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Abstract

Trehalose is a non-reducing disaccharide and can be accumulated in response to heat or oxidative stresses in Candida
albicans. Here we showed that a C. albicans tps1D mutant, which is deficient in trehalose synthesis, exhibited increased
apoptosis rate upon H2O2 treatment together with an increase of intracellular Ca2+ level and caspase activity. When the
intracellular Ca2+ level was stimulated by adding CaCl2 or A23187, both the apoptosis rate and caspase activity were
increased. In contrast, the presence of two calcium chelators, EGTA and BAPTA, could attenuate these effects. Moreover, we
investigated the role of Ca2+ pathway in C. albicans apoptosis and found that both calcineurin and the calcineurin-
dependent transcription factor, Crz1p, mutants showed decreased apoptosis and caspase activity upon H2O2 treatment
compared to the wild-type cells. Expression of CaMCA1, the only gene found encoding a C. albicans metacaspase, in
calcineurin-deleted or Crz1p-deleted cells restored the cell sensitivity to H2O2. Our results suggest that Ca2+ and its
downstream calcineurin/Crz1p/CaMCA1 pathway are involved in H2O2 -induced C. albicans apoptosis. Inhibition of this
pathway might be the mechanism for the protective role of trehalose in C. albicans.
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Introduction

Candida albicans is the most important human fungal pathogen,

causing various diseases from superficial mucosal infections to life-

threatening systemic disorders [1–3]. The number of clinical C.

albicans infections worldwide has risen considerably in recent years,

and the incidence of resistance to traditional antifungal therapies is

also rising. Many existing antifungal therapies have unfortunate

clinical side effects; therefore, strategies are needed to identify new

targets for antifungal therapy.

In the past few years, it became evident that apoptosis might

occur not only in multicellular, but also in unicellular organisms,

such as fungi. The induction of cell apoptosis is considered as a

new and promising strategy for antifungal therapy. It has been

reported that Saccharomyces cerevisiae dies in an apoptotic manner in

response to weak acid stress, oxidative stress, salt stress, and UV

irradiation [4–7]. Ultrastructural and biochemical changes that

are characteristic of apoptosis have also been reported in

pathogenic fungi. C. albicans can be triggered to undergo an

apoptotic cell death response when exposed to environmental

stress such as H2O2, amphotericin B (AmB) or intracellular

acidification. However, the mechanism of C. albicans apoptosis has

not been fully revealed. Ras–cAMP–PKA was found to be

involved in the apoptosis of C. albicans. Mutations that blocked

Ras–cAMP–PKA signaling (ras1D, cdc35D, tpk1D, and tpk2D)

suppressed or delayed the apoptotic response, whereas mutations

that stimulated signaling (RAS1val13 and pde2D) accelerated the rate

of entry into apoptosis [8–10]. We recently found that CaMCA1, a

homologue of Saccharomyces cerevisiae metacaspase YCA1, was

involved in oxidative stress-induced apoptosis in C. albicans [11].

Trehalose, a non-reducing disaccharide, plays diverse roles,

from energy source to stress protectant, and this sugar is found in

bacteria, fungi, plants, and invertebrates but not in mammals [12].

In yeast, trehalose acts both as a main reserve of carbohydrates

and as a cellular protector against a variety of nutritional and/or

environmental stress challenges (oxidative, heat shock, osmotic

and/or saline stress, xenobiotics etc.), increasing cell resistance to

such insults [13]. The mechanism of trehalose protection is an

active area of research that includes studies of the interaction of

sugars with plasma membranes, the effects on cell osmotic

responses, and the unique physicochemical properties of trehalose

[14]. In yeast, trehalose is synthesized by a large enzyme complex

comprising the two catalytic activities of trehalose biosynthesis.

Trehalose-6-phosphate (Tre6P) synthase, encoded by TPS1,

synthesizes Tre6P from glucose-6-phosphate and UDP-glucose.

Tre6P is then hydrolyzed into trehalose by Tre6P phosphatase,

encoded by TPS2 [15,16]. In C. albicans, tps1/tps1 mutants are

defective not only for Tre6P synthesis but also for growth on

glucose or related rapidly fermented sugars and virulence [17,18].

Previous work on C. albicans pointed to a specific role of trehalose
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in cellular protection against oxidative stress. A tps1/tps1 mutant

was shown to be deficient in trehalose synthesis and was extremely

sensitive to H2O2 exposure [19]. However, the underlying

mechanism by which trehalose protects C. albicans from the

injuries remains undefined.

Ca2+ is an important second messenger in developmental and

stress signaling pathways. In fungi, Ca2+ is responsible for the

regulation of several processes, including cation homeostasis,

morphogenesis, virulence traits, and antifungal drug resistance

[20–23]. A rise in cytoplasmic Ca2+ has been found to be

responsible for pheromone-induced S. cerevisiae apoptosis [24].

Fungicidal activity of amiodarone is also tightly coupled to calcium

influx [25]. A rise in cytosolic calcium activates the calcium-

dependent signaling pathway via the phosphatase, calcineurin

(consisting of a catalytic subunit A encoded by CMP1 and a

regulatory subunit B encoded by CNB1) and the calcineurin-

dependent transcription factor, Crz1p. In C. albicans, Ca2+ and its

downstream calcineurin/Crz1p pathway are involved in azole

resistance, cell morphogenesis and virulence [26–29].

In this study, we show that lack of trehalose can accelerate

H2O2 -induced C. albicans apoptosis. Furthermore, this is linked to

an increase of Ca2+ concentration and caspase activity. Addition

or depletion of Ca2+ affected the cell death and caspase activity.

Moreover, we investigated the role of Ca2+ signaling in C. albicans

apoptosis, and found that both calcineurin-deleted and Crz1p-

deleted cells showed decreased cell death and caspase activity

compared to the wild-type cells. Expression of CaMCA1 in

calcineurin-deleted or Crz1p-deleted cells restored the sensitivity

to H2O2.

Results

Lack of Trehalose Accelerates H2O2-induced Apoptosis
In C. albicans, TPS1 encodes trehalose-6-phosphate (Tre6P)

synthase that is required for trehalose synthesis. A tps1D mutant is

deficient in trehalose accumulation. The impact of TPS1 mutation

on trehalose accumulation is shown in Fig. 1A. Trehalose

accumulation was increased in wild-type cells after 1 to 3 hours

Figure 1. Effects of trehalose accumulation on H2O2-induced apoptosis and ROS production. (A) The wild-type (CAI4-EXP), tps1g-EXP
and tps1g-TPS1 cells were exposed to 1 mM H2O2 for up to 3 hours. At the indicated times, aliquots of cells were taken to measure trehalose
content. (B) The cells were exposed to 1 mM H2O2. At the indicated times, aliquots of cells were taken to measure the intracellular ROS by POLARstar
Galaxy with excitation at 485 nm and emission at 520 nm. (C) DNA damage of the cells after treatment with 1 mM H2O2 for 3 hours revealed by the
TUNEL assay under a fluorescence microscope. (D) Percentage of cells that were classified as apoptotic by TUNEL assay after treatment with indicated
concentrations of H2O2 for 3 hours using a BD FACS Calibur flow cytometer with excitation and emission wavelength settings at 488 and 520 nm,
respectively. These data were mean values 6 S.D. from three independent experiments. * indicates P,0.01 compared with values from the control
CAI4-EXP cells.
doi:10.1371/journal.pone.0015808.g001
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exposure to 1 mM H2O2. This increase did not appear in tps1D
mutant.

Since it has been reported that H2O2 can induce apoptosis in C.

albicans and reactive oxygen species (ROS) is an indicator of

apoptosis [9,22], we examined ROS generation of the cells with

the fluorescent dye DCFH-DA. An increase of intracellular ROS

level was observed in both tps1g mutant and wild-type cells upon

H2O2 treatment. However, this increase was even stronger in

tps1g mutant (Fig. 1B). Consistent with this, the tps1g mutant

showed a higher percentage of cells demonstrating ROS

accumulation than the wild-type cells (Table 1).

To ascertain the role of trehalose in C. albicans apoptosis, we

compared the apoptosis rate between the wild-type cells and tps1D
mutant when exposed to different concentrations of H2O2. As

shown in Fig. 1C, upon H2O2 treatment, the apoptosis rate of

tps1D mutant was higher than wild-type cells. After 3 hours

treatment with 2 mM H2O2, 78% of the tps1D mutant cells were

apoptotic, while the apoptosis rate of the wild-type cells was 47%.

Lack of Trehalose Enhances Ca2+ Elevation And Caspase
Activity

In S. cerevisiae, elevation of intracellular Ca2+ can lead to cell

death [25]. We determined the intracellular Ca2+ upon H2O2

treatment using a fluorescent calcium indicator Fluo-3/AM. In the

absence of H2O2, the intracellular levels of Ca2+ in both the tps1D
mutant and wild-type cells were rather low and almost

undetectable. After treatment with 1 mM H2O2 for 3 hours, both

of the groups showed obvious elevation of intracellular Ca2+, while

the tps1D mutant cells showed a higher level of Ca2+ than the wild-

type cells (Fig. 2A, 2B).

Since we previously found that the caspase activity was

increased in C. albicans apoptosis [11], here we investigated the

caspase activity by staining the cells with D2R, a nonfluorescent

substrate, which is cleaved to green fluorescent monosubstituted

rhodamine 110 and free rhodamine [10,11,30]. As shown in

Fig. 2C and 2D, after treatment with 1 mM H2O2 for 3 hours, the

cell number stainable by D2R in the wild-type cells was 26%, while

that in the tps1D mutant was 51%. Furthermore, the transcript

levels of CaMCA1, which is responsible for caspase activity in C.

albicans, were investigated by real time RT-PCR. As shown in

Fig. 2E, in the absence of H2O2, there was no significant difference

in the transcript level of CaMCA1 between the tps1D mutant and

wild-type cells. However, a 4 fold increase of CaMCA1 transcript

level was recorded in the tps1D mutant compared to that in the

wild-type cells when exposed to 1 mM H2O2 for 3 hours.

Adding or Depleting Ca2+ Affected Apoptosis and
Caspase Activity

Since the intracellular Ca2+ level could be increased by H2O2,

especially in the tps1D mutant, we hypothesized that Ca2+ signaling

might regulate C. albicans apoptosis, and the higher sensitivity of

tps1D mutant to H2O2 might be due to its higher intracellular Ca2+

level. As shown in Fig. 3A, when we stimulated the intracellular

Ca2+ level by adding CaCl2 (0.5 mM), the apoptosis rate increased

in both the tps1g mutant and wild-type cells. Similar effects were

observed when A23187 (0.5 mM), a calcium ionophore, was added.

CaCl2 and A23187 themselves at the concentrations tested had no

effects on C. albicans growth. In addition, the presence of both CaCl2
and A23187 resulted in an increased caspase activity in both the

tps1g mutant and wild-type cells (Fig. 3C).

Furthermore, we tested the effect of depleting Ca2+. As shown in

Figure 3B, the presence of EGTA (1 mM), an extracellular

calcium chelator, attenuated the H2O2-induced apoptosis in both

tps1D mutant and wild-type cells, accompanied by the decrease of

caspase activity (Fig. 3D). Similarly, when BAPTA (1 mM), an

intracellular calcium chelator, was added, both the apoptosis rate

and caspase activity in the two strains were decreased.

Deletion of Calcineurin or Crz1p Leads to a Decrease in
Apoptosis and Caspase Activity

In C. albicans, calcineurin and Crz1p are two major proteins

involved in Ca2+ signaling and play an important role in antifungal

tolerance, cell morphogenesis and virulence [20,21,26]. So it is

possible that the effects of Ca2+ on cell death are mediated by

calcineurin and its downstream target Crz1p. To test this

hypothesis, we examined the viability of calcineurin and Crz1p

mutants [27] upon H2O2 treatment. After 3 hours treatment with

2 mM H2O2, 52% of wild-type cells were apoptotic while the

apoptosis rates of cmp1D and crz1D mutants were 19% and 25%,

respectively. In the cmp1D-CMP1 and crz1D-CRZ1 cells which

contain reintroduced CMP1 and CRZ1 gene, the apoptosis rate

was similar to the wild-type cells (Fig. 4A). As expected, the

caspase activities in both the cmp1D and crz1D mutants were lower

than that in wild-type cells (Fig. 4B). Consistent with this, the

transcription levels of CaMCA1 in cmp1D and crz1D mutants were

much lower than that in the wild-type cells (Fig. 4C). The potential

role of calcineurin in H2O2-induced apoptosis was further

examined using the calcineurin inhibitor cyclosporin A. Upon

H2O2 treatment, the wild type cells showed lower apoptosis rates

and caspase activity in the presence of 0.08 mM cyclosporin A as

compared to the absence of this compound (Fig. 4A, 4B).

Expression of CaMCA1 in Calcineurin-deleted and Crz1p-
deleted Cells Restored the Sensitivities to H2O2

Since the caspase activity was decreased in cmp1D and crz1D
mutants upon H2O2 exposure, we introduced CaMCA1 into the

cmp1D and crz1D mutants and assessed the phenotype. Upon

H2O2 treatment, the apoptosis rates (Fig. 4A) and caspase activities

(Fig. 4B) of the CaMCA1-introduced cells were much higher than

the cmp1D and crz1D mutants. Consistent with this, the

transcription levels of CaMCA1 in cmp1D and crz1D mutants were

lower than that in the wild-type cells, while the transcription levels

of CaMCA1 in the CaMCA1-introduced cells were similar to that in

the wild-type cells (Fig. 4C). In addition, the apoptosis rates and

caspase activities of the camca1D mutant were lower than the wild-

type cells. These data indicated that CaMCA1 could restore the

decreased apoptosis and caspase activities of calcineurin-deleted

and Crz1p-deleted cells.

Discussion

In yeasts, trehalose acts both as a main reserve of carbohydrates

and as a cellular protector against a variety of nutritional and/or

environmental stress challenges, increasing cell resistance to such

Table 1. Percentages of cells demonstrating ROS
accumulation after exposure to 1 mM H2O2 for the indicated
time.

Group 1 hour 2 hours 3 hours

CAI4-EXP 761 1562 4164

tps1g-EXP 1762 4866* 7866*

tps1g-TPS1 861 1762 3464

*indicated P,0.01 compared with values from the CAI4-EXP cells.
doi:10.1371/journal.pone.0015808.t001
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injuries. Trehalose accumulation in C. albicans has been described

as a defense mechanism against oxidative stress. A trehalose-

deficient tps1D mutant is highly sensitive to H2O2 and prone to

undergo phagocytic digestion [31]. However, the mechanism by

which trehalose protects C. albicans from injuries remains unclear.

Since apoptosis is now considered as one of the important ways of

C. albicans death, we assessed the role of trehalose in H2O2-induced

apoptosis using a tps1g mutant. According to our result, lack of

trehalose could accelerate H2O2 -induced apoptosis which was

accompanied by an increase of ROS, an apoptosis indicator. This

result revealed a mechanism for the protective role of trehalose in

C. albicans. Similar results were reported by other researchers. Liu

et al. found that trehalose could inhibit the phagocytosis of

refrigerated platelets in vitro via preventing apoptosis [32]. Also,

trehalose has been found to protect against ocular surface

disorders in experimental murine dry eye through suppression of

apoptosis [33].

Our detailed studies on the protective effect of trehalose

revealed a role of Ca2+ signals in C. albicans apoptosis. We

observed that there was an increase of intracellular Ca2+ level in

both the tps1g mutant and wild-type cells upon H2O2 treatment.

However, this increase was much stronger in tps1g mutant,

which was consistent with the higher apoptosis rate induced in

this strain. When we stimulated the intracellular Ca2+ level by

adding CaCl2 or A23187, the apoptosis rates in both the tps1g
mutant and wild-type cells were increased. In contrast, when

Figure 2. Effects of trehalose accumulation on H2O2-induced Ca2+ elevation and caspase activity. The wild-type (CAI4-EXP), tps1g-EXP
and tps1g-TPS1 cells were exposed to 1 mM H2O2 for 3 hours and stained with Fluo-3/AM. Ca2+ levels were determined by observing the
fluorescence using a fluorescence microscope (A) or the POLARstar Galaxy (B). The caspase activity of the cells treated with 1 mM H2O2 for 3 hours
was determined by staining the cells with D2R and counting under a fluorescence microscope (C, D). Transcription levels of CaMCA1 in response to
1 mM H2O2 for 3 hours determined by real-time RT-PCR. The mRNA levels were normalized on the basis of their ACT1 levels. Gene expression was
indicated as the fold increase of tps1g-EXP and tps1g-TPS1 cells relative to that of the wild-type (CAI4-EXP) strain (E). These data were mean values 6
S.D. from three independent experiments. * indicates P,0.01 compared with values from the control CAI4-EXP cells.
doi:10.1371/journal.pone.0015808.g002
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Ca2+ was depleted by adding EGTA or BAPTA, the apoptosis

rates in both the tps1g mutant and wild-type cells were

decreased. These results indicated that apoptosis could be

induced in C. albicans through increasing intracellular Ca2+

level.

The role of Ca2+ in C. albicans apoptosis was further examined

by the experiments with CMP1 and CRZ1, two genes involved in

Ca2+ signaling. We found that cmp1D and crz1D mutants showed

attenuated apoptosis upon H2O2 treatment, similar to the effect of

depleting Ca2+ in wild-type cells. Consistent with this result,

addition of cyclosporin A, a calcineurin inhibitor, could also

attenuate apoptosis. Taken together, Ca2+ and its downstream

calcineurin/Crz1p pathway are involved in H2O2 -induced C.

albicans apoptosis.

In mammals, apoptosis can be directed by the activation

caspases, which cleave specific substrates and trigger cell death. In

the past few years, it has become evident that caspases might exist

not only in multicellular, but also in unicellular organisms, such as

fungi. In S. cerevisiae, YCA1 encodes a single metacaspase, which

has caspase activity. YCA1 is involved in the apoptosis of yeast cells

exposed to different environmental stresses, such as H2O2, acetic

acid, sodium chloride, heat shock, and hyperosmosis [34–36]. In

plants, metacaspases have been associated with Norway spruce

apoptosis during embryogenesis and tomato plant apoptosis

induced by fungal infection [37–39]. Using yeast as a heterologous

system for apoptosis evaluation, the metacaspases AtMCP1b and

AtMCP2b from the plant Arabidopsis thaliana were also found to be

involved in apoptosis induced by H2O2 [40]. We recently found

that H2O2-induced C. albicans apoptosis was accompanied with

caspase activity, which was encoded by CaMCA1 [11]. In this

study, we found that, upon H2O2 treatment, the caspase activities

in tps1g mutant were much higher than those in wild-type cells,

similar to the phenomena of intracellular Ca2+ levels. The positive

relation between Ca2+ level and caspase activity was proved by

adding or depleting Ca2+. Moreover, both calcineurin-deleted and

Crz1p-deleted cells showed lower caspase activity compared to the

wild-type cells, indicating that CaMCA1 might be a downstream

gene which is blocked in calcineurin-deleted or Crz1p-deleted cells

(Fig. 5). As expected, when extraneous CaMCA1 was introduced

into these cells, the caspase activity and cell sensitivity to H2O2

were resumed. Previous studies showed that C. albicans CaMCA1

could be activated by Ca2+ and regulated by calcineurin and

Crz1p. Moreover, CDRE (calcineurin-dependent responsive

element) was found in the promoter of CaMCA1 [26]. Based on

these results, we conclude that CaMCA1 is likely to be one of the

downstream genes influenced by the Ca2+ signaling and involved

with the protective role of trehalose against H2O2-induced

apoptosis.

Materials and Methods

Media and Compounds
Yeast media used were YPD (1% yeast extract, 2% peptone,

and 2% glucose) and SD [0.67% (w/v) Difco yeast nitrogen base

Figure 3. Effects of adding or depleting Ca2+ on H2O2-induced apoptosis and caspase activity. (A, B) The wild-type (CAI4-EXP), tps1g-EXP
and tps1g-TPS1 cells were exposed to 0.5 mM or 1 mM H2O2 for 3 hours in the absence or presence of CaCl2 (0.5 mM), A23187 (0.5 mM), EGTA
(1 mM), BAPTA (1 mM). Percentage of cells that were classified as apoptotic by TUNEL assay was shown. (C, D) Caspase activity determined by staining
the cells with D2R. These data were mean values 6 S.D. from three independent experiments. * indicates P,0.01 compared with values from the cells
treated with the same concentrations of H2O2 only.
doi:10.1371/journal.pone.0015808.g003

Role of Trehalose in Candida albicans Apoptosis
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without amino acids]. SD medium was supplemented with a

complete synthetic mix containing all the amino acids and bases.

For prototrophic selection of yeast, the relevant drop-out mixes

were used. Because the capacity of the trehalose-deficient mutant

tps1/tps1 to grow on exogenous glucose and fructose as carbon

source is seriously compromised, some experiments were carried out

in YPgal medium (1% yeast extract, 2% peptone, and 2% galactose)

or SDgal [0.67% (w/v) Difco yeast nitrogen base without amino

acids, 2% galactose]. Escherichia coli strain DH5a and LB (0.5% yeast

extract, 1% peptone, and 1% NaCl) medium were used for

transformation and plasmid DNA preparation. Fluo-3/AM, CaCl2,

A23187, BAPTA, EGTA, cyclosporin A (Sigma, U.S.A.) were

Figure 4. Effects of CMP1 deletion, CRZ1 deletion or expression of CaMCA1 on H2O2-induced apoptosis and caspase activity. The wild-
type (CAI4-EXP), cmp1D-EXP, crz1D-EXP, cmp1D-CMP1, crz1D-CRZ1 camca1D, CAI4-CaMCA1, cmp1D-CaMCA1 and crz1D-CaMCA1 cells were exposed
to 2 mM H2O2 for 3 hours. In another experiment, the wild-type cells were exposed to 2 mM H2O2 for 3 hours in the presence of cyclosporin A
(0.08 mM). (A) Percentage of cells that were classified as apoptotic by TUNEL assay was shown. (B) The caspase activity was determined by staining the
cells with D2R. (C) Transcription level of CaMCA1 in response to 2 mM H2O2 for 3 hours was determined by real time RT-PCR. The mRNA levels were
normalized on the basis of their ACT1 levels. Gene expression is indicated as the fold increase of the mutant and CaMCA1-introduced cells relative to
that of the wild-type cells. The data are mean values 6 S.D. from three independent experiments. * indicates P,0.01 compared with values of CAI4-
EXP treated with H2O2 only. ** indicates P,0.01 compared with values of parental cells without CaMCA1.
doi:10.1371/journal.pone.0015808.g004
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dissolved in either medium or dimethyl sulfoxide (DMSO) and then

diluted to the appropriate working concentration.

Plasmids and Strain Construction
The strains (Table 2) were cultivated at 30uC under constant

shaking (200 rpm) or incubation. To reintroduce TPS1 to tps1D

mutant, the ORF of TPS1 was amplified (using upstream primer

59 ggatccatggttcaaggaaaagtc 39 and downstream primer 59

ctgcagctagtccctcaaactcttttg 39) with Pyrobest DNA polymerase

(TaKaRa Biotechnology, Dalian, P.R. China). After being

purified, the BamHI-PstI digested PCR fragment was cloned into

the integrative expression vector pCaEXP (Table 3) to generate

the recombinant plasmid pCaEXP-TPS1 [41]. After sequencing,

pCaEXP-TPS1 was linearized and used to transform tps1D cells,

and selected on SD medium lacking uridine, methionine and

cysteine. As controls, the empty plasmid pCaEXP was transformed

into CAI4 and tps1D cell to produce CAI4-EXP and tps1D-EXP,

respectively. The same expression vector and transformation

method were used for reintroducing CMP1 (using upstream primer

59 ggatccatgtcaggaaatactgttcaa 39 and downstream primer 59

ctgcagttaactttgagataatcttct 39) and CRZ1 (using upstream primer

59 ggatccatgtctaacaatcctcatccc 39 and downstream primer 59

ctgcagctaagtaatttcaacaccact 39) genes to their corresponding

mutants, and introducing CaMCA1 (using upstream primer 59

ggatccatgtttccaggacaaggtag 39 and downstream primer 59 ctgcagt-

taaaaaataaattgcaagtt 39) to cmp1D and crz1D mutants and CAI4.

The expression of TPS1, CMP1, CRZ1 and CaMCA1 in their host

cells was confirmed by real time RT-PCR (data not shown).

Cell Treatment and Apoptosis Measurement
Yeast cells grown to early exponential phase at 30uC were

exposed to different concentrations of H2O2 for the required time

(range 0–3 hours) and then harvested for apoptosis measurement. A

terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick

end labeling (TUNEL) assay was performed in order to confirm the

occurrence of the apoptosis process [4]. C. albicans cells were washed

twice with PBS and fixed with a solution of 3.6% paraformaldehyde

in PBS for 1 hour at 20uC. Cells were rinsed twice with PBS and

then incubated with permeabilization solution for 2 minutes on ice.

The cells were rinsed in PBS and labeled, using a solution of the

label and enzyme solutions from an in situ cell death detection kit,

fluorescein (Roche Applied Sciences, Mannheim, Germany), with

Figure 5. A model for the role of trehalose in the regulation of
H2O2-induced apoptosis in C. albicans. When C. albicans is exposed
to H2O2, the intracellular Ca2+ is increased and its downstream
calcineurin/Crz1p pathway is activated. The calcineurin inhibitor
cyclosporin A can block this pathway. Crz1p might up-regulate the
expression of CaMCA1 through binding to the CDRE (calcineurin-
dependent responsive element) in the promoter of CaMCA1. The
increased expression of CaMCA1 results in the increased caspase activity
and thus apoptosis occurs. tps1g mutation results in the lack of
trehalose accumulation thus accelerates C. albicans apoptosis.
doi:10.1371/journal.pone.0015808.g005

Table 2. C. albicans strains used in this study.

Strain Parent Genotype Reference

CAI4 CAF2-1 ura3g::immm434/ura3g::immm434 Fonzi et al., 1993

CAI4-EXP CAI4 ura3g::immm434/ura3g::immm434::URA3 This study

cmp1D(DSY2091) CAF4-2 cmp1g::hisG/cmp1g::hisG-URA3-hisG Karababa et al., 2006

cmp1Du cnaD cmp1g::hisG/cmp1g::hisG This study

cmp1D-CaMCA1 cnaDu cmp1g::hisG/cmp1g::hisG::CaMCA1-URA3 This study

cmp1D-CMP1 cnaDu cmp1g::hisG/cmp1g::hisG::CMP1-URA3 This study

cmp1D-EXP cnaDu cmp1g::hisG/cmp1g::hisG::URA3 This study

crz1D(DSY2195) DSY2188 crz1g::hisG/crz1g::hisG-URA3-hisG Karababa et al., 2006

crz1Du crz1D crz1g::hisG/crz1g::hisG This study

crz1D-CaMCA1 crz1Du crz1g::hisG/crz1g::hisG::CaMCA1-URA3 This study

crz1D-CRZ1 crz1Du crz1g::hisG/crz1g::hisG::CRZ1-URA3 This study

crz1D-EXP crz1Du crz1g::hisG/crz1g::hisG::URA3 This study

camca1D CAI4 camca1g::hisG/camca1g::hisG-URA3-hisG Cao et al., 2009

CAI4-CaMCA1 CAI4 ura3g::immm434::CaMCA1-URA3 This study

tps1D CAI4 tps1g::hisG/tps1g::hisG Zaragoza et al., 1998

tps1D-EXP tps1D tps1g::hisG/tps1g::hisG::URA3 This study

tps1D-TPS1 tps1D tps1g::hisG/tps1g::hisG::TPS1-URA3 This study

doi:10.1371/journal.pone.0015808.t002
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appropriate controls labeled only with the label solution. The cells

were incubated for 1 hour at 37uC in a humidified atmosphere in

the dark, rinsed in PBS. The staining of the cells was observed by a

fluorescence microscopy. Alternatively, the number of cells

determined to be positive by the TUNEL assay was quantified

using a BD FACSCalibur flow cytometer with excitation and

emission wavelength settings at 488 and 520 nm, respectively.

Assay of the Intracellular Content of Trehalose
For analysis of the intracellular trehalose, the cells grown to early

exponential phase at 30uC were exposed to 1 mM H2O2 for

3 hours. At the indicated times, aliquots of cells (about 56108) were

taken and immediately centrifuged and washed with cold distilled

water. Samples were microwaved (700 W) for 3660 seconds with

30 seconds intervals between each, 1 ml of distilled water was then

used to extract the trehalose for 1 hour. After centrifugation at

15,0006g for 10 minutes, the trehalose in the supernatants was

analyzed by HPLC-MS with a detection limit of 1 ng. An HPLC

system (Agilent1100, Wilmington, Germany) equipped with a

G1946 mass spectrometer was used in the analysis. The operating

conditions were as follows: Extracts were analyzed after separation

of an Agilent Zorbax NH2 Column (4.6 mm6250 mm, 5 mm) at a

flow rate of 1.0 ml/min. The mobile phase consisted of methanol:

water 85:15 (v/v). The HPLC eluant from the DAD detector was

introduced into the mass spectrometer via a 1:3 split. The column

temperature was 25uC. A quadrupole mass spectrometer equipped

with an ESI interface was used to obtain mass spectra, which were

then examined by SIM in negative mode. The nebulizing gas was at

40 psi, and the drying gas temperature was 350uC. The fragmentor

was set to 70 V, and the capillary voltage was 3.5 kV. The cell

weight was determined as follows: another sample of the same

volume of the corresponding cell suspension was filtered through

pre-weighed filters (0.22 mm pore size). After washing with PBS, the

filters were dried at 37uC for 48 h and then weighed. The trehalose

content was showed as nmol/mg.

Measurement of ROS Levels
Intracellular levels of ROS were measured with DCFH-DA

(Molecular Probes, U.S.A.). Briefly, cultured cells were collected

by centrifugation and washed three times with PBS. Subsequently,

the cells were adjusted to 26107 cells/ml. After being incubated

with 20 mg/ml of DCFH-DA for 30 minutes at 30uC, the cells

were exposed to H2O2 and incubated at 30uC with constant

shaking (200 rpm). At specified intervals, cell suspensions were

harvested and examined by fluorescence microscope or transferred

to the wells of a flat-bottom microplate (BMG Microplate, 96 well,

Blank) to detect fluoresence intensity on the POLARstar Galaxy

(BMG, Labtech, Offenburg, Germany) with excitation at 485 nm

and emission at 520 nm.

Ca2+ Detection
Cells were loaded with 5 mM Fluo-3/AM for 30 minutes at

37uC. Ca2+ levels were determined by a fluorescence microscopy.

Alternatively, fluorescence intensity values were determined on the

POLARstar Galaxy (BMG, Labtech, Offenburg, Germany) with

excitation at 488 nm and emission at 525 nm.

Assessment of Caspase Activity
Caspase activity was detected by staining with D2R (CaspSC-

REEN Flow Cytometric Apoptosis Detection Kit, BioVision,

U.S.A.) [10,11,41]. According to the manufacturer’s instructions,

cells were in D2R incubation buffer at 30uC for 45 minutes before

viewing and counting under a fluorescence microscope with

excitation at 488 nm and emission at 530 nm.

Real-time RT-PCR
RNA isolation and real-time RT-PCR were performed as

described previously [42]. The isolated RNA was resuspended in

diethyl pyrocarbonate-treated water. The OD260 and OD280 were

measured, and the integrity of the RNA was visualized by

subjecting 2 to 5 ml of the samples to electrophoresis through a 1%

agarose-MOPS gel. First-strand cDNAs were synthesized from

3 mg of total RNA in a 60 ml reaction volume using the cDNA

synthesis kit for RT-PCR (TaKaRa Biotechnology, Dalian, P.R.

China) in accordance with the manufacturer’s instructions.

Triplicate independent quantitative real-time PCR were per-

formed using the LightCycler System (Roche diagnostics, GmbH

Mannheim, Germany). SYBR Green I (TaKaRa) was used to

visualize and monitor the amplified product in real time according

to the manufacturer’s protocol. CaMCA1 was amplified with the

forward primer 59-TATAATAGACCTTCTGGAC-39 and the

reverse primer 59- TTGGTGGACGAGAATAATG-39.

The PCR protocol consisted of denaturation program (95uC for

10 seconds), 40 cycles of amplification and quantification program

(95uC for 10 seconds, 60uC for 20 seconds, 72uC for 15 seconds

with a single fluorescence measurement), melting curve program

(60–95uC with a heating rate of 0.1uC per second and a

continuous fluorescence measurement) and finally a cooling step

to 40uC. A standard curve for each primer set was performed with

1:10, 1:25, 1:50, 1:100, 1:250 and 1:500 dilutions of the cDNAs.

The slopes of the standard curves were within 10% of 100%

efficiency. The change in fluorescence of SYBR Green I dye in

every cycle was monitored by the LightCycler system software,

and the threshold cycle (CT) above background for each reaction

was calculated. The CT value of ACT1 (amplified with the forward

primer 59-CAACAAGGACAATACAATAG-39 and the reverse

primer 59- GTTGGTGGACGAGAATAATG -39) was subtracted

from that of the tested genes to obtain a DCT value. The DCT

value of an arbitrary calibrator was subtracted from the DCT value

of each sample to obtain a DDCT value. The gene expression level

relative to the calibrator was expressed as 22DDCT.
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Table 3. Plasmids used in this study.

plasmid Parent Genotype Reference

pCaEXP pCaEXP C. albicans expression vector Care et al., 1999

pCaEXP-MCA1 pCaEXP expression vector containing
CaMCA1

Cao et al., 2009

pCaEXP-CMP1 pCaEXP expression vector containing CMP1 This study

pCaEXP-CRZ1 pCaEXP expression vector containing CRZ1 This study

pCaEXP-TPS1 pCaEXP expression vector containing TPS1 This study

doi:10.1371/journal.pone.0015808.t003
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