, CS = 20CB

Initial Mass Fractions and Half-lives

 ϕc = 0.22, ϕe = 0.02, ϕsmc = 0.76

 Kh
c = 1 ∕ 80day−1, Kh

smc = 1 ∕ 80day−1

Material Parameters

c1 = 237.6kPa, c2
c = 280.2kPa, c3

c = 22, c2
SMC = 36.5kPa, c3

SMC = 3.5
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