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Despite the significant decline in coronary artery disease (CAD) mortality in the second half
of the 20th century,1 sudden cardiac death (SCD) continues to claim 250 000 to 300 000 US
lives annually.2 In North America and Europe the annual incidence of SCD ranges between
50 to 100 per 100 000 in the general population.3–6 Because of the absence of emergency
medical response systems in most world regions, worldwide estimates are currently not
available.7 However, even in the presence of advanced first responder systems for
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resuscitation of out-of-hospital cardiac arrest, the overall survival rate in a recent North
American analysis was 4.6%.8 SCD can manifest as ventricular tachycardia (VT),
ventricular fibrillation (VF), pulseless electric activity (PEA), or asystole. In a significant
proportion of patients, SCD can present without warning or a recognized triggering
mechanism. The mean age of those affected is in the mid 60s, and at least 40% of patients
will suffer SCD before the age of 65.4 Consequently, enhancement of methodologies for
prediction and prevention of SCD acquires a unique and critical importance for management
of this significant public health issue.

Prediction and prevention of SCD is an area of active investigation, but considerable
challenges persist that limit the efficacy and cost-effectiveness of available methodologies.
7,9,10 It was recognized early on that optimization of SCD risk stratification will require
integration of multi-disciplinary efforts at the bench and bedside, with studies in the general
population.11–13 This integration has yet to be effectively accomplished. There is also
increasing awareness that more investigation needs to be directed toward identification of
early predictors of SCD.14 Significant advancements have occurred for risk prediction in the
inherited channelopathies15–17 and other inherited conditions that predispose to SCD, such
as hypertrophic cardiomyopathy,18 but there is much to be accomplished in this regard for
the more common complex phenotypes, such as SCD, among patients with CAD. Many
cardiovascular treatments (eg, lipid lowering and antihypertensive agents, antiischemic
interventions, and heart failure therapies) prevent or delay the progression of the
cardiovascular diseases that are the most frequent cause of SCD. However, the current
workshop focused specifically on risk prediction for arrhythmic death in cardiac populations
rather than on the broader topics of prediction and prevention of cardiac diseases in general.

Unfortunately, specific pharmacological therapies directed at the electrophysiological
substrate and mechanisms that cause arrhythmias have proven disappointing when applied to
high or moderate risk patients without prior documented clinical arrhythmias. The
implantable cardioverter-defibrillator (ICD) in combination with heart failure drug therapy
remains the mainstay of SCD prevention19,20 but is likely to benefit only the small
population at high risk who can be identified before an SCD event.5,21

On September 29 to 30, 2009, a working group of experts was jointly convened by the
National Heart, Lung and Blood Institute and the Heart Rhythm Society to address and
recommend research directions and strategies in prediction and prevention of SCD, for
consideration by the National Heart, Lung, and Blood Institute and the greater research
community. The panel was asked to consider the 3 broad areas of bench, clinical and
population sciences. After deliberation on available information as well as critical needs for
SCD prediction and prevention, the group came to a consensus, identifying investigational
gaps and developing research recommendations in the 6 high-priority areas discussed below.
The 6 recommendations are summarized in the Table, and detailed background information
on each of the 6 recommendations is provided in this document. The Workshop’s Executive
Summary can be found at http://www.nhlbi.nih.gov/meetings/workshops/.

Recommendation 1: Facilitate Study of Well-Phenotyped SCD and Control
Populations, Including Understudied Subgroups
Background

Like most complex traits, there are aspects of the SCD phenotype that present unique
challenges and these, in turn, dictate the investigative approach. Because of the sudden,
unexpected, and dynamic nature of the event, the vast majority of sudden cardiac arrests
occur in the community and at least 90% to 95% of these individuals do not survive despite
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resuscitation attempts performed in the field by emergency medical response systems.7,8 In
40% to 50% of cases, SCD is unheralded by symptoms and in 30% to 40% can be
unwitnessed.5,7 It stands to reason that the ascertainment of the phenotype of individuals at
risk of SCD must occur in the community, as opposed to the hospital and healthcare system.
Therefore population-based approaches must be used.7 In fact, there is now clear evidence
that retrospective death-certificate methods of ascertainment are inaccurate, with
unacceptably low positive predictive values for determination of the SCD phenotype when
compared to prospective approaches.4,22 Information on the burden of SCD is available for
only selected world regions, limited largely to North America and Europe, with virtually no
information available on SCD epidemiology in the vast majority of the world.7 There is also
a paucity of data on the epidemiology, risk factors, prognosis, and temporal trends for SCD
in nonwhite ethnic and racial groups.

SCD is generally defined as a sudden and unexpected pulseless event, but noncardiac
conditions need to be excluded before the occurrence of a primary cardiac event can be
confirmed.7,23 Because of these complexities, multiple definitions have been employed.
Studies assessing risk predictors of SCD have been performed in community-based
cohorts24,25 and there is increasing recognition that prospective studies of SCD in the
general population are also feasible.4,5,21,26–28 These studies have shown that definitions
can be standardized and systematic circumstantial and clinical evidence can be obtained and
utilized to maximize the accuracy of identifying the SCD phenotype.

Building on the available literature4,7,24,25,29,30 and incorporating definitions that have been
employed previously, this working group has developed a unified definition for SCD that
can be used to ascertain the SCD phenotype in community-based cohort studies as well as
investigations conducted in the general population. A case of established SCD is an
unexpected death without obvious extracardiac cause, occurring with a rapid witnessed
collapse, or if unwitnessed, occurring within 1 hour after the onset of symptoms. A probable
SCD is an unexpected death without obvious extracardiac cause that occurred within the
previous 24 hours. In any situation, the death should not occur in the setting of a prior
terminal condition, such as a malignancy that is not in remission or end-stage chronic
obstructive lung disease. The term “sudden cardiac arrest” should be used to describe SCD
cases in which specific resuscitation records are available or the individual has survived the
cardiac arrest event.

There is also strong evidence from studies in North America and Europe that there are
significantly altered trends in the presenting arrhythmia observed by first responders among
SCD cases.31,32 The prevalence of SCD cases presenting with VF is decreasing with a
corresponding increase in the proportion of cases presenting with PEA. Given the extremes
of resuscitation outcome based on presenting arrhythmia (>25% survival for VF and <2%
for PEA4), it is important to improve our understanding of the determinants of these altered
trends. Because population-based investigative approaches for SCD are pivotal for
understanding the phenotype, there is a need for greater numbers of subjects that are
available for investigation. An annual incidence of SCD in the range of 60 to 90/100 000
individuals4,5,7 necessitates the establishment of large community-based studies that ideally
connect with other similar efforts, forming consortia that can share data, analyses and
resources for common objectives such as refining methods to predict SCD.

Knowledge Gaps
• For the vast majority of world regions, there is virtually no available information

on epidemiology of SCD.
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• There is a critical need for large population-based studies that include women and
understudied minorities in different regions of the US,

• There is a lack of infrastructure to facilitate collaborative links between different
population-based studies.

• There is a need to improve our understanding of altered trends in the arrhythmias
precipitating SCD (ie, significant changes in the prevalence of VF and PEA).

Specific Recommendations
• Facilitate the initiation and maintenance of large population-based studies of SCD

to improve understanding of SCD mechanisms across gender and all racial/ethnic
groups.

• Provide the infrastructure to connect individual population-based studies as
consortia that can collaborate for a common set of objectives.

• Perform studies that will further the understanding of presenting arrhythmias (ie,
VF, PEA, asystole, and the mechanistic differences between these conditions).

Recommendation 2: Develop and Validate a SCD Risk Score Utilizing
Phenotypic, Biological, and Noninvasive Markers
Background

Numerous invasive and noninvasive techniques have been developed over the years to
identify patients at risk for SCD.33–35 Currently, assessment of left ventricular (LV) ejection
fraction is commonly used to guide primary prevention of SCD,20 but there is considerable
interest in using markers that reflect arrhythmia substrates more directly, and therefore
enrich the prediction of SCD events. Invasive electrophysiological testing using
programmed cardiac stimulation adds considerable specificity to identification of patient
populations with ischemic heart disease who are at risk for SCD.36 and who, therefore, may
benefit from ICD therapy.37,38 However, there remain concerns as to whether
electrophysiological testing possesses sufficient sensitivity to reliably exclude SCD risk in
patients with a negative test.39

In contrast to invasive electrophysiological testing, noninvasive tests for predicting SCD are
clearly more attractive in a clinical strategy for widespread screening. Numerous markers
derived mainly from surface ECG have been correlated with SCD, cardiac, and total
mortality over the past 3 decades. These can be classified as (1) indices of abnormal
autonomic modulation of cardiovascular function such as heart rate variability,40 heart rate
turbulence,41 heart rate recovery from exercise,42 and baroreflex sensitivity43; (2) indices of
abnormal impulse conduction such as signal averaged ECG44 and QRS fractionation45; and
(3) indices of abnormal repolarization such as microvolt T wave alternans,46 QT interval
dynamicity,47,48 and various measures of T wave morphology and dispersion. Most of the
autonomic markers have been correlated with total rather than arrhythmic mortality.
Although extensive comparative data are not available, when examined in the same
population with other risk markers T wave alternans appear to predict SCD-related events
with greatest negative predictive value49–51, suggesting that a patient with systolic
dysfunction and a negative T wave alternans test may be at comparatively low risk for
events. However, other recently published data from 2 large clinical trials of the
prophylactic ICD indicate that the use of T wave alternans is likely to be limited by low
predictive ability, higher number of indeterminate tests, and concern about incremental
value over known risk factors.52,53 Taken together, the available experience suggests that
multiple risk markers used in combination may provide a more robust prediction of events,
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which is not surprising when one considers the complexity and diversity of electro-anatomic
substrates that underlie SCD. To date, no randomized clinical trials have been conducted
that demonstrate benefit of non-invasive risk stratification in reducing SCD events. That
being said, there are extensive observational data suggesting that various ECG risk markers
used alone or in combination can be useful in identifying subsets of patients who are more
or less likely to benefit from ICD therapy to prevent SCD. It is important to emphasize that
few studies have attempted to account for dynamic time-varying changes in SCD risk but
rather tend to measure a risk marker at only 1 point in time to predict SCD risks indefinitely.
Although premature ventricular beat frequency measured by ambulatory Holter monitoring
has been associated with enhanced risk for SCD,54 ectopic beats are so highly variable from
day to day that it cannot be used as a reliable method for tracking SCD risk. Clearly, any
viable strategy for predicting and preventing SCD will require tools for serial assessment of
risk markers over time.

The aforementioned risk stratification and prevention efforts have been directed toward high
risk subsets of patients with LV systolic dysfunction.55 However, the overwhelming
majority of SCDs occurs in the general population,4,30,56 and approximately 55% of men
and at least 68% of women have no clinically recognized heart disease prior to
SCD5,24,28,30 A community-based study has recently drawn attention to the phenomenon of
gender-specific risk factors.57 Women have a significantly lower prevalence of phenotypic
traits that increase SCD risk, with half the likelihood of severe LV dysfunction (odds ratio
0.51, 95% confidence interval 0.31 to 0.84) and a 3-fold lower prevalence of established
CAD (odds ratio 0.34, 95% confidence interval 0.20 to 0.60) compared to men. Although
CAD continues to be observed in the majority of SCDs at autopsy,58 many individuals are
not diagnosed with CAD prior to death.28,58 Even for those in whom CAD is recognized,
there is only 1 major established clinical risk predictor: severe LV systolic dysfunction
defined as a substantial decrease in the LV ejection fraction.7 Therefore, patients with LV
ejection fraction of less than 30% to 35% are deemed to be high risk and qualify as
candidates for primary prevention using the ICD.9 Recent studies confirm that ejection
fraction alone is unlikely to be sufficient for effective SCD risk prediction, because it lacks
both sensitivity and specificity. In the community, less than a third of all SCD cases have
severely decreased LV ejection fraction that would have qualified them as candidates for an
ICD.21 Conversely, even among patients who do qualify for ICD implantation based on the
ejection fraction criterion, only a small minority (2% to 5% per year), will suffer a
ventricular arrhythmia resulting in SCD19,20,59 Furthermore, for most patients, the ejection
fraction is a risk factor that is identified relatively late in the natural history of this particular
high-risk phenotype14 and is of no utility for those in whom SCD is the initial manifestation
of cardiovascular disease. To maximize effectiveness of prevention, risk factors need to be
identified and utilized early in the natural history of specific high risk conditions.14

In the past decade, other clinical risk markers have been identified, but none of these are
currently used for risk stratification.25,28,60–63 These include LV hypertrophy,62 QTc
prolongation,28,63 diabetes mellitus,25,60–63 and elevated resting heart rate.64 Serum
biomarkers have also been identified that are associated with risk of SCD in cohorts and
community-based studies.65–68 In a significant proportion of patients, SCD is likely to be
triggered by plaque rupture and acute myocardial infarction. There are significant ongoing
efforts to identify biomarkers as well as imaging techniques that pinpoint key events related
to inflammation and vulnerable plaque pathways.69–71 The challenge is in identifying the
specific patient who will suffer SCD with plaque rupture and acute myocardial infarction.

Upon the publication of 4 studies that provide strong evidence for independent genetic
contributions to risk of SCD,25,26,72,73 the identification of variants that confer genetic
susceptibility has become an area of active investigation. Candidate-gene based association
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studies have identified some candidates for SCD risk,74–83 and genome-wide association
studies (GWAS) are ongoing. The latter can be divided into 2 categories. The first are
GWAS that have identified determinants of intermediate-risk traits for SCD such as the QT
interval.80,84,85 These have been followed by evaluation of specific significant variants in
populations with SCD.86,87 In this fashion, variants in NOS1AP have been identified as
modest predictors of risk (odds ratios ≈1.3). The second GWAS approach investigates SCD
risk directly in the general population using a case-control approach. These latter GWAS,
which are unbiased by previous hypotheses relative to candidate genes and pathways, have
the power to illuminate novel biological pathways involved in the genesis of lethal
ventricular arrhythmias, which could ultimately lead to new therapeutic approaches for SCD
prevention. An initial GWAS from the Oregon Sudden Unexpected Death Study has
identified a novel genetic locus (glypican 5) that is protective against SCD, a finding that
has been replicated in the ARIC and CHS cohorts.88 Other investigators studied individuals
with and without VF in the first 90 minutes of a first myocardial infarction (MI), and have
identified a risk locus at chromosome 21q21.89 These studies underscore the importance of
conducting GWAS in significantly larger numbers of cases and controls.

As outlined earlier, for a significant proportion of SCD cases the final event is the first
outward manifestation of disease (ie, there have been no premonitory warning symptoms or
signs that would prompt medical attention). Even when symptoms are reported prior to
SCD, these have not been found to be specific for the phenotype. Given the complexity of
the SCD phenotype and overlap with conditions such as CAD, congestive heart failure, and
diabetes mellitus, it is likely that any prediction of risk will involve a combination of risk
factors and/or tests as opposed to a single marker or test. The generally accepted paradigm
of requiring both substrates and triggers for genesis of ventricular arrhythmia90 lends
additional complexity to SCD risk prediction. Further, recent studies have implicated a wide
range of environmental influences, such as socioeconomic status, psychosocial factors, and
even particulate matter, as possibly playing roles in SCD.7,91,92

One approach to identifying risk has been to study device therapies as end points in ICD
cohorts. Although these are likely to contribute useful information, it is important to
recognize that the nature of this study design and population are likely to limit any useful
findings to the optimal selection of ICD candidates relatively late in the natural history of
LV dysfunction. These studies will not contribute importantly to detection of risk factors
early in the disease process.14

Knowledge Gaps
• Current methods of clinical risk prediction are inadequate and there is increasing

recognition that employment of the LV ejection fraction as a risk predictor is
effective in only a small subgroup of patients.

• Other risk markers have been discovered, but individually these markers appear to
have only modest effects. Examples include LV hypertrophy, prolonged QT
interval, fragmented QRS complex, diabetes mellitus, elevated resting heart rate,
specific serum biomarkers, and novel genetic variants.

• There is a conspicuous lack of studies that combine panels of SCD risk markers to
assess additive or synergistic effects on risk.

• There is a need for early detection of risk factors for SCD.

Specific Recommendations 2
• Facilitate studies that will discover novel risk markers for SCD. There is a role for

2 distinct categories of studies:
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– Optimization of risk prediction late in the natural history of SCD for
improved efficiency of the ICD using large cohort studies of patients with
heart failure and an ICD.

– Discovery of novel risk predictors early in the natural history of conditions
predisposing to SCD from large population-based studies that perform
comprehensive evaluations among all subjects who suffer SCD.

• Facilitate studies that combine novel risk markers and testing to create risk scores
for prediction of SCD.

Recommendation 3: Develop Novel Risk Stratification Strategies to
Improve Outcomes in Select Populations at Risk of SCD, Including Patients
With ICD Indications Based on Current Guidelines and Other Patients at
Risk Such as Those With CAD and LV Ejection Fraction >35%; Early Phase
Postacute MI; Heart Failure With Preserved Systolic Function; and/or LV
Hypertrophy
Background

Numerous trials of empirical antiarrhythmic drug therapies have been conducted in patients
with recent or remote MI and LV dysfunction as well as nonischemic cardiomyopathies,
with disappointing results.93,94 In such studies, an antiarrhythmic drug is often considered to
be of value if it does not increase overall mortality. Over the last 25 years, clinical studies
have shown that ICD therapy in high risk populations can reduce total, cardiac, and to a very
high degree, arrhythmic mortality.95 However, there are numerous well recognized
limitations to ICD therapy. These include the cost of the devices, complications related both
to the implantation procedure and to subsequent device function, device malfunction, and
limited efficacy despite normal device function in the presence of significant concomitant
disease.96,97 Evidence-based guidelines for ICD therapy derived from these studies have
been published and recently updated.98,99 Current criteria are based largely on history of
arrhythmia (resuscitated cardiac arrest, sustained ventricular tachycardia, syncope with
induced VT, LV dysfunction, and heart failure functional class. Guideline recommendations
for less common conditions such as inherited ion channelopathies or many cardiomyopathies
are usually based on consensus opinion, because clinical trial data are not available.98,99

In real world practice where ICD recipients are often older and have more comorbidities
than the average clinical trial enrollee, the ratio of nonsudden to sudden deaths among ICD
recipients may even be higher.100 Numerous tests have been proposed to improve the
prediction of SCD as opposed to total mortality.46,101,102 These include programmed
electric stimulation, various tests of autonomic nervous system function, standard ECG
findings such as QT variability or dispersion, microvolt T wave alternans, and others.
Recent data suggest that because of the complexities of the substrates underlying SCD,
multiple risk factors used in combination are likely to provide better prediction of SCD risk
than any individual risk marker.51,103

Although positive results have been reported in selected populations (eg, programmed
stimulation in post MI patients with intermediate LV ejection fraction values),39,59 no single
test strategy has proven to be sufficiently sensitive and specific to justify widespread
adoption. New imaging techniques now exist for assessing a range of myocardial
pathophysiological processes that may be implicated in the pathways that lead to SCD.
Magnetic resonance based imaging can quantify cardiac structure and function and the
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presence and extent of myocardial fibrosis and ischemia. New imaging tracers using
positron emission tomography provide measures of cardiac sympathetic function. These
sophisticated imaging techniques are promising but have not been tested to date in large
studies.104–109

Analyses using combinations of new and old risk factors may be more valuable. For
example, in a retrospective analysis of the MADIT-II data, Goldenberg et al95 identified 5
variables that might predict benefit of ICD therapy benefit: New York Heart Association
functional class, atrial fibrillation, QRS duration, age, and moderate renal dysfunction.
Patients with 1, 2, and to a lesser degree 3 risk factors showed benefit whereas those with 0,
>3, or severe renal dysfunction alone did not. Studies examining various combinations of
risk factors might well improve the efficiency of ICD therapy in patients with current
indications.

There are several populations known to be at substantial risk for SCD for whom effective
management guidelines have not yet emerged. The early period after MI is associated with a
very high mortality rate, but 2 studies, the DINAMIT110 and IRIS111 trials, failed to show
benefit in total mortality after ICD implantation. It is noteworthy, however, that deaths
classified as arrhythmic were reduced in patients randomized to ICD treatment in both
studies. Although medical therapies directed at ischemia and heart failure have substantially
improved outcomes in the early postinfarction period,112 the ability to identify and treat
those specifically at high risk for arrhythmia would be of importance. There are other
populations that may not benefit because they are at low risk: for example, patients in the
early period after coronary revascularization.113

Specific pharmacological or device-based antiarrhythmic therapy has not been well studied
in other populations with moderate risk, including patients with genetic primary arrhythmia
or cardiomyopathy disorders, those with known or probable ischemic heart disease, patients
with heart failure with normal or only mildly impaired systolic function, and patients with
LV hypertrophy without clinical heart failure. Although the individual annual SCD risk in
these populations is relatively low, the number of events in some of these groups may be
large. Current strategies to identify the subsets of patients with sufficient risk to justify
intervention and prescribe appropriate therapy are very limited. Most therapeutic approaches
have been directed at the underlying disease processes of the patients (eg, atherosclerosis,
ischemia, and hypertension) rather than the arrhythmogenic potentials for SCD of these
conditions. SCD risk detection strategies in these intermediate-risk but numerically
substantial populations would need to be relatively simple and inexpensive to justify their
widespread use. Even for the familial disorders, such as hypertrophic cardiomyopathy and
the long QT syndrome that increase SCD risk, efforts continue to refine prediction of risk.
15–18

Knowledge Gaps
• Current methods to differentiate patients at highest risk for arrhythmic death from

all-cause death are insufficient and lack robustness in guiding the use of ICD
therapy.

• Data on SCD risk are best developed in patients with moderate or severe LV
dysfunction either after MI or with chronic ischemic or nonischemic
cardiomyopathies. Although patients without severe systolic dysfunction are at
lower individual risk, many sudden deaths occur in such patients. Strategies for
effective risk stratification in these moderate risk populations should be
investigated.
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• The optimal approaches for combining potential risk factors to identify individuals
at risk and to target risk factors for treatment have not been determined.

• The utility of interventions other than ICD therapy, including the wearable
cardioverter-defibrillator and cardiac resynchronization without defibrillation
capability in select populations needs to be better defined.

• The influence of comorbidities including advanced age, atrial arrhythmias, QRS
duration or other ECG parameters, and renal or other organ dysfunction on the
effectiveness and efficiency of ICD is not well understood.

Specific Recommendations 3
For patients with ICD indications based on current guidelines, research should assess new
approaches that may provide incremental information on SCD risk beyond LV ejection
fraction.

• For patient groups known to have high all-cause mortality, research that uses new
approaches in assessing risk in SCD versus non-SCD should be encouraged.
Approaches that involve a combination of risk factors (identified by novel
biomarkers, genetic profiles, and new imaging methods of cardiac structure and
physiology) should be evaluated in clinical studies.

• At the population level, simple and inexpensive tools should be developed to
identify patients at elevated risk of SCD.

Recommendation 4: Establish Strategies for SCD Prevention by Targeting
Intermediate-Risk Phenotypes
Background

There are significant differences in prediction and prevention of SCD at the level of the
individual versus the general population. A particular test or risk factor may enhance risk
prediction in an individual, but may not be deployable as a screening tool in the general
population because of low overall specificity and limited cost-effectiveness.14 Similarly,
only selected prevention modalities may be deployed in the general population. The ICD is
clearly an effective prevention modality for the appropriately selected patient, but it has long
been recognized that burgeoning healthcare costs are likely to limit its use in the community.
56 Novel and more cost-effective methods of SCD screening and prevention will need to be
discovered. There are a number of intermediate-risk traits (for example, heart failure, CAD,
and LV hypertrophy), that are already being targeted with consequent attenuation of SCD
risk. Measures to prevent CAD will continue to have a significant and lasting effect on SCD
prevention.1 Similarly, drugs such as β-blockers and angiotensin-converting enzyme
inhibitors contribute to prevention of SCD in the large number of patients with heart failure
and LV systolic dysfunction.114 It is also likely that prevention, reversal, and attenuation of
LV hypertrophy have an impact on SCD prevention.115 However there are other traits such
as heart rate abnormalities,64,116,117 prolonged QT interval,28,63 and fragmented QRS118

that contribute to an increasing list of clinical phenotypes associated with SCD risk. These
could be targeted by focused investigation to explore potential beneficial effects on the
burden of SCD in the community.

Knowledge Gaps
• Intermediate-risk phenotypes or endophenotypes of SCD remain to be discovered

and validated as targets for risk stratification and ultimately SCD prevention.
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Specific Recommendations 4
• Facilitate investigative approaches that target discovery of SCD intermediate-risk

phenotypes.

• Facilitate investigative approaches that target modulation of SCD intermediate-risk
phenotypes for prevention of SCD.

Recommendation 5: Develop High-Throughput Strategies to Efficiently
Establish the Functional Relevance of Newly Discovered Genetic
Information
Background

There has been an explosion in the discovery of genes contributing to normal and abnormal
myocyte biology, and with that there has formed a new understanding of the functional
relevance of this emerging genetic information. For example, disease genes responsible for
monogenic syndromes associated with increased SCD risk have added importantly to our
understanding of the broad problem of SCD susceptibility by identifying new biological
interactions and pathways whose perturbation increases SCD risk. This paradigm has
highlighted the role of genes encoding ion channel pore-forming (eg, SCN5A,119

KCNQ1120) and accessory subunits (eg, CACNB2121 and SCN4B122), as well as
cytoskeletal (SNTA1123 ANK2,124 ANK3125) and trafficking (CAV3126) proteins. Common
variants in these genes are now being studied as modulators of SCD-related phenotypes:
KCNE1 D85N as a risk factor for drug-induced torsades or the congenital Long QT
syndrome127,128 and SCN5A S1103Y as a modulator of SCD and of Sudden Infant Death
Syndrome risk in African Americans129–131 are examples. Findings in mouse models of
“monogenic” disease also have important implications for the broad problem of SCD. One
example is the strain-dependence of electrophysiological phenotypes, reinforcing the idea
that genetic background plays a crucial role in modulating clinical phenotypes.132 Another is
the striking contrast between near-normal electrophysiological properties of a mutant
channel in heterologous expression and the obvious abnormal phenotype observed in
patients133 and in mice.134 Similarly, cellular mechanisms supporting arrhythmias in the
monogenic Timothy Syndrome gene (CACNA1C) require recruitment of signaling pathways
that are not present in heterologous expression systems, suggesting that there will not be a 1-
size-fits-all approach to successfully evaluate arrhythmia-causing disease genes.135

Unbiased strategies, exemplified by GWAS approaches, are identifying new genetic loci
and, in some cases, pathways implicated in arrhythmic disease syndromes. Some of these
GWAS “hits” are in genetic regions known to be important for normal electrogenesis, such
as those encoding ion channels or intracellular calcium control mechanisms, whereas others
are in regions not previously implicated in cardiac electrophysiology. The best-studied
example to date is NOS1AP, which as described above is a regulator of the normal QT
interval, and variants also seem to predict SCD in the community (ARIC, CHS).87 These
findings also reinforce previous observations suggesting that QT prolongation (eg, post-MI)
is a marker for SCD28,136 NOS1AP variants have been implicated as modulators of risk in
the congenital long QT syndromes,137 and have been associated with variability in calcium
channel blocker-associated SCD.138 The latter observations highlight the facts that (1) drug-
induced arrhythmias may represent a useful model within which to explore SCD risk
variation, and (2) SCD due to drug exposure may be more common than previously
appreciated and may have a “non-QT” component. Another example is sequence variation in
SCN10A, which encodes the Nav1.8 sodium channel pore-forming subunit, which has
recently been associated with cardiac conduction parameters, including QRS duration,139,140

which is a predictor of SCD.141 New pathways and mechanisms regulating cellular

Fishman et al. Page 10

Circulation. Author manuscript; available in PMC 2011 January 5.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



electrophysiology have the potential to influence SCD susceptibility. Examples are stretch,
142 trafficking,143,144 and intracellular signaling pathways.145 Dysregulation of microRNA
expression has also recently been implicated as a modulator of channel dysfunction that
leads to SCD susceptibility.146,147

A range of methods, including heterologous expression in cells and genetically modified
animal models, are available to study the function of protein-coding genes and to assess the
consequences of missense and nonsense sequence variants. However, all of these approaches
suffer from their relatively low throughput, particularly when detailed electrophysiological
function is to be ascertained. Efficient strategies to determine how sequence variants in
noncoding regions influence SCD predisposition are even more elusive. Novel approaches,
such as screens using zebrafish148,149 or Drosophila,150 are an important advance. It is also
conceivable that embryonic stem cell and induced pluripotent stem cell-derived
cardiomyocytes may provide additional high-throughput assay systems151,152 relevant to
SCD prediction and prevention.

Knowledge Gaps
• The functional relevance and mechanisms of action of sequence variants in genes

associated with increased risk of SCD are largely unknown.

• Experimental strategies to evaluate the physiological relevance of individual genes/
gene products, sequence variants in genes, and pathways are inefficient and may
not provide relevant information for human disease susceptibility.

Specific Recommendations 5
• Establish high-throughput tools to determine functional relevance of newly

discovered genetic information.

• Evaluate candidate genes in multiple systems.

Recommendation 6: Establish Multiscale Integrative Models, Including
Molecular, Cellular, and Organ Level, Animal, and Computational, Relevant
to Human Electrophysiology and Disease
Background

A fundamental tenet in the field is that SCD represents the interaction between triggers and a
susceptible substrate. A corollary of this concept, yet unproven, is the notion that improved
understanding of triggers and substrate, at varying levels of complexity ranging from
molecular through the emerging field of systems biology, is likely to provide insight into
SCD prediction and prevention.153,154 For example, recent theoretical, experimental, and
clinical data suggest that the Purkinje fiber network is an important arrhythmic trigger in
disease states, including acquired and inherited syndromes.155–158 Experimental data with
potential relevance to arrhythmic behavior and SCD derives from multiple domains,
including molecular structure and dynamics,159,160 gene expression networks,161 cellular,162

organ-level163–165 and whole organism166 behavior. Multiscale models representing the
different levels of structural and functional integration will be required to explore behavior
from the molecule to the organ to the patient.167 This involves bridging the spatial and
temporal scales, from nanometer to meter, and from nanoseconds to minutes, hours or
longer.168 Such an endeavor will require developing new algorithms and approaches to
achieve necessary levels of integration. Furthermore, to address the contribution of various
factors to the origin and maintenance of arrhythmias, simulations will increasingly become
multi-faceted, representing the consequences of factors such as soft tissue mechanics and

Fishman et al. Page 11

Circulation. Author manuscript; available in PMC 2011 January 5.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



fluid dynamics on electrophysiological behaviors.169,170 Finally, the relationship between
structure and electric function at the various (molecular, cellular, tissue, organ) levels of
complexity in the heart will have to be incorporated in a comprehensive manner in
arrhythmia models and simulations.171 Cardiac function at any level cannot be dissociated
from the underlying structure. This relationship holds special prominence in the mechanisms
of arrhythmogenesis in cardiac disease and needs to be reflected in the modeling efforts.172

Some of these modeling and simulation approaches are already under development,
including (1) a canine epicardial action potential model that reproduces a wide range of
experimentally observed rate-dependent behaviors such as adaptation, restitution, and
accommodation173; (2) an updated mathematical model of CaMKII signaling in the canine
epicardial infarct border zone,174 which establishes abnormal CaMKII signaling as an
important component of remodeling; (3) new models of the neonatal mouse ventricular
myocyte,175 rabbit ventricular myocyte,176 and human atrial myocyte177; (4) a human
Purkinje cell model155; (5) the first action potential model that integrates excitation-
contraction coupling and mitochondrial bioenergetics178 and the application of this model to
examine the control and regulation of oxygen consumption179; (6) a mathematical model of
Ca2+ spark triggering under voltage-clamp conditions that predicts changes in excitation-
contraction coupling “gain” resulting from diverse experimental interventions180; and (7) a
rabbit sino-atrial node model featuring coupled subsarcolemmal Ca2+ and sarcolemmal
voltage clocks.181

Similarly, there is progress in understanding the dynamic mechanisms that underlie
alternans, arrhythmogenesis, and the transition from VT to VF.182,183 This new framework
builds on the knowledge that alternans at the cellular level can be caused by dynamical
instabilities arising from either membrane voltage (Vm) attributable to steep APD restitution
and/or to calcium (Ca) cycling.184,185 Emerging novel insights include mechanistic links
between Ca sparks and whole-cell Ca alternans,186 as well as the role of fibroblast-myocyte
coupling in cardiac alternans.187

Progress in SCD prediction may also derive from a new class of integrative models that rely
on reconstructions of cardiac structure from histology or structural imaging modalities.
Examples include 3-dimensional reconstructions of sinoatrial and atrioventricular nodes,188

as well as image-based reconstructions of the heart and remodeling associated with
infarction or heart failure. These may serve to demonstrate the role of infarct scar
morphology in VT and the emergence of 3-dimensional electromechanical delay in heart
failure.189

The electrocardiographic imaging technique,190 which represents an inverse problem where
the epicardial potential is determined from body surface potentials and computed
tomography, has made a major foray into clinical applications. In a series of studies, the
investigators imaged noninvasively atrial repolarization, ventricular bigeminy, and ablation
of accessory pathways.191–194 One can easily imagine extension of this approach to use
functional imaging to enhance prediction of those at risk of SCD.

Knowledge Gaps
• Strategies to integrate data across scales of increasing complexity, from molecule to

cell, tissue, the whole heart, and ultimately the patient are lacking.

• Methods to extrapolate mechanisms from animal models of arrhythmogenesis to
the human heart are incompletely developed.

• Patient-specific approaches to prediction and prevention of SCD are not well
established.
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• Accessible interfaces that allow utilization of computer models by nonexperts are
needed.

• The theoretical and mechanistic bases of how complex systems undergo transitions
from stable to unstable behavior are poorly understood.

Specific Recommendations 6
• Establish multiscale models to integrate behavior from the molecule to the organ

and the patient.

• Enhance acceptance and utilization of such models to achieve improved
mechanistic understanding of arrhythmogenesis as well as the effects and
implications of new antiarrhythmia therapies.

Conclusion
The prediction and prevention of SCD remains an enormous challenge. Despite the
accumulation of remarkable insight into the genetic basis and regulation of cardiac
excitability, translation of this knowledge into novel strategies to identify the majority of
individuals at risk of SCD is lacking, as it has targeted antiarrhythmic therapy. Translating
new genetic information into improved understanding of physiology and disease represents a
bottleneck to progress in mechanistic SCD research. Recent population, clinical, and basic
science research studies, however, suggest there are real opportunities to improve our ability
to identify individuals at moderate and high risk of SCD and to intervene to diminish such
risk. Nonetheless, the complexity of the problem cannot be overstated and integrative
strategies spanning a broad range of scales from molecular through organism and population
studies, will be required to make progress in this area.
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Table

Summary of Specific Recommendation for the Prediction and Prevention of SCD

Recommendation 1: Facilitate study of well-phenotyped SCD and control populations, including under-studied subgroups.

 Facilitate the initiation and maintenance of large population-based studies of SCD to improve understanding of SCD mechanisms across
gender and all racial/ethnic groups.

 Provide the infrastructure to connect individual population-based studies as consortia that can collaborate for a common set of objectives.

 Perform studies that will further the understanding of presenting arrhythmias, i.e., VF, PEA, asystole and the mechanistic differences between
these conditions.

Recommendation 2: Develop and validate a SCD risk score utilizing phenotypic, biological and non-invasive markers

 Facilitate studies that will discover novel risk markers for SCD. There is a role for two distinct categories of studies:

  Optimization of risk prediction late in the natural history of SCD for improved efficiency of the ICD using large cohort studies of patients
with heart failure and an ICD.

  Discovery of novel risk predictors early in the natural history of conditions predisposing to SCD from large population-based studies that
perform comprehensive evaluations among all subjects who suffer SCD.

 Facilitate studies that combine novel risk markers and testing to create risk scores for prediction of SCD.

Recommendation 3. Develop novel risk stratification strategies to improve outcomes in select populations at risk of SCD, including patients
with ICD indications based on current guidelines and other patients at risk such as those with CAD and LV ejection fraction>35%; early phase
post-acute MI; heart failure with preserved systolic function; and/or LV hypertrophy.

 For patients with ICD indications based on current guidelines, research should assess new approaches that may provide incremental
information regarding SCD risk beyond LV ejection fraction.

 For patient groups known to have high all-cause mortality, research using new approaches in assessing the ratio in SCD vs non-SCD should
be encouraged. Approaches that involve a combination of risk factors (identified by novel biomarkers, genetic profiles, and new imaging
methods of cardiac structure and physiology), should be evaluated in clinical studies.

 At a population level, simple and inexpensive tools should be developed to identify patients at elevated risk of SCD.

Recommendation 4: Establish strategies for SCD prevention by targeting intermediate risk phenotypes

 Facilitate investigative approaches that target discovery of SCD intermediate risk phenotypes.

 Facilitate investigative approaches that target modulation of SCD intermediate risk phenotypes for prevention of SCD.

Recommendation 5: Develop high throughput strategies to efficiently establish the functional relevance of newly discovered genetic
information.

 Establish high throughput tools to determine functional relevance of newly discovered genetic information.

 Evaluate candidate genes in multiple systems.

Recommendation 6: Establish multiscale integrative models, including molecular, cellular, organ-level, animal and computational, relevant to
human electrophysiology and disease.

 Establish multiscale models to integrate behavior from the molecule to the organ and the patient.

 Enhance acceptance and use of such models to achieve improved mechanistic understanding of arrhythmogenesis as well as the effects and
implications of new antiarrhythmia therapies.
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