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Purpose: One issue with amplitude binning list-mode studies in SPECT for respiratory motion
correction is that variation in the patient’s respiratory pattern will result in binned motion states
with little or no counts at various projection angles. The reduced counts result in limited-angle
reconstruction artifacts which can impact the accuracy of the necessary motion estimation needed to
correct the images. In this work, the authors investigate a method to overcome the effect of
limited-angle reconstruction artifacts in SPECT when estimating respiratory motion.
Methods: In the first pass of the reconstruction method, only the projection angles with significant
counts in common between the binned respiratory states are used in order to better estimate the
motion between them. After motion estimation, the estimates are used to correct for motion within
iterative reconstruction using all of the acquired projection data.
Results: Using simulated SPECT studies based on the NCAT phantom, the authors demonstrate the
problem caused by having data available for only a limited number of angles when estimating
motion and the utility of the proposed method in diminishing this error. For NCAT data sets with a
clinically appropriate level of Poisson noise, the average registration error for motion with the
proposed method was always less with the use of their algorithm, the reduction being statistically
significant �p�0.05� in the majority of cases. The authors illustrate the ability of their method to
correct the degradations caused by respiratory motion in short-axis slices and polar maps of the
NCAT phantom for cases with 1 and 2 cm amplitudes of respiratory motion. In four cardiac-
perfusion patients acquired on the same day, the authors demonstrate the large variability of the
number of counts in the amplitude-binned projections. Finally, the authors demonstrate a visual
improvement in the slices and polar maps of patient studies with the algorithm for respiratory
motion correction.
Conclusions: The authors’ method shows promise in reducing errors in respiratory motion estima-
tion despite the presence of limited-angle reconstruction effects due to irregularity in respiration.
Improvements in image quality were observed in both simulated and clinical studies. © 2010
American Association of Physicists in Medicine. �DOI: 10.1118/1.3517836�
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I. INTRODUCTION
Respiratory motion combined with the “upward creep” of the
heart can result in up to 10–20 mm displacement of the heart

during imaging. Such motion affects the perceived regional
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localization in the myocardial walls, thereby impacting the
diagnostic accuracy of cardiac PET or SPECT perfusion im-
ages. Several groups have investigated respiratory motion

1–6
estimation and compensation in PET and SPECT. Motion
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estimation can be done by binning data acquired in list-mode
into projections of different respiratory states using an exter-
nal device which tracks a signal related to respiratory vol-
ume. The binned projection data corresponding to each state
are then reconstructed. One of the states is chosen as a ref-
erence and 3D registration is used to estimate the motion
needed to align the heart in the other states to this reference
state. Binning can be based on the relative position within
the respiratory cycle, which is called phase binning, or it can
be based on the magnitude of the signal from the external
device tracking respiration, which is called amplitude bin-
ning. Due to the significant variability in respiratory pattern
seen clinically as illustrated in Fig. 1, amplitude binning of
the list-mode data has been determined to be more accurate
than phase binning and thus, in general, it is favored.7

In PET where all projection angles can be acquired simul-
taneously, all the angles will be present in the list-mode data
used to reconstruct each respiratory state. Also with PET, a
nonuniform binning interval or a combination of intervals
can be used to assure roughly uniform count statistics within
each reconstructed state.3 Given this, the slices for each res-
piratory motion state are reconstructed using a similar set of
projection angles and with similar counting statistics. Thus,
PET motion estimation is not handicapped by variation in
counts or projections angles present between the motion
states. However, in cardiac SPECT, only two projection
angles are typically acquired at any time. Thus, in SPECT,
when the respiratory motion of the patient is irregular, many
projection angles will potentially contribute little or no
counts to the reconstruction of slices for a given respiratory
state. The result will be limited-angle reconstruction artifacts
in the reconstructed slices of that state. We will demonstrate
in this work that such artifacts limit the accuracy of motion
estimation between the slices of this state and the reference
state, thus impacting respiratory motion compensation. One
could alleviate some of these problems by adapting the size
of the intervals used in amplitude binning to be sure that all
or most projection angles are present; however, this will
greatly limit the extent of respiratory motion which can be
estimated and corrected.

Section II details our algorithm for overcoming the prob-
lem of estimating and correcting respiratory motion in car-

FIG. 1. Plot of amplitude signal from a pneumatic bellows wrapped around
the abdomen of a patient undergoing cardiac SPECT imaging. Horizontal
lines are overlaid on the graph to illustrate five intervals used for amplitude
binning. Note that in an actual clinical application, nine intervals would be
used and the events whose respiratory signal was beyond that of the top and
bottom intervals would be folded in with counts from those intervals.
diac SPECT with amplitude binning when respiration is ir-
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regular. The estimation of motion is done by preprocessing
the projections to bring the reconstructed slices structurally
closer before registering them for motion estimation. Once
the motion across the respiratory states has been estimated,
we reconstruct using the estimated motion in existing
motion-correction iterative-reconstruction methods.8–10 In
this last step, all the raw acquired counts are utilized in re-
construction. Section III details the materials, methods, and
data analysis used to investigate our algorithm. This includes
both our studies with the NURBS-based cardiac-torso
�NCAT� phantom, where we can know the truth, and actual
clinical studies, where we illustrate the problem we are pro-
posing to address and utility of our algorithm at solving it.
Section IV provides the results of this investigation. In Sec-
tion IV we discuss our results and in Sec. V we provide our
conclusions.

II. ALGORITHM FOR RESPIRATORY MOTION
ESTIMATION AND CORRECTION

Our goal is to reduce the effects of irregular counts within
the projections of respiratory-gated motion states using am-
plitude -binning. Reducing these effects will greatly improve
the estimation of motion between the bins, leading to better
correction of the data and improved image reconstruction.
This is achieved by the following methods.

II.A. Determination of projections to be used in
motion estimation and their normalization

We start by comparing the duration of acquisition for each
angle of each state to the duration assuming the ideal case of
even temporal sampling which we call teven. This teven is de-
termined as

teven =
total acquistion time

�no. of angles� � �no. of bins per angle�
. �1�

If the acquisition time of a projection is less than a threshold
fraction of teven determined experimentally herein as dis-
cussed in Sec. III E, we reject this projection from inclusion
when reconstructing the slices to estimate the respiratory
motion of this state. If the acquisition time of a projection is
equal to or more than the determined threshold fraction of
teven, we normalize the projection to bring count levels �up or
down as appropriate� to correspond to having been acquired
by an acquisition time equal to teven. The normalization is
performed by multiplying by a scale factor determined as

scale factor =
teven

tactual
, �2�

where tactual is the actual duration of acquisition for the indi-
vidual respiratory binned projection. This corrects the counts
such that they approximate the number that would have been
acquired in each binned projection if all had been acquired
for the same amount of time. Such a normalization was also
used by Kovalski, et al.4 in their respiratory motion-
correction methodology. One could also envision the scale

factor as having been divided into the denominator of the
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maximum likelihood expectation maximization �MLEM� re-
construction update equation to scale the projected values of
the current voxel estimates as having been acquired during
the teven time interval to that of tactual. The normalization
changes the noise in the projections so as to no longer be
Poisson; however, normalization is done only when estimat-
ing the motion. As we show in our results, our intensity-
based registration method is robust to the ensuing differences
in noise characteristics across bins.

II.B. Matching of projection angles used in
reconstruction between reference and test states

By rejecting projections with low counts, there will likely
be some angles in test states which are not present in the
reference state or vice versa. This will contribute to structural
dissimilarity in the reconstructed slices, potentially leading
to registration errors when estimating motion. Our approach
for overcoming this difficulty is to retain only projections for
an angle when both projections for the two states, between
which motion is being estimated, are present for that angle.
Thus, if limited-angle effects are present in the slices recon-
structed from one state, they are introduced in the same way
in the other state. After this step, it is expected that the pri-
mary difference between the two states is the motion and not
the structural dissimilarity due to a different number of
angles being used in reconstruction. This point is illustrated
in Fig. 2, which shows coronal slices reconstructed from
Monte Carlo simulations of the NCAT phantom.11 Figure
2�a� shows end-inspiration coronal slice reconstructed from
the NCAT simulation with two angles retained per SPECT
camera head. Figure 2�b� shows midinspiration coronal slice
�reference state� reconstructed using all 60 simulated projec-
tion angles. Note the striking difference in the appearance of
the slices reconstructed from all �Fig. 2�b�� versus a limited
number of projection angles �Fig. 2�a��. Figure 2�c� shows
the midinspiration coronal slice this time reconstructed with
two angles retained per head as per Fig. 2�a�. Note that Fig.
2�c� is structurally closer to Fig. 2�a� than Fig. 2�b� was, thus
enabling better registration.

In extreme cases where no or too few angles are common

(a) (b) (c)

FIG. 2. �a� End-inspiration coronal slice reconstructed from the NCAT simu-
lation with two angles retained per SPECT camera head. �b� Midinspiration
coronal slice reconstructed using all 60 simulated projection angles. Note
that the heart is segmented in �b� as it would be for the reference slices to
focus motion estimation on the heart region during registration. �c� Midin-
spiration coronal slice reconstructed with two angles retained per head as
per �a�. Note that �c� is structurally closer to �a� than �b� is, thus enabling
better registration.
between a test state and the reference state, the test state
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would be registered to an intermediary respiratory state
whose motion has been estimated relative to the reference
state.

II.C. Registration of reference and test state slices to
estimate motion

The MLEM reconstruction method was used to recon-
struct 3D data sets from the preprocessed projections. Recon-
struction included compensation for attenuation, scatter, and
spatial resolution.12 Attenuation correction was performed by
accounting for attenuation in both the projection and back-
projection steps of the MLEM reconstruction. For simula-
tions, the attenuation correction used attenuation maps aver-
aged over the motion bins. For clinical studies, the
attenuation map for each case was derived from sequential
transmission imaging.13 Transmission imaging was per-
formed during natural patient breathing. Thus, these attenu-
ation maps include the average respiratory motion that oc-
curred during the period of transmission imaging. Scatter
correction was by the triple energy window �TEW� method14

using a simulated or acquired scatter window. The counts in
the scatter window were low-pass filtered to suppress noise15

and scaled as per the algorithm. They were then added to the
estimated projections in the denominator as opposed to being
subtracted from the actual projection data in the numerator.
This avoided negative values in the MLEM reconstruction.15

Spatial resolution correction was included as it has been
shown to improve the detection of coronary artery disease12

and to improve the effectiveness of respiratory motion
correction.16 This correction was accomplished by modeling
the distance-dependent spatial resolution of the SPECT cam-
eras, in the projection and backprojection steps of MLEM, as
a 2D Gaussian whose full-width-at-half-maximum varies
with distance in accordance to measured values.12 The num-
ber of iterations used for reconstruction was determined em-
pirically using the NCAT phantom �as detailed in Sec. III C�.
The spatial resolution correction resulted in sufficient reduc-
tion in noise levels such that no postreconstruction smooth-
ing was necessary.

Prior to registration, we segmented an ellipsoidal volume-
of-interest around the heart in the reference data set as illus-
trated in Fig. 2. By doing this, the motion estimated is that of
the heart and not that of extracardiac sources of activity, such
as the liver, which can have different respiratory motion than
the heart.17,21

An intensity-based registration was used to estimate the
motion necessary to align the heart across the motion states.
The registration used as its criterion the minimization of the
sum-squared-difference �SSD�17–20 between the reference
and the test motion states. The SSD is defined as

SSD = �
n

�I1�x,y,z� − I2�T�x,y,z���2, �3�

where I1�x ,y ,z� are the intensities in the heart volume of the
reconstructed reference data set, I2�x ,y ,z� are the intensities
for the test state which is to be registered to the reference,

and T is the transformation being estimated. T can be, in
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general, a 12-degree-of-freedom �DOF� affine transformation
with three scales, three shears, three rotational, and three
translational components.18 In studies of patients imaged by
MRI and CT, superior/inferior �SI� translation has been de-
termined to be the dominant motion of the heart with
respiration.17,18 Translational motion in the anterior/posterior
�AP� direction was found to be close to a factor of 3 less than
that in the SI direction. Medial/lateral translation and rota-
tions about any of these axes were typically of even less
significance, as were changes in scale and shear. Thus we
considered only the translational and rotational motion com-
ponents of the heart �6-DOF� when estimating respiratory
motion between states for both simulated NCAT and clinical
studies. The optimizer used to minimize the SSD metric was
gradient descent.18 We calculated the gradients analytically
for efficiency.

II.D. Final MLEM reconstruction using the estimated
motions

Motion compensation is performed in a second pass
through a MLEM reconstruction method where we use the
original �not normalized or processed� projections for each
state and their motion estimates obtained as detailed in Sec.
II C. The motion compensation technique is that described
by Feng et al.9 Briefly, for all the motion states besides the
reference state, the current estimate of the object volume is
repositioned from the reference state to that of the motion
state. The estimated projections plus the scatter estimate are
then compared to the actual projections, the results back-
projected and realigned with the reference state. Trilinear
interpolation was used for the realignment.10 The reconstruc-
tion was performed using the MLEM method and included
attenuation correction, scatter correction, and resolution
compensation as per Sec. II C. The sole difference from the
estimation stage reconstruction was that now, 40 iterations of
MLEM were used as the number at which the visual appear-
ance of the slices stabilized prior to additional iterations ex-
acerbating the noise level. Also, no added postreconstruction
filtering was performed so as to better enable the visualiza-
tion of the impact of respiratory motion correction in the
slices and polar maps.

III. NCAT PHANTOM AND PATIENT STUDIES

III.A. Simulation of cardiac SPECT imaging
with the NCAT phantom

To investigate our methodology under controlled condi-
tions, we conducted studies using simulations of Tc-99m ses-
tamibi cardiac-perfusion SPECT imaging. The source and
attenuation distributions were created using the NCAT
phantom.11 Respiratory motion of the heart is typically sig-
nificantly less in extent than that of the diaphragm.17,21 Thus,
the NCAT phantom we used was specifically modified to
allow differences in the extent of respiratory motion of the
heart and other structures around it, such as the liver. The
relative concentration of activity in the liver, gall bladder,

kidneys, and spleen were one-half that of the heart. The
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background was 1/10 that of the heart. Distributions for a
total of 36 respiratory states were created, equally subdivid-
ing a 2 cm extent of motion of the heart in the SI direction
and 6 mm in the AP direction. This range of motion was
selected to match the maximal range of motion typically seen
during imaging,17,18 allowing for additional motion due to
upward creep.22 We also simulated a second set of data sets
with 1 cm extent of motion of the heart in the SI direction
and 3 mm in the AP direction. This is the range typically
seen for patients in the absence of significant upward creep.

For each of these two motion extents of the NCAT, three
cardiac configurations were created. For configuration I we
used the standard angulation of the heart in the NCAT �i.e.,
�90°, �20°, and �50° rotations about x, y, and z axes� with
a uniform distribution of activity within the myocardial
walls. In configuration II, this was modified by the inclusion
of a large perfusion defect in the basal region of the inferior-
lateral wall. The angular extent of the defect around the left
ventricular wall was 60° and it extended 60 mm in the long-
axis direction. The addition of the perfusion defect was to
allow us to investigate the impact of respiratory motion and
our correction algorithm on the visibility of defects. In con-
figuration III of the NCAT phantom, we changed the orien-
tation of the heart to be perpendicular to the axial axis of the
body �i. e., rotations of �90°, 0°, and 0° about x, y, and z
axes�. This positioning of the heart provides maximal sensi-
tivity to blurring of the anterior and inferior walls of the
heart with SI �axial� motion and thus provides an excellent
test case for correction of respiratory motion.

We used the SIMIND Monte Carlo software23 to simulate a
typical two-headed SPECT acquisition and generated projec-
tions for all the 36 respiratory states for each of the NCAT
source and attenuation map combinations created. Each of
the two heads of the SPECT system was simulated as acquir-
ing 30 evenly spaced projections while rotating 90°, for a
total of 60 projections over 180°. The projection size was
128�128 with a pixel dimension of 4.67 mm. Imaging was
simulated as acquisition by low-energy-high-resolution
�LEHR� parallel collimators whose parameters matched
those of the collimators used in our clinic. Acquisition was
simulated as occurring for a 15% photopeak window cen-
tered on the photon emission energy of Tc-99m of 140 keV.
An 8% scatter window centered at 123 keV was also created
for use in TEW scatter correction.14,15 Projection images
contained both the primary and scattered photons that were
recorded within the windows. Approximately 433�106 pho-
tons per projection per respiratory state were simulated,
yielding low-noise projection images in comparison with
clinical studies.

III.B. Formation of projection sets with clinically
relevant noise and differences in projection number
between test and reference projection states

Since dividing the counts from a SPECT cardiac acquisi-
tion into 36 respiratory motion states would result in very
noisy individual states, the 36 low-noise projection sets were

combined into groups of four to create sets with nine motion
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states. Noise was added to the projections for each state such
that total counts in the nine motion states was 7.5�106,
matching that of the average counts determined in a series of
ten clinical acquisitions performed in our clinic. Note that
collapsing the 36 states to 9 resulted in each of these 9 states
actually being a combination of counts from the structures of
the NCAT in four slightly different spatial distributions. This
approximately simulates the clinical case, where continuous
variation in motion is being sampled into nine motion bins.
The expected motion was recalculated for the nine states
taking into account this quantization. For the extreme states
relative to the center state, the expected motions were now
�9.1 mm for the SI direction and �2.7 mm for the AP
direction.

We used these noisy projections to form sets where the
number of projections in the reference and test states was
increasingly different. The reference state was taken as the
center state �state 5� and the test state was taken as the state
with the deepest SI motion �state 9�. The missing projection
angles were grouped together instead of randomly distrib-
uted. This is because we have noted that missing chunks of
angles cause bigger problems than angles missing at random.
Also, as seen in Fig. 1, time varying trends in respiration can
occur gradually leading to chunks of angles being missing.
Due to the simultaneity of the acquisition of the two camera
heads, if angles are missing from one head, the correspond-
ing angles were simulated as missing from the other. The
number of angles retained �NAR� per head for state 9 varied
from 30 to 2 in steps of 2 at the start of acquisition, in the
middle of acquisition, or at the end of acquisition for each
head. We considered only the case when the counts were
evenly divided between the nine respiratory motion states at
a given angle so that states 5 and 9 each contained 1/9 the
counts acquired at the angle. Therefore, when using these
simulated sets, usage of a threshold to reject angles is not
needed nor is count normalization as the scaling factor would
be 1.0. The creation and analysis of sets with uneven counts
in states is detailed in Secs. III E and III F, where we inves-
tigate specific examples of respiratory irregularity.

III.C. Determination of the number of MLEM
iterations to use with reconstruction
when estimating motion

We used the projection data sets of Sec. III B for determi-
nation of the number of iterations of MLEM to use when
estimating motion. Details of the reconstruction were given
in Sec. II C. Our criterion for selection of an iteration num-
ber was minimization of the average registration error. The
average registration error was calculated based on the vector
displacements in mm between the expected locations of
voxel centers as the result of the motion used in simulation
and the locations of the voxels with application of the esti-
mated 6-DOF motion. This vector displacement is averaged
over all voxels in a 50�50�50 region centered on the heart
to yield the average registration error. Calculated in this way,
the average registration error combined the error in location

of all the voxels in the heart region into a single measure due
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to all 6-DOF of motion estimated. We averaged this metric
for all 15 NARs, for all three configurations of the NCAT,
and for having the angles missing be from the start, middle,
and end of acquisition. The number of MLEM iterations with
the minimum combined average registration error was used
thereafter whenever reconstructing slices for motion estima-
tion.

III.D. Comparison of average registration errors
as determined with and without use of our algorithm
„for data sets in Section III.C…

The noisy projections for respiratory states 5 �reference�
and 9 �test� of Sec. III B were used in this study along with
the number of iterations of MLEM as determined in Sec.
III C. We first determined the magnitude of the problem en-
countered when the number of projections used in recon-
struction was less in the test state than in the reference state.
This was accomplished by calculating the average registra-
tion error as a function of NAR, with the test state having the
angles missing from the start, middle, or end of the acquisi-
tion, and the reference state with all the angles present, for
each NCAT configuration. The utility of our algorithm for
reducing this problem was then investigated by determining
the registration error for the same NAR, but now our algo-
rithm was used to match angles present in the reference state
to that in the test state.

III.E. Determination of threshold for rejection
of angles and test of motion correction
in NCAT simulations

To determine the threshold for rejection of projection
angles from being included in reconstruction when estimat-
ing motion and to test the impact of our proposed methodol-
ogy, we used simulated NCAT images with known truth as to
motion and clinically realistic irregularities in respiration.
These studies were based on four patient list-mode SPECT
studies acquired as detailed in Sec. III G. From these clinical
acquisitions, we obtained the number of 100 ms time inter-
vals at each projection angle whose signal from the bellows
wrapped about the patient’s abdomen fell within each of the
nine amplitude-binned motion states into which the respira-
tory signal was divided. The relative number of time inter-
vals for each respiratory state was then used to scale the
NCAT projection counts unevenly, such that the total counts
at each angle remains the same, and total counts across all
the bins and the angles was 7.5�106. One minor difference
from the patient data was that the profiles were applied to
acquisition of 60 projections over 180° and not an acquisi-
tion of 68 projections over 204°, as per the patient studies.
We used the relative timing information from the first 30
angles acquired by each of the two camera heads. In this way
we created NCAT studies for both the 1 and 2 cm maximum-
amplitude cardiac-motion projection sets, which mimicked
the respiratory pattern of each of the four patients. Thus we
had available eight studies with irregular breathing, four of
which would have cardiac motion of maximally 2 cm in SI

and 6 mm in AP and four with 1 cm in SI and 3 mm in AP.
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We applied our respiratory motion-correction algorithm to
the 2 cm motion case sets and estimated the motion between
each test state and the reference state for rejection thresholds,
varying from 0.0 to 0.9 times the teven value of Eq. �1�. Note
that since some states did actually have zero counts at pro-
jection angles �even the reference state for patients 3 and 4�,
then even when the threshold was 0.0, there were angles
rejected from inclusion when estimating motion in some
cases. We then calculated the average registration error as
previously defined for the extreme test motion states �1, 2, 8,
and 9� relative to the reference state for the four “simulated-
patient” NCAT studies for the three configurations. The
threshold chosen for application in all further investigations
herein was that at which the registration error averaged over
all the studies was the lowest.

With the threshold so determined, we investigated the dif-
ference in registration error made by application of our cor-
rection algorithm for each of the “simulated-patient” NCAT
studies for both the 1 and 2 cm motion amplitudes. This was
done by determining the average registration error for all
eight motion states relative to the reference state with the
application of our algorithm �to preprocess the projections
prior to reconstruction and motion estimation� and without
our algorithm �no preprocessing prior to reconstruction and
motion estimation� and comparing the results. The paired
t-test was used to check for statistically significant differ-
ences between the two sets of registration errors.

III.F. Simulation and Analysis of a case of significant
respiratory drift

We have observed that some patients have a drift in their
tracked respiratory signal data. We simulated a case of sig-
nificant drift with 14 of the 30 projections intact for each
head for each motion state. The block of 14 projections
started with the first 14 projections being intact for the first
respiratory state and moved to starting two projections later
for the next motion state and so on, as we progressed incre-
mentally through the motion states. We simulated this for
both the 1 and 2 cm motion amplitude cases. We applied our
motion estimation algorithm using the rejection threshold as
determined in the last section and calculated the average reg-
istration errors.

To investigate the visual impact on reconstructed slices
using our algorithm relative to that done without, the motion
estimated with our algorithm was used in the postestimation
pass through reconstruction to estimate the final slices as
discussed in Sec. II D. Short-axis slices were then created
from the transverse slices with and without motion correc-
tion. The orientation of the short-axis slices were indepen-
dently optimized for each of the uncorrected and corrected
cases. From the short-axis slices, polar maps24 were obtained
by standard methods to allow an overall visual assessment of

the impact of correction.
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III.G. List-mode acquisition of clinical studies
with a signal related to respiration

We acquired list-mode SPECT studies in four patients to
investigate application of our algorithm to clinical studies.
Clinical acquisition is detailed in this section. Processing of
this data is presented in the next.

The software was provided by Philips Medical Systems
�Cleveland, OH� to enable list-mode acquisition on our
triple-head IRIX SPECT system. The possible events listed
in the list-mode file are counts, time stamps, and gantry
angles �for tomographic acquisition�. Optionally, external
analog and digital events can be interspersed within the list.
The data are stored in the list-mode file sequentially in order
of occurrence. For each count, the information stored is:
Camera head detecting the photon, count location in a
2048�2048 matrix, and photon energy. A time stamp is
written every 10 ms. This duration defines the temporal res-
olution for all events. Only the step-and-shoot gantry rotation
mode is available with list-mode acquisition. Thus data is not
acquired during rotation.

A nonmetallic pneumatic bellows was obtained from
Lafayette Instruments Co. �Lafayette, IN� and wrapped
around the patient abdomens. The bellows was connected to
a pressure transducer, also from Lafayette Instruments Co.
The transducer was attached to a laptop through a National
Instruments Co. DAQCard-6062E acquisition card �Austin,
TX�. Variations in pressure due to stretching and compres-
sion of the bellows with respiration resulted in a variation in
the recorded voltage from the pressure transducer. This was
the respiratory signal used to amplitude bin the list-mode
counts as a function of respiration.

The LABVIEW programming environment �National In-
struments Co., Austin, TX� was used to create a graphical
user interface �GUI� for recording the respiratory signal at 10
Hz, i.e., one measurement from the bellows every 100 ms.25

In addition, the LABVIEW GUI triggered the start of the
SPECT acquisition and sent a synchronization signal consist-
ing of a repeating pattern of +3 and �3 V levels with a
period of 8 s to an analog input on the SPECT system for
recording in the list-mode file. By knowing the time at which
the synchronization signal was sent relative to the recording
of the respiratory signal, a temporal matching was estab-
lished between the respiratory signal recorded by the laptop
and the emission events recorded in the list-mode file on the
SPECT system.

Under Institutional Review Board approval and with in-
formed consent, four patients undergoing 99mTc sestamibi
cardiac-perfusion imaging on a selected day agreed to par-
ticipate in this study. A bellows was placed around the abdo-
men at the umbilicus level. The placement and adjustment of
the bellows required approximately 1 min to accomplish,
was well tolerated by the patients, and was the sole modifi-
cation to the standard imaging protocol as far as the patient
was concerned.

The cardiac-stress list-mode acquisitions were performed
on our IRIX gamma camera using LEHR collimators ap-

proximately 60 min following injection of 925–1110 MBq
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�25–30 mCi� of 99mTc-sestamibi. The acquisition duration
was 19.8 s per projection. Sixty-eight projections were ac-
quired with the two heads 102° apart. The first camera head
started at 123° �approximately right anterior oblique in terms
of patients� relative to 0° being the posterior direction. Step-
and-shoot body-contouring gantry motion was used and the
acquisition time was approximately 15 min depending on
orbit definition. Events were recorded within a symmetric
energy window centered on 140.5 keV with a width of 15%.
A scatter window was also acquired which was centered at
120 keV with a 5% width. Sequential transmission imaging
using the scanning 133Ba point sources of the Beacon
system13 �Philips Medical Systems, Cleveland, OH� was uti-
lized for the estimation of attenuation maps.

III.H. Amplitude binning and application of respiratory
motion correction in clinical studies

We developed software to bin the 2048�2048 list-mode
data into a set of 128�128 frames of 100 ms each for each
projection angle at a pixel size of 4.67 mm. With an acqui-
sition duration of 19.8 s per projection, this resulted in 198
projections of 100 ms being created for each projection
angle. The 100 ms duration was chosen to match the fre-
quency of acquisition of the respiratory signal. The respira-
tory signal data were thresholded to remove infrequent ex-
treme values. This was done by dividing the respiratory
signal range into 100 bins between the signal maximum and
minimum values. The number of 100 ms time intervals for
the entire acquisition with their signal value within each of
these bins was then determined, as was the maximum num-
ber of intervals within any of the bins. A search was then
conducted from bin 100 downward to find the first bin,
which contained 10% or more of the maximum number of
intervals per bin. All time intervals with a signal value above
this level had their value truncated to this level. A similar
process was used to truncate signal values at the low end of
the range. The value of 10% was selected empirically based
on visualizing the impact of this process on plots of the
respiratory signal versus time for a number of patient acqui-
sitions. The goal was to determine a value which clipped the
infrequent spikes such as those seen in Fig. 1 near the start of
acquisition, 4 min past the start, and between 12 and 13 min
past the start of acquisition. The range of the remaining val-
ues was divided into nine uniform size intervals or states
between the maximum �corresponding to the maximum in-
spiratory volume� and minimum �corresponding to the maxi-
mum expiratory volume�. The choice of nine states was also
empirical. Using fewer than nine would have increased the
coarseness of binning and more than nine would have de-
creased the signal to noise ratio in the slices. For each pro-
jection angle, the 100 ms projections whose respiratory state
fell in the same interval were summed to produce nine pro-
jections for that angle, one for each of nine intervals of the
amplitude of respiratory motion. The variability in acquisi-

tion time for a given motion state with projection angle was
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analyzed to access the extent of the potential problem with
angular representation in the projection sets of motions
states.

The counts in the projection bins were thresholded and
normalized as described in Secs. II A and II B and the mo-
tion between the states estimated as previously described in
Sec. II C. After motion estimation, the projections without
normalization or thresholding for each state were used along
with the motion estimates in iterative reconstruction to cor-
rect for motion as previously described in Sec. II D. Short-
axis slices with and without respiratory motion correction
were compared visually as an index of the extent in change
resulting from motion correction. The orientation of the
short-axis slices were independently optimized for each of
the uncorrected and corrected cases. From the short-axis
slices, polar maps23 were obtained by standard methods to
allow an overall visual assessment of the impact of correc-
tion.

IV. RESULTS

IV.A. Number of iterations to use when reconstructing
slices for motion estimation

As described in Sec. III C, we used simulated NCAT stud-
ies with a clinically relevant noise level to estimate the num-
ber of MLEM iterations to use when reconstructing the slices
to estimate motion. Plotted as a function of number of itera-
tions in Fig. 3 is the average registration error over the 3
NCAT configurations when the NAR goes from 30 to 2 for
the first, mid, and end sections. The standard deviations at
each iteration are plotted as error bars. Based on these re-
sults, we selected 11 iterations �where the error was the mini-
mum� as the number to be used in our algorithm when ap-

FIG. 3. Average registration error and its standard deviation plotted versus
the number of iterations for the three NCAT configurations used in our
simulation study. For each configuration, the NAR per head goes from 30 to
2 for the first, mid, and end sections of the simulated SPECT acquisition.
plied to noisy projections, both simulated and clinical. From
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the figure, we observe that the standard deviations tend to
diminish as the number of iterations increases.

IV.B. Accuracy of motion estimation in the presence
of Poisson noise in the NCAT simulations

Figure 4 shows results for the estimation of the respira-
tory motion between the reference state 5 in the center of the
range of amplitude states and the extreme state 9 for the first
configuration of the NCAT phantom when clinically relevant
Poisson noise is present in the simulated slices. The error in
the registration results are given with and without the use of
our algorithm. The error for the cases when our algorithm
was not used quickly diverges from those when it was used
with differences seen even when relatively few angles are
missing. Even with the use of our algorithm, a trend toward
increasing error is seen when NAR is less than 10. The re-
sults for NCAT configurations II and III were similar.

IV.C. Determination of the threshold for rejection
of projection angles

Figure 5 shows the average registration error plotted as a
function of the threshold used to determine the inclusion of
projection angles in reconstructing the slices for motion es-
timation. We used two extreme bins on each side of the ref-
erence bin �i.e., bins 1 and 2 and 8 and 9� to calculate the
mean error, which was then averaged over the extreme four
simulated respiratory patterns based on actual patient studies
�Sec. III E� for the three NCAT configurations with 2 cm
maximal SI motion and 6 mm AP motion of the heart. Also
plotted as error bars is the standard deviation of the mean-

FIG. 4. Average registration errors �average over voxels� plotted as a func-
tion of the number of angles retained in test state nine for the first configu-
ration �config I� of the NCAT phantom with default angulation of the heart
and clinically relevant noise levels in the projections. Errors are plotted for
when all angles are retained in reference state 5 �dashed lines�, which is the
standard methodology and when, as per our algorithm, only the angles in
common between the two states are retained �solid lines�. The two estima-
tion methodologies are plotted for the NAR going from 30 to 2 in steps of 2
at the start, middle, or the end of acquisition for each head.
registration error �mean over bins� for each threshold value.

Medical Physics, Vol. 37, No. 12, December 2010
The standard deviation is calculated over the four patientlike
simulations for the three configurations, thus representing the
variation across patientlike studies. We see that a wide range
of thresholds maybe chosen for use in our algorithm. We
selected the value for which the average error was minimum,
namely, 0.3. This threshold was used throughout the rest of
our investigations. By the paired t-test, the only statistical
difference at p�0.05 in the average registration errors be-
tween 0.3 and the rest of the thresholds was for a threshold
of 0.9. Thus our choice is arbitrary, but the nonsignificant
variation over a large range of thresholds indicates our algo-
rithm is not very sensitive to this parameter and hence is
robust. Also plotted in Fig. 5 are the average registration
error and its standard deviation for the case of not using the
thresholding and scaling of our algorithm. By the paired
t-test there was a statistically significant difference �p
�0.05� between using our algorithm �with a threshold of
0.3� and not using our algorithm �that is not using any pre-
processing step before reconstruction and motion estima-
tion�. This difference in registration error between using and
not using our algorithm is investigated in more detail in Sec.
IV D.

IV.D. Comparison of average registration error
for five simulated respiratory patterns

Table I shows the average registration errors for the
NCAT simulated studies for four respiratory patterns based
on actual patient studies described in Sec. III E and the case
we created for significant respiratory drift described in Sec.
III E for both 1 and 2 cm maximal heart SI motion. Com-
parison is made with and without the use of our algorithm

FIG. 5. Mean-registration error over four extreme bins �namely, bins 1, 2, 8,
and 9� averaged for the four simulated patients for three NCAT configura-
tions with the 2 cm motion in SI and 6 mm motion in the AP direction. Error
is plotted as a function of the threshold �0.0–0.9� used to reject projections
used in reconstructing the data sets used to perform the registration. The
bars at each point are the standard deviations �of the mean errors over bins�
over the four simulated patients and the three configurations. Also plotted
are the average error and its SD for the case of not using our algorithm.
when estimating motion. To clarify again, the “without” was
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where no preprocessing was done on the projections before
estimating motion and the “with” was where the preprocess-
ing including scaling and rejection of angles based on using
a threshold of 0.3 before motion estimation. Note that the
average error was the combined value for all eight nonrefer-
ence respiratory motion states as estimated relative to the
reference state. Thus it includes states near the reference
state where there is little error and most projection angles are
not rejected by application of our thresholding, as well as the
extreme states where we expect larger mismatch with the
reference state and a greater need for thresholding. Notice
that even for this combined measure, our algorithm always
results in a smaller error and the averages were lower by
more than 2 mm in some cases for the respiratory profiles
based on the patient studies. For the case of the respiratory
profile with significant drift, the application of our algorithm
results in a smaller error by as much as 5 mm. The differ-
ences in estimation error were statistically significant by the
paired t-test at p�0.05 for more than one-half of the studies
based on patientlike respiratory patterns and all of the studies
for the case of significant respiratory drift.

(a) (b) (c)

FIG. 6. The top and bottom rows show two short-axis slices for NCAT
config II with 2 cm motion including drift. Slices in column �a� are refer-
ence, �b� are with motion but no correction, and �c� are with motion correc-
tion. In the top row, notice the reduction in the respiratory-motion-induced
artifactual cooling of the heart after motion correction. In the bottom row,
notice the reduction of the artifactual appearance, clearer visibility of lesion,
better separation from the liver, and thinner appearance of the heart wall
with correction. We did not use any postreconstruction smoothing so as to
more clearly present the impact of respiratory motion and its correction on

TABLE I. Registration errors �mm� averaged over the eight test states for five d
with two extents of motions. Compared are average errors and standard devia
The average and std are over the eight test states. The * indicate where a s
factor used was 0.3.

Configuration
and magnitude

SI motion

Time profile
of patient 1
without/with

�mm�

Time profile
of patient 2
without/with

�mm�

Config II, 2 cm 1.28 �0.78�/0.89 �0.34� 1.63 �0.85�/1.18 �0.34�
Config III, 2 cm 1.81 �0.92�/1.26 �0.59�* 1.80 �0.71�/1.35 �0.80�
Config II, 1 cm 1.2 �0.95�/0.77 �0.28� 2.05 �0.83�/1.03 �0.19�*
Config III, 1 cm 1.30 �1.12�/0.89 �0.47� 1.60 �0.68�/0.93 �0.42�*
the images.
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IV.E. Example short-axis slices and polar maps for
the NCAT simulation with significant drift

Figure 6 shows two selected short-axis slices for the
NCAT simulations of configuration II �standard NCAT heart
angulation and a perfusion defect in the basal inferior-lateral
wall� with a 2 cm maximal SI respiratory motion of the heart
for the case of significant respiratory drift. The reference
slices �shown at the left� are reconstructions of simulations
using all 7.5�106 counts in the middle state. They serve as
the standard against which the following slices can be com-
pared to judge the impact of respiration. In the slices recon-
structed without motion correction, a perfusion defect can be
seen to appear in the inferior-lateral wall for the top short-
axis slice and a significant distortion can be seen to appear in
the known defect in the bottom slice. The slices recon-
structed using our motion-correction algorithm, however,
closely approximate the reference slices.

Shown in Fig. 7 are the left ventricular polar maps for the
case in Fig. 6. Again the reference map is on the left, fol-
lowed by the map for respiratory motion present but not
corrected, and finally the map for respiratory motion present
and corrected by our algorithm. Notice the blurring of the
inferior-lateral wall lesion and the suggestion of increased
cooling in the anterior and inferior walls in the map from the
slices without motion correction. Also note that with respira-
tory motion correction, the map is largely returned to the
appearance of the map from the reference slices. Figure 7

ent time profiles for respiration for two of the NCAT phantom configurations
�in brackets� without and with using our algorithm when estimating motion.
ical difference was observed at p�0.05 by the paired t-test. The threshold

Time profile
of patient 3
without/with

�mm�

Time profile
of patient 4
without/with

�mm�

Time profile
of drift case
without/with

�mm�

�0.71�/1.05 �0.45� 2.72 �1.95�/0.68 �0.28�* 6.43 �5.01�/0.76 �0.49�*
�0.65�/1.16 �0.46�* 2.53 �1.41�/1.68 �0.59� 6.34 �5.26�/1.05 �0.48�*
�0.64�/0.87 �0.30�* 3.21 �2.35�/1.05 �0.24�* 6.58 �5.24�/0.66 �0.27�*
�0.70�/0.92 �0.40�* 1.91 �1.20�/0.94 �0.41�* 5.80 �4.45�/0.65 �0.28�*

(a) (b) (c)

FIG. 7. Polar maps from the NCAT simulation with 2 cm motion including
drift. Shown are the maps obtained from the three cases: �a� Reference, �b�
no motion correction, and �c� with motion correction. Notice the distortion
of the lesion in the lateral wall �right side of the polar map� and artifactual
decreased uptake in the inferior wall without motion correction. With mo-
tion correction, the inferior wall artifact is reduced and the appearance of the
iffer
tions
tatist

1.47
2.54
1.68
1.59
lesion is closer to that of the reference.
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thus further illustrates the effects of respiratory motion on
reconstructed images �2 cm motion� and demonstrates the
success of our algorithm in correcting for these effects.

Figure 8 shows two selected short-axis slices for the same
NCAT configuration as Fig. 6, except with a 1 cm maximal
SI respiratory motion of the heart. Again, the reference slices
are reconstructions of simulations using all 7.5�106 counts
in the middle state and are shown leftmost. Slices containing
uncorrected motion are shown in the center and motion cor-
rected slices are shown at the right. Not unexpectedly, the
impact of motion correction is less significant for the 1 cm
motion, but we still see the slices to be closer to the reference
after correction than without correction.

The polar maps for the 1 cm case are shown in Fig. 9. The
reference map is on the left, followed by the map for respi-
ratory motion present but not corrected, and finally the map
for respiratory motion present and corrected by our algo-
rithm. While the impact of the correction is not as significant
as with 2 cm motion, there are some differences. For ex-
ample, a better agreement can be seen in the size and shape
of the inferior-lateral wall defect as well as a decrease in the
artifactual cooling in the apical region.

IV.F. Illustration of the irregularity in respiration as
seen clinically

Figures 10–13 show the duration of SPECT acquisition in
units of 100 ms for each of the nine amplitude-binned mo-
tion states plotted as a function of projection-angle number.
Note that in each plot, the duration of acquisition is shown

(a) (b) (c)

FIG. 8. The top and bottom rows show two short-axis slices for NCAT
config II with 1 cm motion including drift. Slices in column �a� are refer-
ence, �b� are with motion but no correction, and �c� are with motion correc-
tion. In the top row, notice that after correction, the lateral wall lesion is
closer to the reference than without motion correction. In the bottom row,
notice the slightly thinner heart wall with correction. We did not use any
postreconstruction smoothing so as to clearly demonstrate the impact of the
motion and its correction.

(a) (b) (c)

FIG. 9. Polar maps from the NCAT simulation with 1 cm motion including
drift. Shown are the same three cases: �a� Reference, �b� no motion correc-
tion, and �c� with motion correction. The map obtained with motion correc-

tion can be seen to better approximate that of the reference.
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for only the first 34 angles acquired. With dual-headed ac-
quisition, the second set of 34 angles is paired in acquisition
with the first. Thus they are redundant and not shown

Also note that all four patients show significant variation.
The horizontal dashed line in each case shows the duration if
the breathing was perfectly regular throughout the acquisi-
tion period. As detailed in Sec. II, if the duration of acquisi-
tion falls below the threshold value �0.3 times the dashed line

FIG. 10. Duration of SPECT acquisition in units of 100 ms for each of the
nine amplitude-binned motion states plotted as a function of projection
angle for patient 1. The dashed line shows the idealized case of all the
respiratory motion states having evenly distributed time durations for the
given angle �i.e., teven�. The dotted and dashed lines show the threshold of
0.3 times teven used to reject inclusion of projections within reconstruction
when estimating motion. Notice that states 1, 2, 3, 8, and 9 would have
missing projection angles when estimating motion.

FIG. 11. Duration of SPECT acquisition in units of 100 ms for each of the
nine amplitude-binned motion states plotted as a function of projection
angle for patient 2. The dashed line shows the idealized case of all the
respiratory motion states having evenly distributed time durations for the
given angle �i.e., teven�. The dotted and dashed lines show the threshold of
0.3 times teven used herein to reject inclusion of projections within recon-
struction when estimating motion. Notice that all �nonreference� states

would have missing projection angles when estimating motion.
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level�, then that angle is not used in reconstruction to esti-
mate the motion of the given state relative to the reference
state. This level is shown in the figures.

IV.G. Extent of respiratory motion in the clinical
studies and the impact of its correction

We used 6-DOF registration for these patient studies to
estimate the motion between a given state and the reference
state which was selected as state 5. However, mainly SI
translation was found to be significant. The approximate mo-
tions for the four patients were determined by taking the
average vector displacement of voxels in a 50�50�50 re-
gion due to the difference of the motions estimated for states
1 9. This was determined to be 0.80 cm for patient 1, 0.91
cm for patient 2, 0.68 cm for patient 3, and 0.98 cm for
patient 4.

The motion estimation results were used within recon-
struction to correct for respiratory motion. The degree of
improvement in these patient images depended on a variety
of factors such as extent of motion, the relative number of
counts in the states with highest motion, and the orientation
of the heart with respect to the direction of motion. In gen-
eral, the change in the appearance of the slices for these four
patients was modest as has been observed by others4 and
expected by the above extent of the observed motion in com-
parison with the 12–15 mm FWHM system resolution for
SPECT imaging in the heart region of the slices. To help
visualize the changes, our reconstruction included the mod-
eling of system spatial resolution,18 as well as attenuation
and scatter compensation and we did not perform postrecon-
struction low-pass filtering. Thus for the four patients shown

FIG. 12. Duration of SPECT acquisition in units of 100 ms for each of the
nine amplitude-binned motion states plotted as a function of projection
angle for patient 3. The dashed line shows the idealized case of all the
respiratory motion states having evenly distributed time durations for the
given angle �i.e., teven�. The dotted and dashed lines show the threshold of
0.3 times teven used herein to reject inclusion of projections within recon-
struction when estimating motion. Notice that all states �even 5� would have
missing projection angles when estimating motion.
in Fig. 14, the differences with correction are more apparent
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then they would have been otherwise. For patient 1, we ob-
served clearer liver-heart separation and better contrast of the
lateral wall defect with correction. For patient 2, there is
slightly better separation between the heart and the subdia-
phragm activity. For patient 3, there is better uniformity of
the anterior wall with correction. For patient 4, there is
slightly better uniformity of uptake in the anterior and infe-
rior walls and better separation from the subdiaphragmatic
activity with correction. Figure 15 shows polar maps before
and after correction for the four patients. Notice that for all
four patients the significant features seen without correction

FIG. 13. Duration of SPECT acquisition in units of 100 ms for each of the
nine amplitude-binned motion states plotted as a function of projection
angle for patient 4. The dashed line shows the idealized case of all the
respiratory motion states having evenly distributed time durations for the
given angle �i.e., teven�. The dotted and dashed lines show the threshold of
0.3 times teven used herein to reject inclusion of projections within recon-
struction when estimating motion. Notice that all states �even 5� would have
missing projection angles when estimating motion.

FIG. 14. Short-axis slices for the four SPECT 99mTc-sestamibi patients ac-
quired on the same day. Patients 1–4 are shown without and with motion
correction in �a�–�d�, respectively. In patient 1, notice the slightly better
separation from subdiaphragmatic activity, contrast of the lateral wall per-
fusion defect, and uniformity of anterior and inferior walls with correction.
In patient 2, notice the slightly better separation from the subdiaphragmatic
activity. For patient 3, there was a better uniformity of apparent uptake in
the anterior wall with correction. In patient 4, there was a slightly better
uniformity of uptake in the LV walls and separation from the subdiaphrag-

matic uptake with correction.
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are generally visualized better with correction, as one might
expect with removal of a source of smoothing.

V. DISCUSSION

Our algorithm for motion estimation in the presence of
irregular respiratory motion shows promising results. For the
noisy NCAT simulations, the average registration error in-
creased much more rapidly as the NAR decreased without
use of our algorithm than with it as shown in Fig. 4. For the
noisy NCAT simulations reported in Table I, the average reg-
istration error with use of our algorithm was always less
�statistically so in the majority of cases� when estimating the
motion than when the motion was estimated without our pre-
processing of the projections. The reconstructions with mo-
tion compensation for the NCAT simulation with 2 cm drift
showed the inferior-lateral wall defect, separation of the
heart from the liver, and heart wall thickness in better agree-
ment with the reference slices. The improvement was less for
the case of 1 cm drift, but definite differences were still
noted. For the clinical data sets, we observed irregularity of
breathing for all four patients. This is expected due to the
long duration of the SPECT scans. Better separation between
the heart and subdiaphragmatic activity, uniformity of the
anterior and/or inferior walls, and visualization of defects
were noted in the slices of the four patients with motion
correction. Higher contrast for structures in the polar maps
was also generally seen with motion correction. It should be
noted that the changes seen in these clinical studies are sub-
jective as the truth for the regional wall agent localization is
unknown. With these encouraging results, a comprehensive
clinical investigation of our algorithm is indicated to deter-
mine its clinical utility in terms of improving the diagnostic
accuracy of cardiac-perfusion imaging with SPECT for coro-
nary artery disease.

These studies have concentrated on respiratory motion
correction for the heart. From MRI studies in free-breathing
volunteers, it is known that the motion of the heart is signifi-

21

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 15. Polar maps from short-axis slices of the same patients as in Fig. 14
without and with motion correction. Patient 1 is �a� and �b�, patient 2 is �c�
and �d�, patient 3 is �e� and �f�, and patient 4 is �g� and �h�. Notice for all
four patients that, generally, the significant features seen without correction
are still visible with correction, but seen with higher contrast as one would
expect with decreasing a source of smoothing �respiratory motion�.
cantly less than that of the diaphragm. Thus, motion cor-
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rection might be expected to result in even greater benefit for
structures in the chest and abdomen than the heart. However,
it is likely that nonrigid as opposed to rigid-body motion
correction will be needed to correct multiple structures.5

Since the liver and other subdiaphragmatic structures do not
move rigidly with the heart, it also may be that a nonrigid
correction could further enhance the separation of the heart
from such structures. The NCAT phantom used in this inves-
tigation was specifically altered so that the motion of the
liver was nonrigid with that of the heart. Our limited simu-
lation and clinical studies have not shown any significant
artifacts in the heart we could ascribe to nonrigid liver mo-
tion. However, given the large variation in patient anatomy
and physiology this issue warrants further investigation.

VI. CONCLUSIONS

We presented a strategy to do postreconstruction estima-
tion of respiratory motion for SPECT in the presence of
limited-angle effects due to irregularity in respiration. The
need for this correction was demonstrated in simulation us-
ing the NCAT phantom. We also showed the extent of irregu-
larity of breathing in four SPECT patient studies. Improve-
ments in image quality consistent with diminishing the
degradations caused by respiratory motion were observed in
both simulation and the clinical studies.
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