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Abstract
The rapid creation of comprehensive brain image databases mandates the development of
mathematical algorithms to uncover disease specific patterns of brain structure and function in
human populations. We describe our construction of probabilistic atlases that store detailed
information on how the brain varies across age and gender, across time, in health and disease, and
in large human populations. Specifically, we introduce a mathematical framework based on
covariant partial differential equations (PDEs), pull-backs of mappings under harmonic flows, and
high-dimensional random tensor fields to encode variations in cortical patterning, asymmetry and
tissue distribution in a population-based brain image database (N =94 scans). We use this
information to detect disease-specific abnormalities in Alzheimer's disease and schizophrenia,
including dynamic changes over time. Illustrative examples are chosen to show how group
patterns of cortical organization, asymmetry, and disease-specific trends can be resolved that are
not apparent in individual brain images. Finally, we create four-dimensional (4D) maps that store
probabilistic information on the dynamics of brain change in development and disease. Digital
atlases that generate these maps show considerable promise in identifying general patterns of
structural and functional variation in diseased populations, and revealing how these features
depend on demographic, genetic, clinical and therapeutic parameters.

1 Introduction
The widespread and rapidly accelerating collection of normal and diseased brain images in
vivo and ex vivo has led to a tremendous increase in the number of investigations focusing
on the structural and functional organization of the brain [1]. The complexity and variability
of human brain structure across subjects is so great that mathematical algorithms are
essential to effectively analyze and interpret brain data. Digital brain atlases, for example,
represent anatomy in a 3-dimensional coordinate system. New data can be aligned with the
atlas coordinate system using linear or nonlinear registration techniques [2], making it easier
to pool and compare brain data from multiple subjects. Nonetheless, design of population-
based brain atlases presents considerable challenges, since these systems must capture how
anatomy and function vary across age and gender, in different disease states, and across
imaging modalities. They must also represent these variations in such a way that systematic
patterns can be identified. Beyond Individual Atlases. Recent developments in computational
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anatomy have expanded the atlas concept to store information on anatomical variation in a
population [3-5]. Deformable brain atlases [6-8] are digital brain templates that can be
elastically deformed to match the anatomy of a new subject. These atlases have powerful
applications in automated image labeling [9], automated morphometry [10] and
multimodality correlation [11]. They can also transfer metabolic, functional, and
cytoarchitectural maps into the coordinate system of a new patient for surgical planning [12]
or to relate in vivo functional and post mortem molecular hallmarks of disease [13].
Probabilistic atlases [3,14,15] store information on structural and functional variability in a
population. Depending on the attribute whose statistical distribution is modeled, the
information they encode can support pathology detection in an individual or group [14], or
provide Bayesian prior information for tissue classification [16], image matching [8] or
functional image analysis [17]. Probabilistic atlases have enormous promise in revealing the
anatomical distribution and timing of clinical abnormalities in disease [18,5]. Although
many diseases affect the anatomy of the cortex, there have been major difficulties in
developing average and statistical representations of cortical anatomy, in view of the
extreme variations in cortical patterning across subjects. Systematic differences or dynamic
changes in cortical organization, gray matter distribution or asymmetry have been difficult
to distinguish from normal variations, which also complicate the direct averaging of imaging
data in stereotaxic space. Goals of the Paper. In this paper, we introduce a mathematical
framework based on covariant partial differential equations (PDEs) and multivariate random
tensor fields to encode variations in cortical patterning, tissue distribution and asymmetry.
We build on earlier work by applying new algorithms to brain image databases from
diseased populations with Alzheimer's disease and schizophrenia, including longitudinal
data. We present three illustrative examples of algorithms detecting underlying patterns of
disease-specific tissue loss, cortical asymmetry and dynamic brain change that are not easily
identifiable in individual subjects' images. These applications suggest the potential of the
approach in biomedical and clinical research settings.

2 Methods
Imaging and Subject Populations

94 high-resolution (2562×124) T1-weighted fast SPGR (spoiled GRASS) MRI volumes
were acquired from four distinct subject populations: patients with Alzheimer's Disease,
adolescents with schizophrenia, and their corresponding matched healthy control
populations. 26 subjects with mild to moderate Alzheimer's Disease (AD; NINCDS-
ARDRA criteria) were imaged on GE Signa 1.5T clinical scanner (TR/TE 14.3/3.2 msec,
flip angle 35°, NEX=1, 25cm FOV, contiguous 1.2 mm thick slices). Patients were matched
for disease severity(Mini-Mental State Exam score: 20.0±0.9), and were matched for age
(75.8±1.7 yrs.; 14 females/12 males), educational level (15.2±0.4 yrs.), and handedness (all
right-handed) with 20 identically-imaged elderly control subjects (age: 72.4±1.3 yrs.; 8
females/12 males; education: 15.4±0.5 yrs.). A separate group of 24 subjects, recruited as
part of an ongoing NIMH study of childhood-onset schizophrenia [19], were imaged
longitudinally a t baseline and after a 5-year interval. The 12 healthy controls (aged 13.5±0.7
years at initial scan, 18.0±0.8 years at follow-up) were age- and gender-matched with the 12
schizophrenic patients and scanned identically at exactly the same ages and intervals
(patients' ages: 13.9±0.8 and 18.6±1.0 years; interval between scans: 4.6±0.3 years). Image
data were initially transformed into a Talairach-based coordinate system [20] which (1)
places the anterior commissure (AC) at the origin; (2) vertically orients the midsagittal
plane; and (3) horizontally orients the AC-PC line. Aligned MR volumes were corrected for
non-uniformity of MR signal intensity[16], and high-resolution surface models of the
cerebral cortex were extracted, as described previously [14,21].
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Mapping Cortical Patterns
To begin encoding patterns of cortical variability, parametric curves representing 36 major
external fissures and sulci in the brain were manually out lined on highly magnified surface-
rendered images of each cortical surface. Detailed anatomic criteria were applied as set out
in [14] and the Ono sulcal atlas [22] to define sulci with consistent incidence and topology
across subjects. In both brain hemispheres, 3D curves were traced to represent superior and
inferior frontal, precentral, central, postcentral, intraparietal, superior and inferior temporal,
primary and secondary intermediate, collateral, olfactory and occipito-temporal sulci, as
well as the Sylvian fissures. Additional 3D curves represented gyral limits at the
interhemispheric margin [14]. Stereotaxic locations of contour points derived from the data
volumes were redigitized to produce 36 uniformly parameterized cortical contours per brain,
representing each subject's primary gyral pattern.

Measuring Gyral Pattern Differences
Due to variations in gyral patterning, cortical variability is severely underestimated unless
elements of the gyral pattern are matched from one subject to another (cf. [9,14]). This
matching is also required for cortical averaging; otherwise, corresponding gyral features will
not be averaged together. To find good matches among cortical regions we performed the
matching process in the cortical surface's parametric space, which permits more tractable
mathematics (Fig. 1; [14,23,24]). This vector flow field in the parametric space indirectly
specifies a correspondence field in 3D, which drives one cortical surface into the shape of
another. This mapping not only matches overall cortical geometry, but matches the entire
network of the 36 landmark curves with their counterparts in the target brain, and thus is a
valid encoding of cortical variation. Maps of the Cortical Parameter Space. Cortical models
were created by driving a tiled, spherical mesh into the configuration of each subject's cortex
[25,21,26], so any point on the cortical surface must map to exactly one point on the sphere
and vice versa. Each cortical surface is parameterized with an invertible mapping Dp,Dq:
(r,s) → (x,y,z), so sulcal curves and landmarks in the folded brain surface can be re
identified in a spherical map (cf. [24]). To retain relevant 3D information, cortical surface
point position vectors (x,y,z) in 3D stereotaxic space were color-coded using a unique RGB
color triplet, to form an image of the parameter space in color image format (Fig. 1). These
spherical locations, indexed byt wo parameters, can also be mapped to a plane (Fig. 1; [14]).
Cortical differences between any pair of subjects were calculated as follows. A flow field
was first calculated that elastically warps one flat map onto another from the other subject
(Fig. 1; or equivalently, one spherical map onto the other). On the sphere, the parameter shift
function u(r):Ω → Ω, is given by the solution Fpq:r → r-u(r) to a curve-driven warp in the
spherical parametric space Ω =[0,2π) × [0, π) of the cortex (Fig. 1; [14]). For points r=(r,s)
in the parameter space, a system of simultaneous partial differential equations can be written
for the flow fieldu(r):

1

Here M0, M1 are sets of points and (sulcal or gyral) curves where displacement vectors
u(r)=u0 (r) matching corresponding anatomy across subjects are known. The flow behavior
is modeled using equations derived from continuum mechanics, and these equations are
governed by the Cauchy-Navier differential operator L = μ∇2+(λ+μ)∇(∇T●) with body force
F [14,27,4]. The only difference is that L# is the covariant form of the differential operator L
(for reasons explained below1). This approach not only guarantees precise matching of
cortical landmarks across subjects, but creates mappings that are independent of the surface
metrics, and therefore independent of the surface parameterizations. Cortical Averaging
using Pull-backs and Flows in Parameter Space. The inter subject variability of the cortex is
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computed by first creating an average cortex for each subject group and measuring
individual differences from the deformation mappings that drive the average model onto
each individual. By defining probability distributions on the space of deformation
transformations applied to the average template [4], statistical parameters of these
distributions are estimated from the data based anatomic data to determine the magnitude
and directional biases of anatomic variation. To do this, all 36 gyral curves for all subjects
are first transferred to the parameter space. Next, each curve is uniformly re-parameterized
to produce a regular curve of 100 points whose corresponding 3D locations are uniformly
spaced. A set of 36 average gyral curves for the group is created by vector averaging all
point locations on each curve. This average curve template (curves in Fig. 1(a)) serves as the
target for alignment of individual cortical patterns [24]. Each individual cortical pattern is
transformed into the average curve configuration using a flow field in the parameter space
(Fig. 1(b); cf. [33]). By carrying a color code (that indexes 3D locations; Fig. 1(c)) along
with the vector flow that aligns each individual with the average folding pattern, information
can be recovered at a particular location in the average folding pattern (Fig. 1(d)) specifying
the 3D cortical points mapping each subject to the average. In the language of Lie algebras,
corresponding 3D cortical points across the subject database are defined as the pull-back
Dp*(r) [28] of the parameterization mappings Dp: (r,s)→(x,y,z) under the covariant vector
flow u(r) that maps each subject to the average curve template. [For any smooth function
Dp*: Ω→Rn and any diffeomorphic map u(r): Ω→N, there is a function on N, Dp*: N→Rn

called the pull-back of Dp by u(r), and defined by Dp ○ u [28]. This produces a new
coordinate grid [the pull-back Dp*(r); Fig. 1(d)] on a given subject's cortex in which
particular grid-points appear in the same location across subjects relative to the mean gyral
pattern. By averaging these 3D positions across subjects, an average 3D cortical model can
be constructed for the group. An example of this type of cortical average, based on 9
subjects with Alzheimer's disease, is shown in Fig. 1(f). The resulting mapping is guaranteed
to average together all points falling on the same cortical locations across the set of brains,
and ensures that corresponding features are averaged together.

1Since the cortex is not a developable surface, it cannot be given a parameterization whose metric tensor is uniform. As in fluid
dynamics or general relativity applications, the intrinsic curvature of the solution domain can be taken into account when computing
flow vector fields in the cortical parameter space, and mapping one mesh surface onto another. In the covariant tensor approach [4],
correction terms (Christoffel symbols, Γijk) make the necessary adjustments for fluctuations in the metric tensor of the mapping
procedure. In the partial differential equations (1), we replace L by the covariant differential operator L#. In L#, all L's partial
derivatives are replaced with covariant derivatives [28]. These covariant derivatives are defined with respect to the metric tensor of
the surface domain where calculations are performed. The covariant derivative of a (contravariant) vector field, ui (x), is defined as
ui,k = ∂uj/∂xk + Γjik ui where the Christoffel symbols of the second kind [28], Γjik, are computed from derivatives of the metric tensor
components gjk (x):

2

These correction terms are then used in the solution of the Dirichlet problem [29] to match one cortex with another. Note that a
parameterization-invariant variational formulation could also be used to minimize metric distortion when mapping one surface to
another. If P and Q are cortical surfaces with metric tensors gjk(ui) and hjk(ξα) in local coordinates ui and ξα(i, α=1,2), the Dirichlet
energy of the mapping ξ(u) is defined as: E(ξ) = ∫P e(ξ)(u) dP, where e(ξ)(u) = gij (u) ∂ξα(u)/∂ui∂ξβ(u)/∂uj hα β(ξ(u)) and

. The Euler equations, whose solution ξα(u) minimizes the mapping energy, are:

3

[30]. The resulting (harmonic) map (1) minimizes the change in metric from one surface to the other, and (2) is again independent of
the parameterizations (spherical or planar) used for each surface. [Related algorithms for minimizing harmonic energies, invariant
under reparameterization, have been developed in modeling liquid crystals [31] and in Polyakov's formulation of string theory [32].
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Affine Shape Adjustment
Prior to generating an average cortex, an average image template is generated with the
average affine shape for the subjects in the group, and individual scans are globally aligned
to this template. This is done so that (1) differences in global brain scale and affine position
are factored out before computation of variability, and (2) measurements are made and maps
generated at the mean spatial scale for the group. To produce a template with the mean
image intensity and geometry for the group, a subset of brains was selected for which a
comprehensive set of anatomic surface models had been created (84 per brain), including
models of deep brain structures [34]. An initial image template for the group was
constructed by (1) using automated linear transformations [35] to align the MRI data with a
randomly selected image, (2) intensity-averaging the aligned scans, and then (3) recursively
re-registering the scans to the resulting average affine image. The resulting average image
was adjusted to have the mean affine shape for the group, using matrix logarithms for
transformation averaging and exponentiation [35]. Images and surface models were then
linearly aligned to this template, and an average surface set was created for the group [34].
Displacement maps (Fig. 2(e)) driving the surface anatomy of each subject into
correspondence with the average surface set were then extended to the full volume with a
3D warping algorithm based on surfacedriven elasticity[14,25,27]. These warping fields
reconfigured each subject's 3D image into the average anatomic configuration for the group.
By averaging the reconfigured images (after intensity normalization), a crisp image template
was created to represent the group (Fig. 2(c)). Note the better-resolved cortical features in
the average images after high-dimensional cortical registration (Fig. 2(c)). If desired, this
AD-specific atlas can retain the coordinate matrix of the Talairach system (with the anterior
commissure at (0,0,0)) while refining the gyral map of the Talairach atlas to encode the
unique anatomy of the AD population. By explicitly computing matching fields that relate
gyral patterns across subjects, a well-resolved and spatially consistent set of probabilistic
anatomical models and average images can be generated to represent the average anatomy
and its variation in a subpopulation.

3 Results
Tensor Maps of 3D Cortical Variation

By using cortical pattern matching to identify corresponding cortical locations in 3D space,
rather than simple image averaging (Fig. 2(a),(b)), deformation maps can be recovered
mapping each patient into gyrus-by-gyrus correspondence with the average cortex (Fig.
2(e)). Anatomic variability can thus be defined at each point on the average cortical mesh as
the root mean square magnitude of the 3D displacement vectors, assigned to each point, in
the surface maps from individual to average. This variability pattern is visualized as a color-
coded map (Fig. 2(g)). This map shows the anatomic differences, due to gyral pattern
variation, that remain after affine alignment of MR data into a brain template with the mean
shape and intensity for the group. After these affine components of the deformation fields
are factored out, the deformation vector required to match the structure at position x in the
average cortex with its counterpart in subject i can be modeled as:

4

Here μ(x) is the mean deformation vector for the population (which approaches the zero
vector for large N), Σ(x) is a non-stationary, anisotropic covariance tensor field estimated
from the mappings, Σ(x)½ is the upper triangular Cholesky factor tensor field, and ϵi(x) can
be modeled as a trivariate random vector field whose components are independent zero-
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mean, unit variance, stationary random fields. This 3D probability distribution makes it
possible to visualize the principal directions (eigenvectors) as well as the magnitude of gyral
pattern variability, and these characteristics are highly heterogeneous across the cortex. For
any desired confidence threshold α, 100(1-α)% confidence regions for possible locations of
points corresponding to x on the average cortex are given by nested ellipsoids Eλ(α)(x) in
displacement space (Fig. 2(f)).

5

where B(0; 1) is the unit ball in R3, and

6

where Fα,3, N−3 is the critical value of the F distribution such that Pr{F3,N−3 ≥ Fα,3,N−3} = α
and N is the number of subjects. Mean Asymmetry. By analysis of variance in 3D
deformation fields that match different subjects' anatomies, it is also possible to differentiate
intra-subject (between hemisphere), inter-subject, and inter-group contributions to brain
variation in human populations, and detect significant differences using null distributions for
features in Hotelling's T2 random fields [14,36,37]. Mapping the pattern of brain asymmetry
in a group is an interesting application. Although the set of mappings computed so far
specifies the set of cortical points that correspond across subjects, the mean asymmetry
cannot yet be computed without an additional set of mappings to define the points that
correspond across hemispheres. To do this, all left hemisphere sulcal curves are projected
into the cortical parameter space, reflected in the vertical axis, and averaged with their
flattened counterparts in the right hemisphere, to produce a second average curve template.
Color maps (Fig. 1(c)) representing point locations in the left and right hemispheres are then
subjected to a second covariant flow that transforms corresponding features in each
hemisphere to the same location in parameter space. 3D deformation fields can then be
recovered matching each brain hemisphere with a reflected version of the opposite
hemisphere (cf. [36]). The parameter flows are advantageous in that the asymmetry fields
are also registered; in other words asymmetry measures can be averaged across
corresponding anatomy at the cortex. This is not necessarily the case if warping fields are
averaged at the same coordinate locations in stereotaxic space (cf. Fig. 1(a)). The pattern of
mean brain asymmetry for a group of 20 subjects is shown in Fig. 3. The resulting
asymmetry fields ai(r) (at parameter space location r in subject i) were treated as
observations from a spatially-parameterized random vector field [14,36], with mean μa(r)
and a nonstationary co variance tensor Σa(r) (Fig. 3(c)). The significance α of deviations
from symmetry can be assessed using a T2 or F statistic that indicates evidence of significant
asymmetry in cortical patterns between hemispheres:

7

Multiple Comparisons Correction
By calculating these statistics, and their corresponding significance values (p -values), at
each lattice location across a parameterized 3D anatomical surface, a statistic image is
formed (Fig. 3(d)). To assess the significance of the effect, analytical null distributions have
been derived for the number and extent of signal components that are likely to occur by
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accident above a given threshold in a statistic image, such as a T2-distributed random field
on a manifold. Because these formulae require the residuals of the statistical model to be
stationary an disotropic [38,39], we adopted a non-parametric approach. A null distribution
for the area of the T2 statistic image above a fixed high threshold on the average cortical
surface was computed empirically by permutation of the covariate vector (here a binary
vector coding for hemisphere) and conducting 1,000,000 randomizations. By reference to
this null distribution, the significance of the asymmetry was found to be p < 0.01.

Gray Matter Loss in a Diseased Population
A second application was to reveal the average profile of gray matter loss across the cortex
in Alzheimer's disease, based on a large number of subjects at a specific stage in the disease.
Gyral pattern variation makes it difficult to make inferences if gray matter maps are directly
averaged together in stereotaxic space (e.g.,Fig. 1(a)), and the ability to localize results to
specific cortical regions is also lost. To address this, we used covariant flows to assist in
computing group averages and statistics. First, we segmented all images in the database with
a previously validated Gaussian mixture classifier. Maps of gray matter, white matter, CSF
and a background class were created for each subject (Fig. 4.). The proportion of gray matter
lying within 15 mm of each cortical point was then plotted as an attribute on each cortex,
and aligned across subjects by projecting it into flat space (Fig. 1(c)) and warping the
resulting attribute field with the elastic matching technique (as inFig. 1(d)). (Again, the gray
matter proportion can be thought of as a scalar attribute G(r) defined in the cortical
parameter space, which can be subjected to a pull-back with the flow field u(r) to
compensate for gyral pattern differences). By averaging the aligned maps, and texturing
them back onto a group average model of the cortex, the average magnitude of gray matter
loss was computed for the Alzheimer's disease population (Fig. 4.). Regions with up to 30%
reduction in the measure were sharply demarcated from adjacent regions with little or no
loss. The group effect size was measured by attaching a field of t statistics, t (r), to the
cortical parameter space, and computing the area of the t field on the group average cortex
above a fixed threshold (p < 0.01, uncorrected). In a multiple comparisons correction, the
significance of the overall effect was confirmed to be p < 0.01, by permuting the assignment
of subjects to groups 1,000,000 times. (The resulting 46×65536×106≅3.0×1012 linear
regressions for 46 subjects, 65,536 cortical points, and 106 permutations - were run in
parallel on an SGI RealityMonster with 32 R10000 180MHz internal CPUs, requiring 33
CPU hours in total). Dynamic Brain Change. In a third application, the same procedure was
applied to longitudinal MRI data from 12 schizophrenic patients and 12 adolescent controls
scanned at both the beginning and end of a 5-year interval. The goal was to estimate the
average rate of gray matter loss at the cortex, by matching cortical patterns and comparing
changes in disease with normal changes in controls. Cortical models and gray matter
measures were elastically matched first within each subject across time, to compute
individual rates of loss, and then flowed into an average configuration using flat space
warping (Fig. 1(d)). The resulting maps (Fig. 5) suggested dynamic loss of gray matter in
superior parietal, motor and frontal brain regions (up to 5% annually), and the group
differences were highly significant (p < 0.01, permutation test; Fig. 5(b)). Conclusion.
Atlasing of brain data from large human populations presents major challenges because of
the need to compare or integrate imaging data from subjects whose anatomy is different.
Although direct averaging of data in stereotaxic space may be ideal for many applications,
group patterns in brain structure or function may go unnoticed because cortical regions are
not well-aligned across subjects. We presented an approach that allows the generation of
well-resolved average brain maps that accommodate the wide variations in cortical
patterning. By capturing variations in cortical attributes and cortical geometry using separate
statistical fields, general features of cortical organization also emerged, such as the
consistent pattern of brain asymmetry in perisylvian cortices (Fig. 3). Finally, by mapping
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gray matter differences or dynamic changes in diseased populations with Alzheimer's
disease and schizophrenia, we resolved general features of the disease process that may be
hard to identify in individual scans. The resulting atlasing techniques show promise in
elucidating the dynamics of disease in human populations, and their relationship to genetic,
cognitive, or therapeutic factors.
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Fig. 1. Averaging Cortical Models
A well-resolved average cortical model (f) for a group of subjects can be created by first
flattening each subject's cortical model to a 2D square (a). A color coded map (c) stores a
unique color triplet (RGB) at each location in the 2D parameter space encoding the (x,y,z)
coordinate of the 3D cortical point mapped to that 2D location. However, a well-resolved
average model (f) is produced, with cortical features in their group mean location, if each
subject's color map is first flowed (d) so that sulcal features are driven into the configuration
of a 2D average sulcal template (b). Codes indexing similar 3D anatomical features are
placed at corresponding locations in the parameter space, and are thus reinforced in the
group average (f).
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Fig. 2. Probabilistic Modeling of Brain Anatomy
Direct averaging of imaging data after a simple affine transform into stereotaxic space
washes cortical features away((a); Evans et al., 1994; N=305 normals); (b) a similar
approach with N=9 Alzheimer's patients). By first averaging a set of vector-based 3D
geometric models, and warping each subject's scan into the average configuration, a well-
resolved average brain template is produced (c). Deformation vector maps (e) store
individual deviations (brown mesh) from a group average (white surface, (d)), and their
covariance fields (f) store information on the preferred directions and magnitude (g) of
anatomic variability(pink colors, large variation; blue colors, less).
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Fig. 3. Mapping Brain Asymmetry in a Population
The average magnitude of brain asymmetry in a group (N=20, elderly normals) can be
assessed based on warping fields that map the cortical pattern of one hemisphere onto the
other, and then flow the observations again so that corresponding measures can be averaged
across subjects. Variations in asymmetry are also non-stationary across the cortex (lower
left), and a Hotelling's T2 statistical field can be computed to map the significance of the
asymmetry (lower right) relative to normal anatomic variations.
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Fig. 4. Mapping Gray Matter Loss in a Population
Scalar fields that represent the distribution of gray matter across the cortex can be aligned
using elastic matching of cortical patterns. A localized and highly significant loss of gray
matter is revealed in temporo-parietal cortices of Alzheimer's patients relative to matched
elderly controls, in a similar pattern to the metabolic and perfusion deficits seen early in the
disease.
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Fig. 5. Dynamic Rates of Gray Matter Loss in a Population
Scalar fields representing the rates of gray matter loss in individuals with schizophrenia can
be aligned and compared with age-matched controls. Adolescents with schizophrenia
experience statistically higher rates of loss in motor, frontal and temporal regions.
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