
 

 

Introduction: etiology and pathology 
 
Worldwide about 271,000 cases of kidney can-
cer have been diagnosed and 116,000 persons 
have died because of kidney cancer [1]. In the 
United States, 57,000 cases of kidney cancer 
have been diagnosed and 14,000 persons have 
died. The majority of kidney cancers (80-85%) 
are renal cell carcinomas (RCCs) originating 
from the renal parenchyma. The remaining 15-
20% are mainly urothelial carcinomas of the 
renal pelvis. Kidney cancer accounts for 2% of 
all adult malignancies, with a male to female 
ratio of 3:2 among affected patients [1]. The 
incidence of RCC peaks in the sixth decade of 
life, 80% of cases affecting the 40- to 69-year-

old age group [2]. The incidence of RCC has 
been rising steadily each year in Europe and the 
United States over the last three decades. It is 
generally highest in Western and Eastern Euro-
pean countries and Scandinavia, as well as in 
Italy, North America, Australia and New Zealand. 
The lowest rates are reported in Asia and Africa. 
This regional variation in the incidence of RCC 
(more than ten-fold) suggests the strong role of 
environmental risk factors [3]. However, it is 
difficult to ascribe a definite and direct cause 
for this cancer. Smoking and chemical carcino-
gens such as asbestos and organic solvents are 
related to renal tumorigenesis. Obesity and hy-
pertension and/or use of antihypertensive medi-
cation have been consistently reported to be 
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Abstract: Renal cell carcinoma (RCC) is not a single entity, but comprises a group of tumors including clear cell RCC, 
papillary RCC and chromophobe RCC, which arise from the epithelium of renal tubules. The majority of clear cell 
RCCs, the major histological subtype, have genetic or epigenetic inactivation of the von Hippel-Lindau (VHL) gene. 
Germline mutations in the MET and fumarate hydratase (FH) genes lead to the development of type 1 and type 2 
papillary RCCs, respectively, and such mutations of either the TSC1 or TSC2 gene increase the risk of RCC. Genome-
wide copy number alteration analysis has suggested that loss of chromosome 3p and gain of chromosomes 5q and 7 
may be copy number aberrations indispensable for the development of clear cell RCC. When chromosome 1p, 4, 9, 
13q or 14q is also lost, more clinicopathologically aggressive clear cell RCC may develop. Since renal carcinogenesis 
is associated with neither chronic inflammation nor persistent viral infection, and hardly any histological change is 
evident in corresponding non-tumorous renal tissue from patients with renal tumors, precancerous conditions in the 
kidney have been rarely described. However, regional DNA hypermethylation on C-type CpG islands has already accu-
mulated in such non-cancerous renal tissues, suggesting that, from the viewpoint of altered DNA methylation, the 
presence of precancerous conditions can be recognized even in the kidney. Genome-wide DNA methylation profiles in 
precancerous conditions are basically inherited by the corresponding clear cell RCCs developing in individual pa-
tients: DNA methylation alterations at the precancerous stage may further predispose renal tissue to epigenetic and 
genetic alterations, generate more malignant cancers, and even determine patient outcome. The list of tumor-related 
genes silenced by DNA hypermethylation has recently been increasing. Genetic and epigenetic profiling provides an 
optimal means of prognostication for patients with RCCs. Recently developed high-throughput technologies for ge-
netic and epigenetic analyses will further accelerate the identification of key molecules for use in the prevention, 
diagnosis and therapy of RCCs.  
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positively associated with RCC risk [2].  
 
RCC is not a single entity, but comprises a group 
of tumors that arise from the epithelium of renal 
tubules [4]. Clear cell RCC is the most common 
histological subtype (Figure 1A). Typically, the 
cells have cytoplasm filled with lipids and glyco-
gen, are surrounded by a distinct cell mem-
brane and contain round and uniform nuclei, 

and show an alveolar, acinar, cystic and solid 
architecture (Figure 1B). First, based simply on 
cytologic and histologic criteria, papillary RCCs 
(Figure 1C) can be divided into two morphologic 
groups, type 1 and type 2: type 1 papillary RCCs 
consist of papillae covered with a single or dou-
ble layer of small cuboid cells with scanty cyto-
plasm (Figure 1D), and type 2 papillary RCCs 
consist of papillae covered by large eosinophilic 

Figure 1. Macroscopic (A, C, F and G) and microscopic (B, D, E and H) views of a clear cell RCC (A and B), papillary 
RCCs (C, D and E) and a chromophobe RCC (F, G and H). A. Clear cell RCCs commonly protrude from the renal cortex 
as a rounded mass. Their cut surfaces are typically golden yellow, and necrosis and hemorrhage are commonly pre-
sent. B. Clear cell RCCs typically have cytoplasm filled with lipids and glycogen and show an alveolar architecture. C. 
Papillary RCCs frequently contain areas of hemorrhage, necrosis and cystic degeneration. D. Type 1 papillary RCCs 
consist of papillae covered with a single or double layer of small cuboid cells with scanty cytoplasm. E. Type 2 papil-
lary RCCs consist of papillae covered by large eosinophilic cells arranged in an irregular or pseudo-stratified manner. 
F. Chromophobe RCCs are solid circumscribed tumors with slightly lobulated surfaces. In unfixed specimens, the cut 
surface is homogeneously light brown or tan. G. Macroscopic view of the same chromophobe RCC after formalin fixa-
tion. The cut surface of chromophobe RCCs turns graysh-beige. H. Chromophobe RCCs consist of tumor cells with 
abundant eosinophilic cytoplasm (pale cells [Pa] and eosinophilic cells with a perinuclear halo [Eo]) and show mainly 
a solid structure. 
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cells arranged in an irregular or pseudo-
stratified manner (Figure 1E) [5].  Chromophobe 
RCC consists of tumor cells with abundant eosi-
nophilic cytoplasm (pale cells and eosinophilic 
cells with a perinuclear halo) and show mainly a 
solid structure (Figure 1F to 1H) [5]. Clear cell 
RCC and papillary RCC are derived from the 
proximal convoluted tubule, whereas the origin 
of chromophobe RCC is the distal tubule/
collecting tubule. Certain inherited disorders 
such as von Hippel-Lindau (VHL) disease, he-
reditary papillary RCC and Birt-Hogg-Dube (BHD) 
syndrome enhance the risk of acquiring clear 
cell RCC, papillary RCC and chromophobe RCC, 
respectively [6].  
 
Genetic alterations in RCCs 
 
Tumor-related genes and their role in renal car-
cinogenesis 
 
The World Health Organization (WHO) classifica-
tion has introduced genetic alterations as a hall-
mark of certain histological subtypes of RCC, 
e.g. clear cell RCC is characterized by loss of 
chromosome 3p and inactivation of the VHL 
gene at 3p25.3 due to mutation or DNA methy-
lation around the promoter region [7], although 
the classification of RCC is based largely on his-
tology. The product of VHL is a 3-kDa protein 
with multiple functions, the best documented of 
which relates to its role as the substrate-
recognition component of the E3-ubiquitin li-
gase complex. This complex is best known for 
its ability to target hypoxia-inducible factors 
(HIFs) for polyubiquitination and proteasomal 
degradation [8]. Under hypoxic conditions, HIF-
1alpha and HIF-2alpha accumulate and form 
heterodimers with HIF-1beta and translocate to 
the nucleus where they induce transcription of 
downstream target genes including vascular 
endothelial growth factor (VEGF). The absence 
of wild-type VHL promotes inappropriate activa-
tion of downstream target genes and contrib-
utes to tumorigenesis [9]. Additionally, VHL pro-
tein has functions that are independent of HIF-
1alpha and HIF-2alpha and are thought to be 
important for its tumor-suppressor action, as-
sembly of the extracellular matrix, control of 
microtubule dynamics, regulation of apoptosis, 
and possibly stabilization of TP53 proteins [10].  
 
Patients with gain-of-function germline muta-
tions in the MET gene develop type 1 papillary 
RCC. MET encodes a transmembrane receptor 

tyrosine kinase whose ligand is hepatocyte 
growth factor (HGF). Activation of MET by HGF 
triggers tyrosine kinase activity, which facilitates 
several transduction cascades resulting in mul-
tiple cellular processes such as mitogenesis 
and migration. However, the incidence of MET 
mutations in sporadic papillary RCC is not high 
(about 10%) [11]. Patients with germline muta-
tions in the fumarate hydratase (FH) gene de-
velop type 2 papillary RCC [12]. VHL recognition 
of HIF requires hydroxylation by HIF prolyl hy-
droxylase (HPH), and FH activates HPH. FH mu-
tation promotes tumorigenesis via HIF protein 
accumulation due to HPH dysfunction. Unlike 
the gain-of-function mutation of the c-kit (KIT) 
gene, overexpression of KIT is frequent in chro-
mophobe RCC [13]: KIT is a type III receptor 
tyrosine kinase that has a role in cell signal 
transduction. Normally KIT is phosphorylated 
upon binding to its ligand, stem cell factor. This 
leads to a phosphorylation cascade ultimately 
activating various transcription factors. Such 
activation regulates apoptosis, cell differentia-
tion, proliferation, chemotaxis, and cell adhe-
sion. Although germline mutations of the BHD 
gene, which encodes folliculin, have been de-
tected in 80% of BHD kindreds, the incidence of 
the mutation in sporadic chromophobe RCC is 
very low. Tuberous sclerosis complex (TSC) has 
been linked to germline inactivating mutations 
of either of TSC1 (9q34) encoding hamartin or 
TSC2 (16p13.3) encoding tuberin, and affected 
patients have an increased risk of developing 
renal tumors including clear cell RCC, papillary 
RCC and chromophobe RCC [3]. The TSC1/TSC2 
protein complex inhibits mammalian target of 
rapamycin (mTOR) protein and is involved in 
signaling pathways that regulate cell growth. 
Although the Eker rat model with a germline 
insersion in the Tsc2 gene develops dominantly 
inherited cancers [14], the role of TSC1 and 
TSC2 in human sporadic RCC is unclear.  
 
Other known cancer genes that are frequently 
mutated in adult epithelial cancers, for example 
RAS, v-raf murine sarcoma viral oncogene ho-
molog B1 (BRAF), TP53, retinoblastoma (RB), 
cyclin-dependent kinase inhibitor 2A (CDKN2A), 
phosphoinositide-3-kinase, catalytic alpha poly-
peptide (PIK3CA), phosphatase and tensin ho-
molog (PTEN), epidermal growth factor receptor 
(EGFR) and v-erb-b2 erythroblastic leukemia 
viral oncogene homolog 2 (ERBB2), make only a 
small contribution to clear cell RCC [15]. Re-
cently somatic truncating mutations in the neu-
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rofibromin 2 (NF2) gene, encoding marlin pro-
tein that is similar to the ERM (ezrin, radixin, 
moesin) family members that link cytoskeletal 
components and the cell membrane, have been 
reported in clear cell RCCs. Since none of the 
samples of clear cell RCC with the NF2 mutation 
harbored a VHL mutation, it has been sug-
gested that somatic NF2 mutations may ac-
count for a proportion of cases in this subset 
[15]. 
 
Genetic clustering of clear cell RCCs 
 
Since the genetic backgrounds of RCCs have 
not been fully understood to date, we have ana-
lyzed copy number alterations by array-
comparative genomic hybridization (CGH) using 
a custom-made bacterial artificial chromosome 
(BAC) array (MCG Whole Genome Array-4500) 
harboring 4361 BAC clones throughout chromo-
somes 1 to 22 and X and Y clones [16] in clini-
cal tissue samples (Figure 2A), and clarified the 
genetic clustering of clear cell RCCs [17]. RCC is 
usually enclosed within a fibrous capsule and 
well demarcated, and hardly ever contains fi-
brous stroma between the cancer cells. There-
fore, we were able to obtain cancer cells of high 
purity from surgical specimens, avoiding con-
tamination with both non-cancerous epithelial 
cells and stromal cells. By unsupervised hierar-
chical clustering analysis of RCCs based on ar-
ray-CGH data, clear cell RCCs were clustered 
into the two subclasses, Clusters ATG and BTG 

(Figure 2B). In clear cell RCCs, the average num-
ber of BAC clones on which loss or gain was 
detected was significantly higher in Cluster BTG 
than in Cluster ATG. In both clusters, loss or gain 
of an entire chromosome or an entire chromo-
some arm was frequent. Loss of chromosome 
3p and gain of chromosomes 5q and 7 were 
frequent in both Clusters ATG and BTG. On the 
other hand, loss of chromosome 1p, 4, 9, 13q 
or 14q was frequent only in Cluster BTG, but not 
in Cluster ATG (Figure 2C). Gain on 1q31-ter, 3q 
and 8q was frequent only in Cluster BTG, 
whereas loss at the same loci was observed in 
Cluster ATG, although the frequency was rather 
low. The present genome-wide analysis indi-
cated that loss of chromosome 3p and gain of 
5q and 7 may be copy number aberrations that 
are indispensable for the development of clear 
cell RCCs, regardless of genetic clustering [17]. 
Additional loss of chromosome 1p, 4, 9, 13q or 
14q may promote the genetic pathway to Clus-
ter BTG [17].  

On the basis of microscopic examination of the 
entire tumor mass, the presence or absence of 
vascular involvement was evaluated in the ex-
amined clear cell RCCs. Macroscopic observa-
tion revealed the presence or absence of renal 
vein tumor thrombi. Clear cell RCCs in Cluster 
BTG showed significantly higher histological 
grades and more frequently showed vascular 
involvement, renal vein tumor thrombi and 
higher pathological tumor-node-metastasis 
(TNM) stages than those in Cluster ATG. Thus, 
accumulated genetic alterations may play a sig-
nificant role in the more malignant potential of 
clear cell RCCs belonging to Cluster BTG.  
 
Even if resection has been considered com-
plete, some RCCs relapse and metastasize to 
distant organs and can lead to death in middle-
aged adults belonging to the working popula-
tion. Unless relapsed or metastasized tumors 
are diagnosed early by close follow-up, the ef-
fectiveness of any adjuvant therapy is very re-
stricted. Therefore, to assist the close follow-up 
of patients who have undergone nephrectomy 
and are still at risk of recurrence and metasta-
sis, prognostic indicators should be explored. 
Recurrence or metastasis was observed in 40% 
of patients who underwent curative resection in 
Cluster BTG, but in only 9% of patients who did 
so in Cluster ATG [17]. The recurrence-free sur-
vival rate of patients in Cluster BTG was signifi-
cantly lower than that of patients in Cluster ATG. 
Twenty-four% of the patients in Cluster BTG died 
as a result, whereas none of the patients in 
Cluster ATG died [17]. The overall survival rate of 
patients in Cluster BTG was also significantly 
lower than that of patients in Cluster ATG (Figure 
2D). Multivariate analysis revealed that genetic 
clustering was a predictor of recurrence-free 
survival, and was independent of histological 
grade and pathological TNM stage. In addition, 
a sufficient quantity of good-quality DNA was 
obtainable from each nephrectomy specimen. 
Therefore, use of a mini-array harboring a set of 
BAC clones that can effectively discriminate 
Cluster BTG after nephrectomy may be a promis-
ing method of prognostication.  
 
Epigentic Alterations in RCCs 
 
Epigenetics and cancers  
 
In addition to genetic events, human cancer 
cells show drastic epigenetic alterations. DNA 
methylation, a covalent chemical modification 
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Figure 2. Genetic clustering of clear cell renal cell carcinomas (RCCs). An example of a histogram of the signal ratios 
(test signal/reference signal) afforded by array-CGH in a clear cell RCC. The thresholds of the signal ratios for copy 
numbers of 0, 1, 2, 3 and 4 or more were determined from the troughs (red bars) between the distinct peaks. A. FISH 
analysis using the same clone validated the results of array-CGH (ref. 17). B. Unsupervised hierarchical clustering 
analysis based on array-CGH data. Clear cell RCCs were grouped into Clusters ATG and BTG (ref. 17). C. Distinct copy 
number profiles in Clusters ATG and BTG. Loss of chromosome 3p and gain of 5q and 7 may promote the development 
of RCCs belonging to Cluster ATG and showing a favorable outcome. When loss of 1p, 4, 9, 13q or 14q is added, more 
malignant RCCs in Cluster BTG may develop (ref. 17). D. Kaplan-Meier survival curves based on genetic clustering of 
clear cell RCCs (Clusters ATG and BTG). None of the patients in Cluster ATG died as a result, and the overall survival rate 
of patients in Cluster B TG was significantly lower than that of patients in Cluster A TG (Log-rank test, ref. 17). 
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resulting in addition of a methyl group at the 
carbon 5 position of the cytosine ring in CpG 
dinucleotides, is one of the most consistent 
epigenetic changes occurring in human cancers 
[18-20]. DNA methyltransferases (DNMTs) 
transfer methyl groups from S-adenosyl-
methionine to cytosines. DNA methylation nor-
mally promotes a highly condensed heterochro-
matin structure associated with deacetylation of 
histones H3 and H4. In addition, methylation of 
histone H3 lysine 4 (H3K4), H3K36 and H3K79 
is connected with transcriptional activation, 
whereas methylation of H3K9, H3K27 and 
H4K20 has been connected with transcriptional 
repression [21]. DNA methylation is a stable 
modification inherited throughout successive 
cell divisions, and is essential for X-
chromosome inactivation, genome imprinting, 
silencing of transposons and other parasitic 
elements, and proper expression of genes [22]. 
In human cancer cells, DNA hypomethylation 
induces chromosomal instability through decon-
densation of heterochromatin and enhance-
ment of chromosomal recombination [23]. On 
the other hand, DNA hypermethylation of CpG 
islands around the promoter regions silences 
tumor-suppressor genes [24].  
 
Analysis of tissue specimens has revealed that 
DNA methylation alterations participate in multi-
stage carcinogenesis, even from the early and 
precancerous stages, especially in association 
with chronic inflammation and/or persistent 
infection with viruses or other pathogenic micro-
organisms, such as hepatitis B or C viruses, 
Epstein-Barr virus, human papillomavirus and 
Helicobacter pylori [25-27]. For example, we 
have observed frequent regional DNA hyper-
methylation and/or DNMT1 overexpression in 
non-cancerous liver tissues showing chronic 
hepatitis or liver cirrhosis with hepatitis virus 
infection obtained from patients with hepatocel-
lular carcinomas (HCCs) [28-32], and in non-
cancerous pancreatic tissues showing chronic 
pancreatitis obtained from patients with pancre-
atic cancer [33,34].  Unlike cancers derived 
from such organs, renal tumors are not usually 
generated from a background of persistent viral 
infection and/or chronic inflammation. Although 
several factors such as smoking and obesity 
have been reported to be possible risk factors 
for renal tumors as mentioned above, patholo-
gists hardly ever observe any histological 
change corresponding to such risk factors in 
non-tumorous renal tissue. Therefore, precan-

cerous conditions in the kidney have been rarely 
described. Therefore we attempted to clarify the 
role of DNA methylation alterations during renal 
carcinogenesis. 
 
Regional DNA hypermethylation in precancer-
ous conditions and RCCs 
 
We focused on C-type CpG islands of the 
CDKN2A, human MutL homologue 1 (hMLH1) 
and thrombospondin-1 (THBS-1) genes and the 
methylated in tumor (MINT)-1, -2, -12, -25 and -
31 clones and CpG island of the VHL gene. C-
type CpG islands are known to be methylated in 
a cancer-specific, but not age-related, manner. 
The cancer phenotype associated with accumu-
lation of DNA methylation on C-type CpG islands 
is defined as the CpG-island methylator pheno-
type (CIMP), and such accumulation is generally 
associated with frequent silencing of tumor-
related genes due to DNA hypermethylation 
only, or a two-hit mechanism involving DNA hy-
permethylation and loss of heterozygosity in 
human cancers of various organs [35]. Bisulfite 
conversion has been carried out using genomic 
DNA, and this process converts unmethylated 
cytosine residues to uracil, whereas methylated 
cytosine residues remain unchanged [36]. The 
DNA methylation status on CpG islands was 
determined by methylation-specific PCR (MSP) 
or combined bisulfite restriction enzyme analy-
sis (COBRA). MSP is based on the principle that 
the DNA sequences of methylated and unmethy-
lated genomic regions differ after bisulfite con-
version and can thus be distinguished by se-
quence-specific PCR primers. In COBRA, bisul-
fite-modified DNA was amplified by PCR using 
primers  designed to amplify methylated and 
unmethylated genomic regions equally. The am-
plified fragments were digested with restriction 
enzymes that cleave DNA only if the CpG sites in 
their recognition sequences are methylated. 
 
Even in non-tumorous renal tissues showing no 
remarkable histological changes obtained from 
patients with renal tumors, the average number 
of methylated CpG islands was significantly 
higher than in normal renal tissues obtained 
from patients without any primary renal tumor, 
regardless of patient age [37]. Stepwise accu-
mulation of DNA methylation on CpG islands 
from normal renal tissues, to non-tumorous re-
nal tissues showing no remarkable histological 
changes obtained from patients with renal tu-
mors, and to renal tumors has been clearly 
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shown. Although precancerous conditions in the 
kidney have been rarely described, as men-
tioned above, from the viewpoint of altered DNA 
methylation, we have shown that it is possible 
to recognize the presence of precancerous con-
ditions even in the kidney [37]. In other words, 
regional DNA hypermethylation may participate 
in the early and precancerous stage of multi-
stage renal tumorigenesis.  
 
In renal tumors, the CDKN2A and THBS-1 genes 
seem to be hot spots of regional DNA hyper-
methylation during multistage renal tumorigene-
sis. The incidence of DNA methylation on the 
MINT 2 clone was low in renal cancers, even 
though this clone is one of the hot spots of re-
gional DNA hypermethylation in HCCs. The inci-
dence of DNA methylation on the MINT 25 clone 
was, if anything, high even in normal renal tis-
sues, although it was never observed in normal 
liver tissues, indicating that MINT 25 may be 
normally methylated in a renal tissue-specific 
manner. Thus the DNA methylation profiles of 
both normal and tumorous tissues tended to be 
organ-specific.  
 
In clear cell RCCs, correlations between the av-
erage number of methylated CpG islands and 
tumor clinicopathological parameters were 
evaluated. Clear cell RCCs were classified into 
three groups on the basis of macroscopic con-
figuration: single nodular type [type 1], single 
nodular with extranodular growth type [type 2], 
and contiguous multinodular type [type 3] RCCs 
[37]. These criteria for macroscopic configura-
tion follow those that have already been estab-
lished for HCCs: type 2 or 3 HCCs show poorer 
histological differentiation and a higher inci-
dence of portal vein involvement and intra-
hepatic metastasis than type 1 HCCs. Patients 
with types 2 and 3 HCCs show poorer prognosis 
than those with type 1 [38]. With respect to 
clear cell RCCs, accumulation of DNA methyla-
tion on CpG islands was significantly correlated 
with a type 2 or 3 macroscopic configuration, 
higher histological grade, an infiltrating growth 
pattern and vascular involvement [37], suggest-
ing that regional DNA hypermethylation is con-
tinuously involved in multistage renal tumori-
genesis from precancerous conditions to malig-
nant progression. The recurrence-free and over-
all survival rates of patients with RCCs showing 
accumulated DNA methylation on 3 or more 
CpG islands was significantly lower than that of 
patients with RCCs not showing this feature, 

indicating that regional DNA hypermethylation 
may be a biological predictor of patient progno-
sis. In addition to the above-mentioned genetic 
clustering, analysis of DNA methylation status in 
nephrectomy specimens may become a useful 
tool for prognostication of individual clinical 
cases. 
  
Surprisingly, the average number of methylated 
CpG islands in non-tumorous renal tissues ob-
tained from patients with histological grade 3 
clear cell RCCs was significantly higher than 
that in equivalent tissue obtained from patients 
with histological grade 1 or 2 RCCs [25,37]. 
These data suggest that precancerous condi-
tions showing regional DNA hypermethylation 
may generate more malignant RCCs. 
 
Genome-wide DNA methylation profiling in pre-
cancerous conditions and RCCs 
 
In order to further clarify the significance of DNA 
methylation alterations during renal carcino-
genesis, we performed genome-wide DNA me-
thylation analysis using BAC array-based methy-
lated CpG island amplification (BAMCA) [39-41] 
in tissue samples. The promoter regions of spe-
cific genes are not the only target of DNA methy-
lation alterations in human cancers. DNA methy-
lation status in genomic regions that do not di-
rectly participate in gene silencing, such as the 
edges of CpG islands, may be altered at precan-
cerous stages before the alterations of the pro-
moter regions themselves occur. Genomic re-
gions in which DNA hypomethylation affects 
chromosomal instability may not be contained 
in promoter arrays or CpG island arrays. More-
over, aberrant DNA methylation of large regions 
of chromosomes, which are regulated in a coor-
dinated manner due to a process of long-range 
epigenetic silencing, has recently attracted at-
tention in human cancers [42]. Therefore, we 
again used a custom-made BAC array MCG 
Whole Genome Array-4500, which may be suit-
able, not for focusing on specific promoter re-
gions or individual CpG sites, but for overview-
ing the DNA methylation tendency of individual 
large regions among all chromosomes [43]. 
Briefly, test or reference DNA was first digested 
with the methylation-sensitive restriction en-
zyme Sma I and subsequently with the methyla-
tion-insensitive Xma I. Adapters were ligated to 
the Xma I-digested sticky ends, and PCR was 
performed with an adapter primer set. Test and 
reference PCR products were labeled by random 
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priming with Cy3- and Cy5-dCTP, respectively 
and applied to the custom-made BAC array. We 
validated the ability for detecting any tendency 
for coordinated regulation of DNA methylation 
at multiple CpG sites in individual large regions 
of chromosomes of BAMCA by quantitative 
evaluation of DNA methylation status at each 
Sma I site on representative BAC clones by py-
rosequencing [44].  
 
Non-tumorous renal tissue obtained from pa-
tients with papillary RCCs, chromophobe RCCs 
and oncocytomas did not show any histological 
changes when compared with both non-
tumorous renal tissue obtained from patients 
with clear cell RCCs and normal renal tissue 
obtained from patients without any primary re-
nal tumor. However, the average numbers of 
BAC clones showing DNA hypo- or hypermethyla-
tion in non-tumorous renal tissue obtained from 
patients with chromophobe RCCs and oncocy-
tomas were significantly smaller than the aver-
age number in non-tumorous renal tissue ob-
tained from patients with clear cell RCCs [45].  
In non-tumorous renal tissue from all examined 
patients with renal tumors (clear cell RCCs, pap-
illary RCCs, chromophobe RCCs and oncocy-
tomas), biphasic accumulation of DNA methyla-
tion alterations was evident. Among such pa-
tients, the recurrence-free survival rate of pa-
tients showing DNA hypo- or hypermethylation 
on more BAC clones in their non-tumorous renal 
tissue was significantly lower than that of pa-
tients showing DNA hypo- or hypermethylation 
on fewer BAC clones [45]. Significant DNA me-
thylation profiles determining the histological 
subtype (chromophobe RCCs and oncocytomas 
vs clear cell RCCs) of future developing renal 
tumors and/or patient outcome (favorable out-
come vs poorer outcome) may be already estab-
lished at the precancerous stage. 
 
In samples of non-cancerous renal tissue from 
patients with clear cell RCCs,  many BAC clones 
already showed DNA hypomethylation or DNA 
hypermethylation relative to normal renal tis-
sues. In clear cell RCCs themselves, more BAC 
clones showed DNA hypomethylation or DNA 
hypermethylation, the degree of which was in-
creased in comparison with non-cancerous re-
nal tissue samples obtained from patients with 
clear cell RCCs [46]. In samples of non-
cancerous renal tissue from patients with clear 
cell RCCs, which were already at the precancer-
ous stage with accumulation of DNA methyla-

tion on C-type CpG islands in spite of an ab-
sence of marked histological changes as men-
tioned above, genome-wide DNA methylation 
alterations (both hypo- and hypermethylation) 
were also confirmed by BAMCA.  
 
We then performed two-dimensional unsuper-
vised hierarchical clustering analysis based on 
the genome-wide DNA methylation status 
(signal ratios by BAMCA) of the non-cancerous 
renal tissue samples. On the basis of the DNA 
methylation profiles of their non-cancerous re-
nal tissue samples, the patients with clear cell 
RCCs were clustered into two subclasses, Clus-
ters ANM and BNM. The corresponding clear cell 
RCCs of patients in Cluster BNM showed more 
frequent macroscopically evident multinodular 
(type 3) growth, vascular involvement and renal 
vein tumor thrombi, and higher pathological 
TNM stages than those in Cluster ANM [46]. Our 
Clusters ANM and BNM in precancerous tissue 
can be considered clinicopathologically valid, as 
60% of the patients in Cluster BNM died of recur-
rent RCC, compared with only 2% of the patients 
in Cluster ANM [46]. The overall survival rate of 
patients in Cluster BNM was significantly lower 
than that of patients in Cluster ANM (Figure 3A). 
DNA methylation alterations at the precancer-
ous stage may even determine the outcome of 
patients with clear cell RCCs.  
 
Two-dimensional unsupervised hierarchical 
clustering analysis based on BAMCA data 
(signal ratios) for clear cell RCCs was able to 
group patients into two subclasses, Clusters ATM 
and BTM. Clear cell RCCs in Cluster BTM showed 
more frequent vascular involvement and renal 
vein tumor thrombi, and also higher pathologi-
cal TNM stages than those in Cluster ATM [46]; 
37.5% of the patients in Cluster BTM died due to 
RCC recurrence, compared with only 2.3% of the 
patients in Cluster ATM [46]. The overall survival 
rate of patients in Cluster BTM was significantly 
lower than that of patients in Cluster ATM. Multi-
variate analysis revealed that our clustering was 
a predictor of recurrence and was independent 
of histological grade, macroscopic configuration, 
vascular involvement or presence of renal vein 
tumor thrombi. Patients belonging to Cluster BTM 
were completely discriminated from patients 
belonging to Cluster ATM based on the DNA me-
thylation status of 14 BAC clones. In other 
words, the DNA methylation status of the 14 
BAC clones was able to determine whether or 
not patients belonged to Cluster BTM, a signifi-
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cant prognostic indicator, with a sensitivity and 
specificity of 100% using the appropriate cutoff 
value of signal ratios [46]. The use of DNA me-

thylation status on such BAC clones as an indi-
cator may be a promising approach for prognos-
tication of clear cell RCCs. 

Figure 3. DNA methylation profiles in precancerous conditions and clear cell renal cell carcinomas (RCCs). A. Genome
-wide DNA methylation profiles in the non-cancerous renal tissue were significantly correlated with clinicopathological 
parameters of clear cell RCCs developing in individual patients, and also outcome, indicating that DNA methylation 
alterations at the precancerous stage may generate more malignant cancers and even determine outcome (ref. 46). 
B. DNA methylation profiles in the non-cancerous renal tissue (Clusters ANM and BNM, see text) were basically inherited 
by the corresponding clear cell RCCs developing in individual patients as the DNA methylation profiles of Clusters ATM 
and BTM, respectively (ref. 46).  C. In Cluster BTM, the number of clones showing copy number alterations by array-CGH 
was significantly correlated with that of DNA hypo- and hypermethylation by BAMCA in the same patient, whereas no 
such significant correlations were observed in Cluster ATM, suggesting that particular DNA methylation profiles may be 
closely related to chromosomal instability (unpublished data). 
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Significance of DNA methylation alterations at 
the precancerous stage 
 
When we compared the DNA methylation pro-
files of non-cancerous renal tissue and those of 
the corresponding clear cell RCC, Cluster BNM 
was completely included in Cluster BTM. Wil-
coxon test revealed that the signal ratios of 
1143 BAC clones in non-cancerous renal tissue 
differed significantly between Clusters ANM and 
BNM and that the signal ratios of 1111 BAC 
clones in clear cell RCCs differed significantly 
between Clusters ATM and BTM. Among the 1143 
BAC clones significantly discriminating Cluster 
BNM from Cluster ANM, 724, i.e. the majority, also 
discriminated Cluster BTM from Cluster ATM. In 
311 of these 724 BAC clones, in which the aver-
age signal ratio of Cluster BNM was higher than 
that of Cluster ANM, the average signal ratio of 
Cluster BTM was also higher than that of Cluster 
ATM without exception.  In 413 of the 724 BAC 
clones showing a lower average signal ratio of 
Cluster BNM than that of Cluster ANM, the aver-
age signal ratio of Cluster BTM was also lower 
than that of Cluster ATM without exception [46]. 
When we examined each of the representative 
BAC clones characterizing both Clusters BNM and 
BTM, the BAMCA signal ratio in the non-
cancerous renal tissue was at almost the same 
level as that in the corresponding clear cell RCC 
developing in each individual patient. Accord-
ingly, we concluded that the genome-wide DNA 
methylation profiles of non-cancerous renal tis-
sue are basically inherited by each correspond-
ing clear cell RCC (Figure 3B).  
 
As mentioned above, we examined DNA methy-
lation status on CpG islands for the CDKN2A, 
hMLH 1, VHL and THBS 1 genes, and the me-
thylated in tumor (MINT)-1, -2, -12, -25 and -31 
clones were examined in the same clear cell 
RCCs. The average number of methylated CpG 
islands was significantly higher in Cluster BTM 
(2.75±1.67) than in Cluster ATM. The frequency 
of CIMP in Cluster BTM (62.5%) was significantly 
higher than that in Cluster ATM (16%). Genome-
wide DNA methylation alterations consisting of 
both hypo- and hypermethylation of DNA re-
vealed by BAMCA in Cluster BTM are associated 
with regional DNA hypermethylation on CpG 
islands [37,46]. Moreover, a subclass of Cluster 
BNM and BTM based on BAMCA data is com-
pletely included in Cluster BTG showing accumu-
lations of copy number alterations [17,46]. 
Therefore, epigenetic and genetic alterations 

are not mutually exclusive during renal carcino-
genesis. Particular DNA methylation profiles at 
the precancerous stage may be closely related 
to, or may be prone to chromosomal instability 
(Figure 3C). DNA methylation alterations in pre-
cancerous conditions, which may not occur ran-
domly but are prone to further accumulation of 
epigenetic and genetic alterations, can generate 
more malignant cancers and even determine 
the outcome for individual patients. 
 
Tumor-related genes silenced by DNA hyper-
methylation in RCCs 
 
Somatic VHL mutations occur in 50-80% of spo-
radic clear cell RCCs [47]. Alternative mecha-
nisms of VHL inactivation have therefore been 
explored, and Herman et al. have demonstrated 
DNA hypermethylation of the VHL gene in 19% 
of examined tumors [48]. In a renal cancer cell 
line, treatment with a DNA demethylating agent, 
5-aza-2'-deoxycytidine, resulted in re-expression 
of the VHL gene. Thus, other than the RB gene, 
the VHL gene became the second known exam-
ple of a tumor-suppressor gene silenced by DNA 
methylation. The list of tumor-related genes 
silenced by DNA hypermethylation during renal 
carcinogenesis has recently been increasing. 
DNA methylation profiling in both VHL-related 
and VHL-unrelated RCCs has shown that the 
average number of methylated genes revealed 
by high-throughput Goldengate analysis in spo-
radic RCCs of patients with wild-type VHL is 
higher than in RCCs of patients with mutant VHL 
[49]. The Ras association domain family mem-
ber 1 (RASSF1), twist homolog 1 (TWIST1), 
paired-like homeodomain 2 (PITX2), cadherin 
13 (CDH13), heparan sulfate (glucosamine) 3-O
-sulfotransferase 2 (HS3ST2), T-cell acute lym-
phocytic leukemia 1 (TAL1), Wilms’ tumor 1 
(WT1), matrix metallopeptidase 2 (MMP2), de-
leted in colorectal carcinoma (DCC), islet cell 
autoantigen 1 (ICA1) and tumor suppressor 
candidate 3 (TUSC3) genes are more frequently 
methylated in sporadic RCCs of patients with 
wild-type VHL than in RCCs of patients with mu-
tant VHL, whereas only gamma-aminobutyric 
acid A receptor, beta 3 (GABRB3) is methylated 
more frequently in VHL-related RCCs [49].  
 
Frequent DNA methylation of proapoptotic TP53 
target genes in stomach and colorectal cancers 
has recently attracted attention [50]. When ex-
amined in RCCs, the apoptotic peptidase acti-
vating factor 1 (APAF1) and death-associated 
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protein kinase 1 (DAPK1) proapoptotic genes 
were frequently silenced due to DNA hyper-
methylation, and such DNA hypermethylation 
had a prognostic impact in affected patients 
[51]. With respect to Wnt antagonist family 
genes in RCCs, DNA hypermethylation and/or 
repressive histone modification have been ob-
served in the secreted frizzled-related protein 1 
(SFRP1), SFRP2, SFRP5, WNT inhibitory factor 1 
(WIF1) and dickkopf homolog 3 (DKK3) genes. 
Simultaneous detection of DNA methylation of 
such Wnt antagonist family genes may be a use-
ful indicator for diagnosis of RCCs [52,53].  
 
Microarray analysis of RCC cell lines treated 
with 5-aza-2'deoxycytidine has revealed upregu-
lation of the ubiquitin carboxyl-terminal es-
terase L1 (UCHL1) gene [54]. The UCHL1 gene 
involved in the regulation of cellular ubiquitin 
levels plays important roles in different cellular 
processes. Significant growth inhibition in 
UCHL1 transfectants suggests that UCHL-1 
functions as a potential tumor suppressor gene 
in RCCs [55]. Moreover, silencing of the UCHL-1 
gene due to DNA hypermethylation is reportedly 
correlated with poor outcome in patients with 
RCCs [55]. Loss of transforming growth factor 
beta receptor III (TGFBR3) correlates with loss 
of TGF-beta responsiveness and dysregulated 
TGF-beta signaling in RCCs.  However, reduced 
expression of the TGFBR3 gene was shown not 
to be due to DNA hypermethylation of the pro-
moter region of the TGFBR3 gene itself, but to 
silencing of the transcriptional factor GATA bind-
ing protein 3 (GATA3) due to DNA hypermethyla-
tion resulting in reduced expression of TGFBR3 
during RCC progression [56]. In addition, silenc-
ing due to DNA methylation of a number of 
genes may play a role in renal carcinogenesis; 
these include the p53-inducible gene 14-3-3 
sigma [57], ABCG2 which is of importance in 
clinical drug resistance [58], a gap junction 
molecule connexin 32 [59], actin-binding pro-
tein DAL-1/4.1B [60], TIMP3 which participates 
in cancer invasion [61], the fragile histidine 
triad (FHIT) gene which encompasses the most 
common human fragile site FRA3B at 3p14.2 
[62], cell adhesion molecule junction plakoglo-
bin (JUP) [63], HGF activator inhibitor HAI-2 
[64], a member of the homeobox gene family 
HOXB13 [65], tissue-specific proapoptotic BH3-
only protein BCL2-interacting killer (BIK) [66], 
TU3A which was originally identified as a candi-
date tumor suppressor gene in RCCs [67] and 
XAF1 which antagonizes the anticaspase activity 

of X-linked inhibitor of apoptosis (XIAP) [68]. 
 
Recently, the methodology for analysis of DNA 
methylation on a genome-wide scale has been 
markedly improved [69], and the use of microar-
rays to which bisulfite-converted genomic DNA 
is applied, has become popular, achieving a 
resolution as good as a single CpG [70,71]. New
-generation sequencing technologies have been 
introduced for bisulfite-converted genomic DNA 
or genomic DNA enriched by affinity-based ap-
proaches using anti-methyl-cytosine antibody or 
methyl-binding domain proteins [72]. In addi-
tion, a high-throughput technique without bisul-
fite conversion has been developed based on 
single-molecule, real-time DNA sequencing [73]. 
These new technologies will be able to effi-
ciently accelerate the identification of tumor-
related genes whose expression is altered due 
to DNA hypo- or hyper-methylation and reveal 
the clinical relevance of translational epigenet-
ics. 
 
DNA hypomethylation in RCCs 
 
Unlike the case of DNA hypermethylation, the 
number of reports addressing DNA hypomethy-
lation of specific genes or elements has been 
restricted to date. Carbonic anhydrase IX (CA9) 
is a transmembrane glycoprotein and the only 
known tumor-associated carbonic anhydrase 
that may be involved in cell proliferation and 
transformation. DNA hypomethylation of the 
CA9 gene has been shown to participate in acti-
vation of the promoter activity in RCC cell lines 
and clinical tissue samples [74,75]. Trans-
posons, proviral DNA and other parasitic ele-
ments in the mammalian genome make up the 
repetitive sequences in the intergenic and intro-
genic regions of DNA. In general, activation of 
parasitic elements, such as LINE-1 and HERV-K, 
can allow for their movement within the ge-
nome. However, activation of these parasitic 
elements due to DNA hypomethylation does not 
seem to be a major event during renal carcino-
genesis [76]. 
 
Histone modifications in RCCs 
 
Since techniques for analysis of histone modifi-
cation in clinical tissue specimens have not 
been fully established to date, the overall pic-
ture of histone modification status in clinical 
samples of various cancers including RCCs is 
unclear. However, the results of immunohisto-
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chemistry to evaluate histone methylation levels 
have been reported. Levels of H3K4-
monomethyl, -dimethyl and -trimethyl staining 
were each inversely correlated with the aggres-
siveness of RCCs. The combined staining score 
for H3K4 modifications (monomethylation to 
trimethylation) was shown to be an independent 
predictor of outcome in patients with RCCs [77].  
 
With respect to cross-talk between genetic al-
terations and histone modifications, a recent 
robust analysis of 3544 protein genes in clear 
cell RCCs has revealed somatic truncating mu-
tations in the SET domain containing 2 (SETD2) 
gene, which encodes a histone H3K36 methyl-
transferase, and also in the lysine-specific de-
methylase 5C (KDM5C/JARID1C) gene, which 
encodes a histone H3K4 demethylase [15]. No 
mutations were found in either SETD2 or 
KDM5C in the subset of non-clear cell RCCs. 
The majority of samples with truncating SETD2 
and KDM5C mutations had VHL mutations. Sig-
nificant (two-fold or less) differences in the ex-
pression levels of 298 genes were noted in 
clear cell RCCs showing the SETD2 mutation 
relative to those not showing it, whereas 
KDM5C-mutant RCCs showed significant differ-
ences in the expression levels of 18 genes rela-
tive to KDM5C-wild-type RCCs [15]. 
  
Perspective 
 
Both genetic and epigenetic events appear to 
accumulate during renal carcinogenesis, reflect-
ing the clinicopathological diversity of RCCs. 
Loss of chromosome 3p and gain of chromo-
somes 5q and 7 may be indispensable copy 
number aberrations for the development of 
clear cell RCCs. When loss of chromosome 1p, 
4, 9, 13q or 14q is added, more malignant 
RCCs may develop. DNA methylation alterations 
play significant roles in multistage renal carcino-
genesis even in early precancerous stages. Ge-
nome-wide DNA methylation profiles in precan-
cerous conditions are basically inherited by the 
corresponding RCCs developing in individual 
patients: DNA methylation alterations at the 
precancerous stage may render cells prone to 
further epigenetic and genetic alterations, gen-
erate more malignant cancers, and even deter-
mine patient outcome. Previous attempts have 
been made to use genetic alterations of VHL 
and other tumor-related genes as diagnostic 
indicators in tissue and serum specimens 
[9,78]. On the other hand, DNA methylation al-

terations occur earlier than genetic alterations 
during carcinogenesis and are stably preserved 
on DNA double strands by covalent bonds, 
unlike the profiles of mRNA and protein expres-
sion, which can be easily affected by the micro-
environment of cancer cells or their precursor 
cells. Genome-wide DNA methylation profiling 
may provide optimal indicators for early diagno-
sis of RCCs and prognostication of affected pa-
tients. 
 
RCCs are thought to be immunogenic, and im-
munotherapy including the administration of 
interferon-alpha or interleukin (IL)-2 has been 
used as a standard treatment for RCCs for 20 
years [79]. However, the success of immuno-
therapy is limited because of immuno-escape 
mechanisms including down-regulation of major 
histocompatibility complex class I antigens and 
secretion of immunosuppressive cytokines such 
as IL10. In addition to traditional surgical ap-
proaches and immunotherapy, molecular tar-
geted therapy has recently been introduced. 
Since the induction of VEGF by HIF activation 
downstream of VHL inactivation is the most im-
portant mechanism determining the hypervas-
cularity of RCCs [79,80], VEGF receptor inhibi-
tors such as sunitinib, sorafenib and axitinib, 
and the VEGF-ligand binding agent bevacizu-
mab, have been introduced for VEGF-targeted 
therapy. mTOR is another target for treatment of 
RCCs, and an ester of rapamycin, tersirolimus, 
has been introduced clinically. However, the 
mechanisms responsible for refractoriness to 
molecular targeted therapy are unclear, and the 
optimal administration regimen for these agents 
has not been defined [81]. Therefore, recently 
introduced agents have not accomplished com-
plete anti-tumor effects. Further investigation of 
the genetic and epigenetic events occurring 
during renal carcinogenesis is needed to iden-
tify more key molecules for use in prevention, 
diagnosis and therapy.   
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