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Meiosis is a modified cell division that produces four haploid nuclei from a single diploid cell in two rounds of chromosome

segregation. Here, we analyze the role of Arabidopsis thaliana SUPPRESSOR WITH MORPHOGENETIC EFFECTS ON

GENITALIA7 (SMG7), THREE DIVISION MUTANT1 (TDM1), and TARDY ASYNCHRONOUS MEIOSIS (TAM) in meiotic pro-

gression. SMG7 is a conserved nonsense-mediated mRNA decay factor that is also, in Arabidopsis, essential for completion

of meiosis. Examination of activating CYCLIN DEPENDENT KINASE A;1 phosophorylation at Thr-161 suggests that the

meiotic arrest observed in smg7 mutants is likely caused by a failure to downregulate cyclin-dependent kinase (CDK)

activity at the end of the second meiotic division. Genetic analysis indicates that SMG7 and TDM1 act in the same pathway

to facilitate exit frommeiosis. We further demonstrate that the cyclin TAM is specifically expressed in meiosis I and has both

stimulatory and inhibitory effects on progression to meiosis II. TAM knockouts skip the second meiotic division producing

unreduced gametes, but inactivation of SMG7 or TDM1 alleviates TAM’s requirement for entry into meiosis II. We propose a

model that meiotic progression in Arabidopsis pollen mother cells is driven by a yet to be identified cyclin-CDK activity that

is modulated by regulatory interactions between TDM1, SMG7, and TAM.

INTRODUCTION

Cell division is a carefully orchestrated process in which DNA

duplication is followed by chromosome segregation and forma-

tion of two new daughter cells. The cell cycle is driven by cyclin-

dependent kinases (CDKs), the activity and specificity of which is

determined by its association with regulatory cyclin subunits.

CDK activity is further controlled by a sophisticated network of

inhibiting and activating mechanisms that fine-tune cell cycle

progression according to developmental and environmental

cues. Entry and progression through mitosis requires high CDK

activity that, in higher eukaryotes, primarily relies on A- and

B-type cyclins. CDK activity peaks at metaphase when all

chromosomes attach to the spindle and align at the metaphase

plate. At this point, activation of the anaphase promoting com-

plex (APC) initiates chromosome segregation through proteolytic

destruction of securin and B-type cyclins. While degradation of

securin leads to the activation of separase, the protease that

cleaves cohesin and triggers entry into anaphase, the destruc-

tion of cyclins results in downregulation of CDK activity, which

is important for chromosome decondensation, cytokinesis, and

transition to G1 (de Gramont and Cohen-Fix, 2005). Thus, ac-

tivation of APC couples chromosome segregation with mitotic

exit. Low CDK activity in G1 is essential for assembly of pre-

replicative complexes at replication origins and, thus, for entry

into another cell cycle.

Meiosis is a modified cell division in which a replicated diploid

genome undergoes two subsequent rounds of chromosome

segregation that produce four haploid nuclei. While the funda-

mental principles governing cell cycle progression are shared in

meiosis and mitosis, meiosis-specific regulatory mechanisms

have evolved to accomplish sequential segregation of homolo-

gous chromosomes in the first division and of sister chromatids

in the second division. The most noticeable meiotic event is an

extended prophase I, during which chromosomes pair and

recombine to allow faithful segregation of homologous chromo-

some in anaphase I. Another important event is the suppression

of DNA replication after the first meiotic division. This is achieved

by precise fine-tuning of CDK activity that decreases to a level

permissive for chromosome decondensation and spindle rear-

rangement but is still sufficient to prevent assembly of prerepli-

cative complexes (Marston and Amon, 2004). Finally, in many

organisms, including plants, meiosis is immediately followed by

mitotic divisions, indicating that the meiotic regulatory network
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must be shut off to permit normal chromosome segregation in

the following cell cycle.

Regulatory pathways that define meiotic chromosome segre-

gation are understood to amuch lesser extent than the regulation

of mitosis. One layer of specificity may be conferred by utiliza-

tion of meiotic CDK-cyclin complexes. Indeed, meiosis-specific

cyclins have been identified in several organisms, such as Rem1

and Crs1 in fission yeast or the mouse cyclin A1 (Averbeck et al.,

2005; Malapeira et al., 2005; Wolgemuth and Roberts, 2010).

Nevertheless, it appears that most cyclins are shared in meiosis

and mitosis. A recent study in budding yeast revealed that four

out of six mitotic Clb cyclins are also expressed during meiosis.

However, their meiotic expression is strictly regulated at the

posttranscriptional and postranslational level; misregulation of

these cyclins perturbs meiosis (Carlile and Amon, 2008). In

Drosophila melanogaster, cyclin A is essential for mitosis, but it

is also expressed in meiosis where it is restricted to prophase

and prometaphase I (Vardy et al., 2009). Another important layer

of meiotic regulation is conferred by inhibitors and activators of

APC. Ama1, a meiosis-specific activator of APC, is important for

meiotic exit and cytokinesis in budding yeast (Diamond et al.,

2009). A germline-specific activator of APC is also required for

meiotic exit in Drosophila (Page and Orr-Weaver, 1996). Pro-

gression into the second meiotic division in fission yeast de-

pends on Mes1, which is a competitive inhibitor of APC that

blocks cyclin destruction in interkinesis (Izawa et al., 2005).

Vertebrate oocytes are arrested in metaphase II until fertilization

to prevent parthenogenesis. Studies in Xenopus laevis indicate

that this arrest is partially mediated by the APC inhibitors Emi1

and Erp1/Emi2 (Irniger, 2006). CDK activity is also controlled by

inhibitors (CKI) that play a central role in cell cycle regulation.

Their function in meiosis was implicated from studies of the

Drosophila Roughex protein, which acts as an inhibitor of CDK

and whose deficiency leads to an abortive third meiotic division

(Gönczy et al., 1994; Foley et al., 1999).

There is a long tradition of meiotic research in plants, but the

vast majority of studies are focused on meiotic recombination

and chromosome segregation (Jones et al., 2003; Hamant et al.,

2006; Liu and Makaroff, 2006; Mercier and Grelon, 2008). Nev-

ertheless, recent efforts to understand meiotic mechanisms in

Arabidopsis thaliana led to the identification of several genes

implicated in cell cycle progression. Two cyclins, SDS and

TARDY ASYNCHRONOUS MEIOSIS (TAM), with distinct func-

tions in meiosis were discovered in forward genetic screens.

SDS is a plant-specific cyclin required for homologous recom-

bination and chromosome pairing (Azumi et al., 2002). TAM is an

A-type cyclin (also known as CYCA1;2) that is important for

the transition between the first and second meiotic divisions

(Magnard et al., 2001; Wang et al., 2004b). A similar function has

also been proposed for OSD1, a novel gene that was identified

based on its meiosis-specific expression (d’Erfurth et al., 2009).

Plants mutant for OSD1 skip the second meiotic division and

form diploid gametes. Another interesting meiotic cell cycle reg-

ulator discovered in screens for mutants with impaired fertility is

THREEDIVISIONMUTANT1 (TDM1)/MS5/POLLENLESS3 (Ross

et al., 1997; Glover et al., 1998; Sanders et al., 1999).Mutations in

TDM1 lead to male sterility caused by a failed attempt to divide

unreplicated haploid nuclei after meiosis II (Ross et al., 1997).

We recently described a unique meiotic cell cycle defect

associated with inactivation of SUPPRESSOR WITH MORPHO-

GENETIC EFFECTS ON GENITALIA7 (SMG7), which is an evo-

lutionary conserved protein essential for nonsense-mediated

mRNA decay (Riehs et al., 2008). Arabidopsis smg7mutants are

infertile due to a meiotic arrest in anaphase II. In general, cell

cycle arrest in anaphase is very unusual because entry into

anaphase and exit from M-phase are coupled through the

activation of APC. Anaphase arrest has so far been described

only under conditions where cyclin destruction is impaired, either

by expressing nondegradable forms of cyclin or by mutating

an APC activation subunit (Holloway et al., 1993; Parry and

O’Farrell, 2001; Swan et al., 2005; Wolf et al., 2006). The obser-

vation thatArabidopsisSMG7 is essential for progression through

anaphase II and meiotic exit is particularly intriguing because it

suggests a very specific link between the cell cycle machinery

and RNA processing. In this study, we attempt to further under-

stand the meiotic function of SMG7 by analyzing CDK activity in

wild-type and smg7meiocytes and by mapping genetic interac-

tions with other genes implicated in meiotic progression. We

show that the anaphase II arrest in smg7mutants is likely caused

by a failure to downregulate CDK activity after chromosome

segregation in meiosis II and that its execution depends on the

TDM1 protein. Our data further suggest that TAM is a meiosis

I–specific cyclin that has both stimulatory as well as inhibitory

effects on mechanisms that drive progression to meiosis II, but

its activity is dispensable for entry intomeiosis II in the absence of

SMG7 or TDM1. We integrate our findings in a model suggesting

that meiotic progression in pollen mother cells (PMCs) is primar-

ily governed by a yet to be defined cyclin-CDK activity that is

modulated by complex regulatory interactions between TDM1,

SMG7, and TAM.

RESULTS

Analysis of CDKA;1 Phosphorylation in the Course

of Meiosis

We have previously shown that meiosis in Arabidopsis smg7

mutants arrests in an anaphase II–like stage that is characterized

by delayed chromosome decondensation, aberrant spindle re-

arrangement, and defective dephosphorylation of histone H3 at

the Ser-10 residue. We hypothesized that SMG7 is important for

downregulation of meiotic CDK activity or that it antagonizes

CDK activity by promoting dephosphorylation of the cyclin-CDK

substrates during anaphase II (Riehs et al., 2008). To directly test

these predictions biochemically is difficult, mainly due to the

limited amount of synchronized meiocytes that are available in

Arabidopsis flowers. Therefore, wewere looking for amarker that

would allow detection of CDK activity indirectly using immuno-

cytology. A hallmark of the active CDK-cyclin complexes is

phosphorylation of the conserved Thr residues in the T-loop

(Gould et al., 1991).Arabidopsis has several CDKs, amongwhich

CYCLIN DEPENDENT KINASE A;1 (CDKA;1) appears to be of

key importance for the meiotic cell cycle since weak loss-of-

function mutants exhibit aberrant meiosis (Dissmeyer et al.,

2007). CDKA;1 contains a T-loop with the conserved Thr residue
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at position 161. Studies in synchronized tobacco BY2 cells

demonstrated that Thr-161 phosphorylation is regulated in a

cell cycle–dependent manner with the strongest appearance in

M-phase (Harashima et al., 2007). Thus, we decided to examine

Thr-161 phosphorylation of CDKA;1 in the course of meiosis.

The T-loop of CDKA;1 is almost identical to the corresponding

sequence in humanCDK2 (Figure 1A). Indeed, an antibody raised

against the phosphorylated T-loop of HsCDK2 [a-(p)Thr160]

recognized an;35-kD peptide in wild-type Arabidopsis protein

extracts (Figure 1B). Importantly, only an ;55-kD protein was

detected in plants in which the endogenous CDKA;1 gene was

inactivated and complemented with a CDKA;1:yellow fluores-

cent protein (YFP) fusion construct (Figure 1B). Thus, the a-(p)

Thr160 antibody detects only CDKA;1 and not any other Arabi-

dopsis CDKs. Immunodetection was abolished by addition of a

peptide corresponding to the phosphorylated T-loop but not in

the presence of a nonphosphorylated peptide (Figure 1C). Fur-

thermore, the detection was sensitive to the pretreatment of

plant protein extracts to phosphatase (Figure 1D). Together,

these data demonstrate that the a-(p)Thr160 antibody specifi-

cally recognizes CDKA;1 phosphorylated at Thr-161.

To assay whether the antibody can be used for detection of

phosphorylated CDKA;1 in situ, we performed immunocytology

with mitotic cells prepared from floral buds of plants containing

the CDKA;1:YFP fusion construct. To assure specificity of the

detection, all experiments were performed in the presence of the

competitive nonphosphorylated peptide. While the CDKA;1:YFP

protein was readily visible in themajority of mitotic cells, a strong

signal with the a-(p)Thr160 antibody that colocalized with the

CDKA;1:YFP was detected only in metaphases (see Supple-

mental Figure 1 online). This result is in agreement with data

obtained by immunoblot analysis of extracts from synchronized

tobacco (Nicotiana tabacum) BY2 cells (Harashima et al., 2007)

and demonstrates that T-loop phosphorylation in plant mitotic

cells peaks at metaphase.

We used immunocytology to analyze CDKA;1 phosphorylation

in the course of meiosis in PMCs (Figure 2A). Thr-161 phosphor-

ylation was detectable already in early prophase I and colocal-

ized with the CDKA;1:YFP signal primarily at chromatin (Figure

2A). While the overall level of CDKA;1 was approximately con-

stant during meiosis, the phosphorylation signal peaked at

metaphase I, decreased in anaphase I and interkinesis, peaked

again in metaphase II, and disappeared in anaphase and telo-

phase II (Figure 2A). In meiotic metaphases, CDKA;1:YFP and

Thr-161 phosphorylation signals were distributed throughout

whole meiocytes and did not localize to any particular structure.

Interestingly, an opposite localization pattern was observed in

interkinesis, where a weak Thr-161 signal was restricted to the

organellar band that separates the two nuclei, whereas the bulk

of CDKA;1 appeared primarily at the nuclei (Figure 2A). This

suggests that a small amount of CDKA;1 complexes remain

active in the midzone, presumably to inhibit cytokinesis between

the two meiotic divisions. We also observed a similar phenom-

enon in binuclear cells of the tapetum, where phosphorylated

CDKA;1 complexes formed a band separating the two nuclei,

while most CDKA;1 was on chromatin (see Supplemental Figure

2 online).

We next examined CDKA;1 phosphorylation in smg7 meio-

cytes arrested at anaphase II. The aberrant anaphase II is

characterized by the presence of 20 chromatids that do not

decondense and are randomly distributed within the meiocyte

due to defective spindle rearrangement (Riehs et al., 2008).While

the phosphorylation signal disappeared in wild-type anaphase II

(Figure 2A), strong staining remained in smg7meiocytes arrested

at anaphase II (Figures 2B and 2C). These data support our

prediction that aberrant meiotic exit in SMG7-deficient plants is

caused by a failure to downregulate CDK activity after chromo-

some segregation in anaphase II.

Figure 1. Immunoblot Analysis of CDKA;1 Phosphorylation at Thr-161.

(A) Homology of Arabidopsis CDKA;1 and human CDK2 in the T-loop

region with the indicated Thr residues at positions 161 and 160, respec-

tively.

(B) Immunodetection of phosphorylated Hs CDK2, At CDKA;1, and At

CDKA;1:YFP proteins in extracts from HeLa cells, Arabidopsis wild-type

influorescences and suspension culture, and CDKA;1:YFP flowers.

(C) Immunodetection of Thr-161 phosphorylation of CDKA;1 and

CDKA;1:YFP in the presence of increasing concentration (0, 1, 10, and

100 mg/mL) of phosphorylated (P) and nonphosphorylated (nonP) com-

petitor peptides. Total CDKA;1 was detected with a-PSTAIR antibody as

a loading control.

(D) The Thr-161 phosphorylation signal is sensitive to phosphatase

treatment. Protein extracts from wild-type and CDKA;1:YFP plants were

pretreated with the lambda protein phosphatase in the presence or

absence of phosphatase inhibitors as indicated. Proteins were analyzed

by immunoblot with a-phospho-CDK2(Thr160) and a-PSTAIR antibody.
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SMG7 Deficiency Suppresses Premature Meiotic Exit of

tamMutants

The smg7 phenotype could be mimicked by exposing meiocytes

to the proteasome inhibitor MG115, suggesting that inefficient

cyclin degradation may be a mechanism responsible for the

anaphase arrest (Riehs et al., 2008). To test whether the smg7

phenotype can be alleviated by decreasing the level of a mei-

otic cyclin, we generated plants deficient in SMG7 carrying a

temperature-sensitive tam-1 allele. tam-1 mutants grown at the

restrictive temperature exhibit prolonged meiotic interkinesis

caused by a delayed entry into meiosis II and premature forma-

tion of the cell wall as early as after the first meiotic division

(Magnard et al., 2001; Wang et al., 2004b) (Figure 3A). Meiosis in

smg7 tam-1 double mutants still arrested in anaphase II (Figure

3B), indicating that the meiotic arrest is not executed through

cyclin A1;2. Surprisingly, however, SMG7 deficiency completely

suppressed premature cell wall formation in tam-1 mutants.

Thus, the meiotic role of SMG7 is not only restricted to anaphase

II but already functions during interkinesis.

We next asked whether SMG7 deficiency specifically affects

cell wall formation or whether it has a broader effect on meiotic

interkinesis. We examined progression through interkinesis by

scoring the frequency of individual meiotic stages from meta-

phase I to metaphase II in PMCs (Figure 3C). Interkinesis was

significantly prolonged in tam-1mutants compared with the wild

type as;50% of the scored tam-1 meiocytes corresponded to

this stage. Strikingly, cytologically defined interkinesis charac-

terized by two fully decondensed nuclei was completely elimi-

nated in smg7 tam-1 double mutants. Only 6 out of 478

meiocytes possessed two clearly defined nuclei, but even these

were unusually condensed (Figure 3B). Furthermore, we de-

tected a large proportion of meiocytes that contained fully con-

densed metaphase II–like chromosomes that were dispersed in

the nuclei (Figure 3B, irregular metaphase II). Such a degree of

condensation is only typical of chromosomes aligned on the

Figure 2. Immunolocalization of Thr-161 Phosphorylated CDKA;1 in the Course of Meiosis.

(A) Meiocytes from PMCs of CDKA;1:YFP plants stained with a-phospho-CDK2(Thr160) antibody. DNA was counterstained with DAPI. Bar = 10 mm.

(B) CDKA;1 Thr-161 phosphorylation in aberrant anaphase II of smg7 mutants.

(C) Comparison of CDKA;1 Thr-161 phosphorylation signal in telophase II of CDKA;1:YFP plants (top panel) with aberrant anaphase II in smg7mutants

(bottom panel). PMCs from these plants were prepared on the same slide, and pictures of the meiocytes represent two cropped sections of the same

photograph. CDKA;1:YFP meiocytes are distinguished from smg7 meiocytes by the presence of the YFP signal. Bars = 5 mM.
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metaphase plate. These data suggest that under low levels of

cyclin A1;2, SMG7 is already required after the first meiotic

division for full chromatin decondensation.

Because tam-1 is a temperature-sensitive allele likely retaining

residual activity, we decided to confirm the genetic interaction

with smg7 using a null tam allele. We characterized an Arabi-

dopsis line carrying a T-DNA insertion that led to the deletion of

the first half of theTAMgene, including thewholepromoter (tam-2;

see Supplemental Figure 3 online). Therefore, the tam-2 allele is

likely null. Plants homozygous for the tam-2 allele are fertile, but

their anthers contain fewer pollen grains, and these grains are

bigger than in the wild type (Figure 4A). Cytogenetic examination

of PMCs revealed that while meiosis progressed normally until

telophase I, the second meiotic division was absent (Figures 4B

to 4F). Instead, we observed numerous dyads with a fully

developed cell wall, indicating exit from meiosis after the first

division (Figures 4G and 4H). This should result in diploid spores

and lead to polyploid progeny. Indeed, 15 out of 18 progeny

plants obtained from selfed tam-2 mutants were tetraploid

(Figure 4J). The occurrence of tetraploid progeny further sug-

gested that TAM deficiency also affects female meiosis. An

identical phenotype has recently been described for several

additional tam alleles by other groups (d’Erfurth et al., 2010;

Wang et al., 2010).

Strikingly, the premature meiotic exit and formation of dyads

were completely suppressed in smg7 tam-2 double mutants.

Meiosis appeared to progress normally until anaphase II (Figures

4K to 4O), and no cell wall formed after the first meiotic division

(Figures 4M and 4N). Similarly to the situation in smg7 plants,

meiosis in smg7 tam-2mutants arrested at an irregular anaphase

II that was characterized by 20 randomly distributed chromatids

(Figure 4P). This phenotypewas also observed in tetraploid smg7

tam-2 plants that contained 40 separated chromatids at an

irregular anaphase II (Figures 4Q and 4R). This analysis con-

firmed data obtained with smg7 tam-1 mutants and demon-

strated that the absence of SMG7 alleviates the requirement for

TAM to enter into the second meiosis. Interestingly, in contrast

with the situation in smg7 tam-1 plants, normal interkinesis

appears to occur in smg7 tam-2 mutants (Figures 4L and 4S).

This indicates that TAM plays a complex role in progression

during interkinesis.

We further examined expression of TAM during meiosis. In a

previous report, Wang et al. (2004b) used the fluorescence signal

of a TAM:green fluorescent protein fusion to localize expression

of the TAM gene to meiocytes. However, in their study, the

identity of cells expressing TAM was determined only indirectly

by staging anthers within the same floral bud. Such analysis does

not permit accurate determination of TAM expression during

meiosis. Therefore, we generated transgenic plants carrying the

entire TAM gene fused to a b-glucuronidase (GUS) reporter at

the C terminus and used immunodetection with GUS antibody

to study the cellular localization of the fusion construct. GUS

histochemical assays revealed that TAM is not restricted to

meiosis, and it is expressed in tissues containing proliferating

cells, such as root tips, shoot apical meristems, and young

inflorescence buds (see Supplemental Figure 4 online). Immu-

nolocalization experiments in mitotic cells revealed that TAM:

GUS is most abundant in a fraction of interphase cells that are

presumably in G2, and in prophase and prometaphase. Its level

is lower in metaphase, and the signal disappears during ana-

phase (see Supplemental Figure 4 online). A similar localization

pattern was also detected during the first meiosis where the

TAM:GUS signal peaked in mid prophase I (Figures 5B to 5D),

weakened during metaphase I, and disappeared in anaphase I

(Figure 5G). The bulk of the TAM:GUS protein was localized to

cytoplasm and was not detectable at the chromatin (Figure

5M). No specific signal was detected in later stages of meiosis,

Figure 3. Epistasis Analysis of smg7 and tam-1 Mutations.

(A) PMCs at interkinesis from wild-type and tam-1 mutants shown in

phase contrast (top panel); nuclei are stained with DAPI (bottom panel).

(B) Irregular behavior of meiotic chromosomes in PMCs of smg7

tam-1 double mutants. DNA is counterstained by DAPI. Bars in (A)

and (B) = 5 mm.

(C) Frequency (in %) of meiotic stages from metaphase I to metaphase II

in wild-type, smg7-1, tam-1, and smg7 tam-1 plants. All plants were kept

at 288C during flowering. The total number of meiocytes is indicated

below each pie chart.
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including interkinesis or metaphase II (Figures 5H to 5L). This

analysis argues that TAM is a meiosis I–specific cyclin, although

we cannot fully exclude the possibility that small undetectable

levels of the cyclin are also present in interkinesis or in meiosis II.

Anaphase Arrest in smg7Mutants Requires TDM1 Function

Another Arabidopsis gene implicated in meiotic progression is

TDM1. TDM1 deficiency leads to formation of polyads and male

sterility. Cytogenetic analysis of PMCs showed that chromatin in

tdm1 mutants recondensed and stretched after meiosis II as if

haploid nuclei entered a third meiotic division (Ross et al., 1997).

To verify this suggestion, we examined whether chromatin re-

condensation in tdm1 mutants is accompanied by spindle for-

mation. Indeed, we found that a dense microtubule network

connecting haploid nuclei in the tetrad stage rearranged into four

bipolar spindles as chromatids recondensed, resembling meta-

phase (Figures 6A to 6D). Chromatids then stretched along the

spindle, likely as a consequence of the pulling forces of tubulin,

and this process led to the formation of a variable number of

micronuclei (Figures 6E and 6F). These observations suggest

that TDM1 is essential for full completion of meiosis and transi-

tion to G1.

Because SMG7 is also required for meiotic exit (Riehs et al.,

2008), we analyzed the epistatic interaction between SMG7 and

TDM1. Phenotypic analysis indicated that SMG7 acts during

anaphase II, while TDM1 function is important after telophase II,

suggesting that TDM1 acts downstream of SMG7. Surprisingly,

however, TDM1 was epistatic to SMG7 as the tdm1 mutation

suppressed the smg7 phenotype. Meiosis in smg7 tdm1 double

mutants normally progressed to telophase II and then reentered

the third meiotic division forming polyads (Figures 6G to 6K).

Occasionally, we observedmeiocytes that contained condensed

chromatids aligned along three to four irregular spindles as if

there was a delay in chromatin decondensation after the third

meiosis (Figure 6L). Two possible hypotheses can be proposed

to explain the unexpected genetic interaction between SMG7

and TDM1. Either the anaphase II arrest in smg7 mutants

depends on the function of TDM1 or anaphase II in tdm1mutants

resembles anaphase I that appears to be insensitive to the

absence of SMG7. While SMG7 deficiency leads to male sterility

and drastically reduced female fertility (Riehs et al., 2008), tdm1

mutants are female fertile, suggesting that the TDM1 protein acts

only inmalemeiosis (Glover et al., 1998). However, we found that

smg7 tdm1 plants are female fertile, suggesting that the absence

of TDM1 recovers completion of female meiosis in smg7 mu-

tants. This argues that TDM1 function is not only restricted to

PMCs but that it also plays a role in female meiosis.Figure 4. SMG7 Deficiency Suppresses Premature Exit after Meiosis I

Caused by the tam-2 Null Allele.

(A) Pollen viability determined by Alexander staining of anthers. Viable

pollen in wild-type and tam-2 plants is stained in red. No pollen is

detected in anthers of smg7 and smg7 tam-2 mutants.

(B) to (I) Meiotic chromosomes stained by DAPI in PMCs from tam-2

mutants. Zygotene (B), diakinesis (C), metaphase I (D), anaphase I (E),

interkinesis (F), dyad visualized by DAPI staining (G) and by phase

contrast (H), and microspore (I). Bar = 10 mm.

(J) Flow cytometry analysis of DNA content in nuclei prepared from

inflorescences of progeny of wild-type and tam-2 plants.

(K) to (P) DAPI-stained PMCs from smg7 tam-2 double mutants. Ana-

phase I (K), interkinesis (L), fluorescence (M) and phase contrast (N)

pictures of metaphase II, anaphase II (O), and irregular anaphase II (P).

(Q) and (R)Metaphase II (Q) and irregular anaphase II (R) from tetraploid

smg7 tam-2 double mutants. Bar = 5 mm

(S) Frequency (in %) of meiotic stages from metaphase I to metaphase II

in wild-type, smg7, tam-2, and smg7 tam-2 plants. The total number of

meiocytes is indicated below each pie chart.
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SinceSMG7 is epistatic to TAM, we next examined the genetic

interaction between TDM1 and TAM. Inspection of anthers

revealed that similar to tdm1 mutants, tam-2 tdm1 double

mutants produce no viable pollen (Figure 7A). Further cytoge-

netic analysis of tam-2 tdm1 PMCs showed no evidence for

premature meiotic exit typical for tam-2 mutants. Meiosis nor-

mally progressed through the second division and continued to

the thirdmeiosis that is characteristic for tdm1 plants (Figures 7B

to 7I). Thus, TDM1 is epistatic to TAM, and this genetic interac-

tion argues that the early meiotic exit associated with the null

tam-2 allele depends on TDM1 and that reentry into the third

meiosis does not require TAM activity.

DISCUSSION

Several major alterations of the chromosome segregation ma-

chinery must occur in meiosis to achieve formation of haploid

nuclei in two consecutive rounds of nuclear division. These

include homologous chromosome pairing and recombination in

meiotic prophase I, monoorientation of sister kinetochores in

metaphase I, protection of centromeric cohesion in anaphase I,

and differential regulation of CDK activity after the first and

second meiotic divisions (Petronczki et al., 2003; Marston and

Amon, 2004). Mechanisms that regulate meiosis often vary

between different phyla, reflecting diverse reproduction strate-

gies. In angiosperm plants, entry into meiosis is controlled by

developmental clues within the context of the flower, and it is

preceded bymitotic divisions in developing reproductive organs.

Meiosis is immediately followed bymitotic divisions that give rise

to two different types of haploid gametophytes, the pollen and

embryo sac (Ma, 2005; Sundaresan and Alandete-Saez, 2010).

Thus, it is predictable that not only entry, but also exit, from

meiosis is under strict regulation to permit rapid alteration from

meiotic to mitotic chromosome segregation.

There is only rudimentary knowledge of the mechanisms that

drive progression in, through, and out of meiosis in plants.

Recent work in Arabidopsis led to identification of several genes

important for meiotic progression, such as TDM1, OSD1, TAM,

and SMG7, and their functional characterization indicated that

these proteins may directly or indirectly modulate activity of

meiotic CDKs (Ross et al., 1997; Glover et al., 1998; Sanders

et al., 1999;Wang et al., 2004b; Riehs et al., 2008; d’Erfurth et al.,

Figure 5. Immunolocalization of TAM:GUS in Meiosis.

Fluorescein isothiocyanate signal detecting TAM:GUS is indicated in green and DNA counterstained with DAPI in red. Leptotene (A), zygotene (B),

pachytene (C), diplotene (D), diakinesis (E), metaphase I (F), anaphase I (G), interkinesis (H), metaphase II (I), anaphase II ([J] and [K]), and telophase II

(L). The pachytene in (M) is the same as in (C), shown as unmerged DAPI and fluorescein isothiocyanate pictures. Bar = 10 mm.
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2009; d’Erfurth et al., 2010). However, the core components of

the cell cycle machinery important for meiotic division in plants

have not yet been defined. Already early experiments with

Xenopus oocytes and temperature-sensitive Cdc28/Cdc2 mu-

tants in yeast demonstrated that, as in mitosis, CDKs plays the

central role in meiotic progression (reviewed in Perez-Hidalgo

et al., 2007). In this study, we show that Arabidopsis CDKA;1,

which is required for mitotic divisions (Iwakawa et al., 2006;

Nowack et al., 2006), is also present in meiosis. Our data further

indicate that while the level of CDKA;1 is not grossly altered, the

activating phosphorylation in its T-loop oscillates duringmeiosis,

with peaks in metaphases I and II. Experiments in synchronized

tobacco cell culture demonstrated that T-loop phosphoryla-

tion peaks in M-phase and correlates with total CDK activity

(Harashima et al., 2007). Together, these results are consistent

with biochemical data from Xenopus oocytes and synchronized

meiotic cultures in yeast (Iwabuchi et al., 2000; Carlile and Amon,

2008) and formally confirm that CDK activity oscillates during the

course of plantmeiosis. Immunocytogenetic approaches used in

this study do not allow quantitative measurements of CDK

activity; therefore, we cannot determine exactly what the resid-

ual level of CDK activity in interkinesis is. Nevertheless, we con-

sistently observed phosphorylated CDKA;1 signal retained at

organellar band between two separated nuclei. We suggest that

a small amount of active CDKA;1 complexes localized to this

region may inhibit cytokinesis. This notion is supported by the

observation that Arabidopsis plants carrying the T161D substi-

tution in the CDKA;1 T-loop exhibit a variety of meiotic defects,

including cell wall formation in interkinesis (Dissmeyer et al.,

2007). Our data suggest that such mechanisms may also be

involved in inhibiting cytokinesis of binuclear tapetum cells.

The phenotypes associated with smg7 and tdm1 are consis-

tent with the hypothesis that these genes act at the end of

meiosis to downregulate CDK activity and promote transition to

G1. Epistatic analysis indicates that SMG7 acts through TDM1,

but it is currently unknown whether TDM1 is a direct target of

SMG7 regulation. TDM1 belongs to a plant-specific protein

family with a limited similarity to Xe-p9, a regulatory subunit of

Figure 6. Meiosis in PMCs of tdm1 and smg7 tdm1 Mutants.

The spindle was detected by immunostaining with anti-a-tubulin antibody (green), and DNA was counterstained with DAPI (red). Only DAPI staining is

shown in the bottom panel.

(A) to (F) Meiosis in tdm1 mutants. Interkinesis (A), metaphase II (B), telophase II (C), metaphase III (D), telophase III (E), and polyads (F). Bar = 5 mm.

(G) to (L) Meiosis in smg7 tdm1 mutants. Anaphase II (G), telophase II (H), metaphase/anaphase III (I), anaphase III (J), polyads (K), and condensed

chromatids aligned along spindles (L).
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CDK from Xenopus (Glover et al., 1998). Xe-p9 is important for

proteolytic destruction of cyclin B by enabling CDK-mediated

phosphorylation of APC (Patra and Dunphy, 1998). The connec-

tion between SMG7 and meiotic progression is less obvious.

SMG7 is a nonsense-mediated mRNA decay factor that is

ubiquitously expressed in all plant tissues (Riehs et al., 2008).

SMG7 carries an evolutionary conserved 14-3-3–like domain

(Fukuhara et al., 2005); hence, it may act as an adaptor protein in

cell cycle pathways. Alternatively, the meiotic function of SMG7

may indicate a so far not fully appreciated regulatory role of RNA

processing in meiotic progression in plants. For example, in

fission yeast, expression of cyclins and other cell cycle regulators

is restricted to meiosis by elaborate posttranscriptional control

mechanisms that involve splicing, polyadenylation, and mRNA

stability (Malapeira et al., 2005; Moldón et al., 2008; McPheeters

et al., 2009). Recent characterization of the Arabidopsis PS1

gene also supports the importance of RNA processing in plant

meiosis (d’Erfurth et al., 2008). PS1 is a meiosis-specific protein

containing an RNA degradation PIN domain and is required for

proper spindle orientation in meiosis II.

Mutations in the Drosophila CDK inhibitor roughex lead to

attempted third meiotic divisions, reminiscent of the phenotype

observed in Arabidopsis tdm1 mutants (Gönczy et al., 1994). An

anaphase arrest similar to that observed inArabidopsis smg7 has

been described in Drosophila deficient for the APC coactivator

cortex (Page and Orr-Weaver, 1996). Both roughex and cortex

appear to promotemeiotic exit via downregulation of CDK-cyclin

A activity, and the roughexmutationwas suppressed by lowering

the level of cyclin A (Gönczy et al., 1994; Swan et al., 2005). In an

attempt to rescue the smg7 and tdm1 phenotypes, we sought to

inactivate a meiotic cyclin and downregulate meiotic CDK.

TAM (cyclin A1;2) appeared to be the obvious candidate, as its

function is important for meiotic entry as well as for progression

into the second meiosis (Wang et al., 2004b, 2010; d’Erfurth

et al., 2010; this study). However, we found that neither the

hypomorphic tam-1 nor the null tam-2 alleles alleviate the ana-

phase II arrest in smg7 mutants or the reentry into the third

meiosis in tdm1 plants. By contrast, smg7 and tdm1 mutations

completely abolished the premature meiotic exit in tam-2 plants,

and meiosis in double mutants normally progressed through the

second division. These data argue that TAM is not the core

component of the oscillator that drives meiotic divisions, but

rather that it plays a regulatory role. Further support for this

notion was obtained from analysis of TAM localization. TAM is

meiosis I–specific cyclin that does not appear to be expressed in

meiosis II. Its level peaks in prophase ofmeiosis I, but the Thr-161

phosphorylation of CDKA;1 reaches a maximum in metaphase.

This implies that other cyclins associate with CDKA;1 and drive

progression throughmeiosis. Studies in animals established that

mitotic M-phase depends mainly on B-type cyclins whose

Figure 7. TDM1 Deficiency Suppresses Premature Exit after Meiosis I Caused by tam-2 Null Allele.

(A) Pollen viability determined by Alexander staining of anthers. Viable pollen in wild-type and tam-2 plants is stained in red. No viable pollen is detected

in tdm1 and tam-2 tdm1 mutants.

(B) to (I) Meiosis in tam-2 tdm1 mutants. Spindle is shown in green and DNA counterstained with DAPI in red. Metaphase I (B), anaphase I (C),

interkinesis (D), metaphase II (E), anaphase II (F), telophase II (G), metaphase/anaphase III (H), and polyads (I). Bar = 5 mm.
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activity peaks in metaphase before a sharp decline caused by

APCCdc20-mediated destruction during anaphase. The role of

A-type cyclins in mitosis is less clear (Yam et al., 2002; Fung and

Poon, 2005). Their destruction in animal cells is already initiated

in mitotic prophase (van Zon and Wolthuis, 2010), and our

immunodetection of TAM together with data from systematic

localization of core cell cycle component in tobacco cells indi-

cate that this also applies to plant A-type cyclins (Boruc et al.,

2010). A-type cyclins appear to promote the onset of M-phase

through activation of CDK-cyclin B complexes (Fung et al., 2007;

Deibler and Kirschner, 2010).

To integrate our data with current knowledge on mitotic and

meiotic progression, we propose a model that outlines a con-

ceptual frame for regulation of meiosis in Arabidopsis pollen

mother cells (Figure 8). As discussed above, our data suggest the

existence of a so far unknown CDK-cyclin complex(es) that

forms the core meiotic oscillator corresponding to the animal

CDK-cyclin B. CDKA;1 is a likely component of this complex,

although a role for other Arabidopsis CDKs cannot be excluded.

Identity of the cyclins is still enigmatic. In silico analysis of the

Arabidopsis genome predicted at least 21 A- and B-type cyclins

(Wang et al., 2004a), but the majority of them have not been

functionally characterized in meiosis. In fact, several cyclins may

act in meiosis in a partially redundant manner, as is observed in

other organisms. We further suggest that SMG7 and TDM1 are

regulators that inhibit the major meiotic CDK activity, and their

function is particularly important atmeiotic exit to allow transition

to mitotic G1 (Figure 8A). The role of TAM appears to be more

complex. TAM is important for entry into the first and second

meiotic divisions (Wang et al., 2004b, 2010; d’Erfurth et al.,

2010), but its expression seems to be restricted to meiosis I. We

suggest that TAM promotes the activities of the core CDK

complexes that drive entry into the second meiosis by antago-

nizing the inhibitory effects of SMG7 and TDM1 (Figure 8A).

Complete loss of TAM, together with the inhibitory functions of

SMG7 and TDM1, brings CDK levels under a threshold that

permits exit after the first meiotic division (Figure 8B). Alleviation

of this inhibition in smg7 or tdm1 mutants allows normal inter-

kinesis and entry into the second meiosis. An unexpected

function of TAM was revealed by analysis of the tam-1 allele.

While lower activity of the tam-1 allele causes delay in interkine-

sis expected from its weaker activation function (Figure 8C), the

absence of interkinesis in smg7 tam-1 double mutants suggests

a very rapid progression from the first to the second meiotic

division (Figure 8D). Furthermore, lack of fully decondensed

nuclei after the first meiosis indicates a higher residual level of

CDK activity in comparison to wild-type interkinesis. Based on

these observations, we postulate that besides carrying an acti-

vation function, TAM also has an inhibitory role in regulating

meiotic CDK. Support for this hypothesis was obtained in

Xenopus egg extracts where downregulation of cyclin A led to

the earlier appearance of CDK-cyclin B activity and premature

entry into mitosis (Walker and Maller, 1991). In the opposite

experiment, cyclin A overexpression in HeLa cells was reported

to cause a cell cycle delay in prometaphase, presumably by

affecting the stability of cyclin B (den Elzen and Pines, 2001). The

inhibitory function of TAM in CDK regulation may require higher

TAM activity than the activating function. Such bimodal regula-

tion can be implemented by phosphorylation of two substrates

with different affinities to CDK-TAM complexes, one being an

activator, while the other an inhibitor of the hypothetical meiotic

CDK. We suggest that the hypomorphic tam-1 allele lacks the

inhibitory activity, but in contrast with the null tam-2 allele, still

retains some activating function, as inferred from the capability

of tam-1 mutants to enter the second meiosis. Absence of

SMG7-mediated inhibition in combination with the tam-1 allele

could result in high CDK activity in interkinesis and rapid transi-

tion from meiosis I to meiosis II (Figure 8D). Thus, the key role of

TAMmay be fine-tuning of the total CDK activity to assure proper

transition between meiotic divisions.

The key prediction of the model outlined in Figure 8 is the

existence of a CDK oscillator that drives meiotic divisions in

plants. We expect that identification of this oscillator will be

Figure 8. Models of CDK Regulation in Male Meiosis in the Wild Type

and in tam-2, tam-1, and smg7 tam-1 Mutants.

The wild type (A) and tam-2 (B), tam-1 (C), and smg7 tam-1 (D)mutants.

The red line illustrates activity of the hypothetical CDK-cyclin kinase(s) in

the course of meiosis. Green line depicts activity of TAM as inferred from

TAM:GUS localization data. Stages of meioses and their approximate

durations are indicated on the x axis (P1, prophase I; M1, metaphase I;

A1, anaphase I; I/P2, interkinesis/prophase II; M2, metaphase II; A2,

anaphase II). CDK activities and durations of meiotic stages reflect only

hypothetical values and are not based on any exact measurements.
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essential for a full understanding of meiotic progression. This

study also hints at the richness and complexity of regulatory

mechanisms that govern meiotic regulation in plants. Further

exploration of meiosis will undoubtedly bring novel mechanistic

insights relevant not only to plant reproduction but also to a

general understanding of M-phase, which is a rather poorly

studied part of the plant cell cycle.

METHODS

Plant Material and Growth Conditions

Arabidopsis thaliana wild-type (ecotype Columbia [Col-0]) and mutant

plants were grown in soil at 218C at 50 to 60% humidity under long-day

(16 h light/8 h dark) conditions. Arabidopsis plants with the following

mutations were used in this study: smg7-1 (Riehs et al., 2008), tdm1-1

also described as ms5-2 (Ross et al., 1997; Glover et al., 1998), tam-1

(Wang et al., 2004b), and tam-2 (SAIL_505_C06). Mutants carrying the

smg7-1 allele were germinated and grown for the first 3 weeks at

increased humidity (85 to 95%). The temperature-sensitive tam-1 allele

was induced by keeping plants at 288C during flowering.

PCR Genotyping

The tam-2 allele was genotyped using primers cycA1,2-1 (59-ATGGAAA-

GAACTCAG-TCAAGCATCA-39), cycA_r_nonsepec (59-GAACAGAAGA-

CTCCATCTCCAA-39), and SAIL-LB3 (59-TAGCATCTGAATTTCATAAC-

CAATCTCGATACAC-39). The single nucleotide mutation in the tam-1

allele was genotyped by two sets of PCR: the wild-type allele was am-

plified with primers cycA1,2-3 (59-ATGGAGCGTATCGAAGCATAGCGT-39)

and cycA1,2-W (59-GCGCGTGGAGGATTTCTGTTACATAAC-39), while the

tam-1 allele was identified with primers cycA1,2-3 and cycA1,2-M

(59-GCGCGTGGAGGATTTCTGTTACATAAT-39). Each PCR reaction

also included primersM1 andM3 (Puizina et al., 2004) as an internal ampli-

fication control. Plants carrying the smg7-1 and tdm1-1/ms5-2 alleles were

genotyped as previously described (Glover et al., 1998; Riehs et al., 2008).

RT-PCR Analysis of TAM Expression

Total RNA was isolated from flowers with TriReagent solution (Sigma-

Aldrich). One microgram of total RNA was treated with DNaseI

(Fermentas) at 378C for 30 min and after inactivation of DNase, reverse

transcribed with RevertAid H Minus first-strand cDNA synthesis kit

(Fermentas). The following primers were used for PCR: full-length TAM

cDNA was amplified using primers 1 (59-AACCCTAAATCTCACCG-

GAAAAC-39) and 2 (59-GAGGAAAAGCTCTTGCGGTA-39), the region

spanning the T-DNA border was amplified with primers 3 (59-ATGGA-

AAGAACTCAGTCAAGCATCA-39) and 4 (59-GAACAGAAGACTCC-ATC-

TCCAA-39), and the region downstream of the T-DNA insertion was

amplified with primers 2 and 5 (59-TGTTACCTGCATGATGATAGCA-39).

All PCR reactions were performed with GoTaq DNA Polymerase (Prom-

ega) using 32 cycles. Control PCR reactions were performed on ACTIN2

gene (At5g0980) with Actin 2-1 (59-CTGCCGCTGTTGTTTCTCCT-39) and

Actin 2-2 (59-CGTTGTAGAAAGTGTGATGCCA-39) primers (24 cycles).

Flow Cytometry

Inflorescences of 4- to 5-week-old plants were chopped with a sharp

razor blade in 250 mL CyStain UV Precise P nuclei extraction buffer and

mixed with 750 mL of CyStain UV Precise P staining buffer (both Partec)

containing propidium iodide. Released nuclei were purified by sieving

through CellTrics filter columns. Fluorescence of the nuclei was mea-

sured by CyFlow space (Partec)

Generation of TAM:GUS Transgenic Lines

The 3974-bp TAM genomic region including 2 kb of a putative promoter

was PCR amplified from Arabidopsis Col-0 genomic DNA using primers

CycA1,2-F1 (59-CACCATGACGAGAGGGGAGAGTGAT-39) and CycA1,2-

R1 (59-GAGGAAAAGCTCTTGCGGTA-39). ThePCRproduct was clonedby

directional TOPO cloning into the pENTR/D-TOPO vector (Invitrogen) and

verified by sequencing. The insert was subcloned to the pMDC163 vec-

tor (Curtis and Grossniklaus, 2003) with Gateway LR Clonase enzyme

mix (Invitrogen), which led to the TAM:GUS in-frame fusion construct.

Arabidopsis Col-0 plants were transformed by the floral dip method.

Transformed plants were selected on Grodan supplemented with 5 mg/L

hygromycin (Calbiochem) according to Hadi et al. (2002). Seventeen

independent T2 lines were analyzed by histochemical GUS assay

(Jefferson et al., 1987); three representative lines were further used for

immunocytology.

Protein Extraction and Phosphatase Treatment

Total proteins from wild-type and CDKA;1:YFP plants were extracted

according to Peck (2006). Plant tissues were crushed in liquid nitrogen

and mixed with extraction buffer (50 mM HEPES-KOH, pH 7.5, 5%

glycerol, 50 mM sodium pyrophosphate, 1 mM sodium molybdate, 25

mM sodium fluoride, 10 mM EDTA, 0.5% polyvinylpyrrolidone, 1% Triton

X-100, and 150 mM NaCl) supplemented with Complete Protease Inhib-

itor Cocktail Tablets (Roche) and with PhosSTOP Phosphatase Inhibitor

Cocktail Tablets (Roche). Extracts were centrifuged for 10 min at 16,000

rcf at 48C, and the protein-containing supernatant was transferred to a

new tube. For phosphatase treatment, 200 to 400 mg of total protein was

incubated with 1200 units of Lambda Protein Phosphatase (New England

Biolabs) for 0 or 60 min at 308C. The reaction was stopped by addition of

23 SDS loading buffer (100 mM Tris-Cl, pH 6.8, 20% glycerol, 0.01%

bromphenol blue, 10% b-mercaptoethanol, and 5% SDS) and by boiling

for 5 min at 958C.

Immunoblot Analysis

Fiftymicrograms of total proteins was separated in a 10%polyacrylamide

gel and transferred to polyvinylidine fluoride transfer membrane (Thermo

Scientific). Membranes were blocked in 1%milk in TBS-T for 1 h at room

temperature. To detect total CDKA;1, membranes were incubated with

the a-PSTAIR antibody (Sigma-Aldrich) diluted to 1:5000 in 1% milk in

TBS-T buffer overnight at 48C. KU70 was detected with a-AtKU70 anti-

body (B. Zellinger and K. Riha, unpublished data) diluted to 1:30,000 in

1% milk in TBS-T. For analysis of CDKA;1 phosphorylation at Thr-161,

membranes were blocked in 5-10% BSA in 13 TBS-T for 1 h at room

temperature. a-Phospho-CDK2(Thr160) antibody (Cell Signaling Tech-

nology) was diluted 1:1000 in blocking solution and incubated with

membranes overnight at 48C. In competition experiments, blocking

peptides GIPVRTFTHEVVTLW or GIPVRTFT(PO3H2)HEVVTLW were

added in concentrations 1, 10, or 100 mg/mL to the a-Phospho-CDK2

(Thr160) antibody. Secondary a-mouse IgG + IgM, (H+L) antibody con-

jugated to HRP (Pierce) was used in a 1:50,000 dilution to detect

a-PSTAIR antibody, while the anti-rabbit IgG, (H+L) antibody conjugated

to HRP (Pierce) was used in a 1:100,000 dilution for detection of a-KU70

and a-phospho-CDK2(Thr160) antibodies. After immunolabeling, mem-

branes were washed 33 10 min with TBS-T and incubated with the ECL

Western Blotting Substrate (Pierce) for 5 min and then exposed to

Hyperfilm ECL (Amersham).

Immunocytology

Preparation of meiotic spreads from PMCs and protein immunodetection

was performed as previously described (Peirson et al., 1997; Riehs et al.,

2008). The spindle was visualized using a rat anti-a-tubulin antibody
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(dilution 1:50; Serotec) and a Cy3-conjugated a-rat IgG antibody (1:500;

Chemicon). TAM:GUS fusion protein was detected by primary rabbit

a-GUS antibody (1:2000; Molecular Probes) and a fluorescein isothio-

cyanate–conjugated a-rabbit IgGantibody (1:200;Sigma-Aldrich). CDKA;1

phosphorylated at Thr-161 was visualized using a-phospho-CDK2

(Thr160) antibody (1:50; Cell Signaling Technology) in the presence

of GIPVRTFTHEVVTLW peptide (100 mg/mL) and a Cy3-conjugated

a-rabbit IgG (H+L) antibody (1:2000; Jackson ImmunoResearch). DNA

was counterstained with 4’,6-diamidino-2-phenylindole (DAPI). Stained

meiocytes were examined by epifluorescence microscopy using a Zeiss

Axioscope fluorescence microscope equipped with a cooled CCD cam-

era (Visitron). Pictures were acquired and analyzed using MetaVue

software (Universal Imaging Corporation). For relative assessment of

signal intensity of TAM:GUS and CDKA;1 Thr-161 phosphorylation,

pictures from the same slide taken at equal exposure times (500 ms)

were compared. Signal intensity in smg7PMCswere comparedwith wild-

type PMCs by squashing anthers from smg7-1mutants with anthers from

CDKA;1:YFP plants on the same slide. Meiocytes from smg7-1 and CDK:

YFP plants were distinguished by scoring for the YFP signal. Alexander

staining for pollen viability was performed as described (Alexander, 1969).

Accession Numbers

Sequence data from this article can be found in the Arabidopsis Genome

Initiative or GenBank/EMBL databases under the following accession

numbers: CDKA;1 (locus At3g48750), SMG7 (locus At5g19400), TAM

(locus At1g77390), and TDM1 (locus At4g20900).
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Supplemental Figure 1. Immunolocalization of Thr-161 Phosphory-

lated CDKA;1 in Mitotic Cells from Flowers of CDKA;1:YFP Plants.

Supplemental Figure 2. Immunolocalization of Thr-161 Phosphory-

lated CDKA;1 in a Tapetum Cell from the CDKA;1:YFP Plant.

Supplemental Figure 3. Molecular Characterization of the tam-2

Allele.
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