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Common chromosomal fragile sites FRA3B and FRA16D are frequent sites of DNA instability in cancer, but
their contribution to cancer cell biology is not yet understood. Genes that span these sites (FHIT and WWOX,
respectively) are often perturbed (either increased or decreased) in cancer cells and both are able to sup-
press tumour growth. While WWOX has some tumour suppressor characteristics, its normal role and func-
tional contribution to cancer has not been fully determined. We find that a significant proportion of
Drosophila Wwox interactors identified by proteomics and microarray analyses have roles in aerobic metab-
olism. Functional relationships between Wwox and either CG6439/isocitrate dehydrogenase (Idh) or Cu-Zn
superoxide dismutase (Sod) were confirmed by genetic interactions. In addition, altered levels of Wwox
resulted in altered levels of endogenous reactive oxygen species. Wwox (like FHIT) contributes to pathways
involving aerobic metabolism and oxidative stress, providing an explanation for the ‘non-classical tumour
suppressor’ behaviour of WWOX. Fragile sites, and the genes that span them, are therefore part of a protec-
tive response mechanism to oxidative stress and likely contributors to the differences seen in aerobic gly-
colysis (Warburg effect) in cancer cells.

INTRODUCTION

Common chromosomal fragile sites have been found to
coincide with the location of various forms of DNA instability
(including homozygous deletions and translocations) in cancer
cells (1-3). Common chromosomal fragile sites are found in all
individuals and appear to be regions of the genome that are par-
ticularly sensitive to environmental damage—they are suscep-
tible to agents in cigarette smoke (4) and their expression
levels in cells are modified by dietary factors such as folate
level and even caffeine and ethanol (1,5). When induced to
appear in cells, >70 different common chromosomal fragile

sites exhibit different frequencies of cytogenetic appearance
such that FRA3B (located on human chromosome 3) is the
most readily observed, followed by FRAI6D (on human
chromosome 16) and then others distributed over most of the
human chromosomes at specific locations that are reproducibly
observed (2). The incidence of DNA instability in cancer
follows a similar hierarchy (i.e. FRA3B > FRAI6D >
others) suggesting that cytogenetic ‘fragility’ and DNA
instability in cancer are directly related (6,7). Recently, a
screen for small homozygous deletions in 746 cancer cell
lines detected chromosomal fragile sites FRA3B and FRA16D
as the two most frequent sites of this form of mutation (3).
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Common chromosomal fragile sites themselves appear to
span hundreds of kilobases of DNA and are typically located
within lengthy genes (e.g. FHIT 1.5Mb, WWOX 1.1 Mb,
parkin 1.36 Mb; 8). In the case of FRAI6D, the fragile site
DNA region of ~260 kb is completely contained within a
massive 780 kb intron of the WIWOX gene (6,9,10). Just why
these genes should be so large (the WIWOX spliced mRNA
product is only ~1.1 kb) and contain fragile sites that are sus-
ceptible to environmental damage is not known, but is very
likely to reflect functional significance since mouse ortholo-
gues of FHIT and WWOJX also span common chromosomal
fragile sites (8). Efforts to find relationships between the
different fragile site genes have been reported, but the func-
tional significance of such associations is unclear (8,11,12).

Attention has, therefore, been focussed on the normal func-
tions of common fragile site genes, as it is the perturbation of
these functions that is most likely to contribute to cancer. Both
FHIT (spanning FRA3B) and WWOX (spanning FRA16D) act
to inhibit tumour growth when introduced into cancer cells
lacking their expression (13,14); however, they do not
exhibit all of the typical characteristics of tumour suppressors.
For example, point mutations are extremely rare in WIWOX
and the protein is quite commonly still present in cancer
cells (even sometimes increased in expression; 15—18) indi-
cating absence of the hallmark ‘second-hit’ required to fulfil
the Knudsen hypothesis characteristic of tumour suppressors.
This ‘non-classical’ tumour suppressor function for WWOX
is further evident in analysis of rodent mutants for the
WWOX gene. Some (but not all) lines of loss of function
WWOX mutant mice have higher incidence of tumours,
however tumours from heterozygous mutant mice still
express WWOX (19-23). A spontaneous Wwox mutant rat
has also been described, but it does not exhibit higher inci-
dence of tumours (24,25). Rodent Wwox mutants typically
exhibit early death, which may preclude development of
some tumours, in addition to metabolic disorders, but they
are otherwise surprisingly different in their phenotypes (19—
25). This may reflect the distinct nature of their mutations or
their different genetic backgrounds. While these rodent
studies have provided some insight into the biological role
for WWOX, there is still clearly a need to understand the mol-
ecular processes and pathways in which WWOX participates;
particularly how WWOX contributes to metabolism and how
this altered metabolism can contribute, at least in certain cir-
cumstances, to a greater incidence of cancer.

Genetic studies into the function of Wwox have been initiated
in Drosophila. Drosophila is ideal for this particular purpose as
evident from its unique contributions to understanding human
disease pathogenesis pathways where subtle but significant
roles of cancer genes and intricate signal transduction pathways
have been identified (26,27). We have previously identified the
unique Drosophila WWOX orthologue, Wwox (CG7221; 49%
identity with human WWOX) and disrupted the Wwox gene by
homologous recombination (28). Insertion of stop codons and
an altered reading frame at the beginning of the endogenous
gene was effective in causing loss of Wwox function by render-
ing the resultant mRNA from the mutated gene incapable of
being translated into the Wwox protein (28). Initially, Droso-
phila homozygous for this mutation were reported as being sen-
sitive to ionizing radiation. However, further analysis indicated

that background mutations, rather than the targeted Wwox
mutations, were responsible for this phenotype (29).

The lack of phenotype in Drosophila has precluded direct
genetic analysis of the Wwox function. We have, therefore,
undertaken a distinct approach to understanding the normal
biological functions of Wwox by undertaking genetic and bio-
chemical screens to identify the pathways to which Wwox
contributes. Using the combination of proteomic and microar-
ray screens to identify interactive partners and genetic analysis
to confirm the functionality of such interactions, we have
found that Wwox participates in common pathways with
CG6439/isocitrate dehydrogenase (Idh) and Cu—Zn superox-
ide dismutase (Sod). These interactions indicate a contribution
of Wwox to aerobic metabolism and the regulation of reactive
oxygen species (ROS) levels within cells.

RESULTS

Biochemical responses to altered Wwox levels

Two-dimensional  differential ~ in-gel  electrophoresis
(2D-DIGE) was used to identify quantitative and qualitative
changes in proteins between Drosophila lines with either
decreased or increased levels of Wwox. To examine the
effect of decreased levels of Wwox, adult flies mutant for
Wwox were compared with wild-type (w'’’%). We used two
independent alleles of Wwox for these analyses; Wwox', a
null mutation generated by homologous recombination, and
Wwox™"#*% | which carries a pBac insertion in exon 2
(28,29). To investigate the effects of increased levels of
Wwox, the protein profiles of adult flies carrying a
UAS-Wwox transgene together with the da-GAL4 ubiquitous
driver (da > Wwox) were compared with adult flies carrying
the da-GAL4 driver alone (da>+). A common set of 16
protein spots were identified that showed significant changes
in abundance in each of the Wwox mutants, while a further
16 were identified that exhibited significant changes when
Wwox was ectopically over-expressed (summarized in Fig. |
and Supplementary Material, Table S1). Mass spectrometry
analysis of peptides was successful in identifying 13 of the
16 candidate proteins identified in Wwox mutants in addition
to all of those identified when Wwox was ectopically over-
expressed (Supplementary Material, Table S1).

In a complementary approach, microarray analysis was also
performed on Wwox mutants during early embryonic develop-
ment of Drosophila. Embryos (4—8 h) from each of the two
independent mutant lines were compared with wild-type,
revealing a number of transcripts in common that were
altered in response to decreased Wwox function. The microar-
ray data have been deposited on the NCBI database (GEO
accession number GSE22689). Verification by qPCR showed
seven of these were also significantly altered in adults of
each of the Wwox mutants as well as flies ectopically over-
expressing Wwox (Table 1).

None of the proteins or RNAs detected in these studies, as
altered due to increases or decreases in Wwox, is found
among those that have previously been reported as having phys-
ical interaction with Wwox (reviewed in 30). Indeed none of the
proteins detected has PPxY motifs that might indicate a physical
interaction with Wwox through either of its WW domains.
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Figure 1. Proteomic analysis of altered Wwox expression. 2D-DIGE protein
spots that exhibited significant changes in abundance either in both of the inde-
pendent Wwox mutants (Wwox” and Wwox*%) or with ubiquitous ectopic
Wwox expression in 0- to 1-day adult Drosophila (see also Supplementary
Material, Table S1). Spots 19 and 20 are superoxide dismutase (Sod) isoforms.

Sod

Therefore, these proteomic and micro-array screens are unlikely
to be comprehensive, however they do reveal novel functional
characteristics of Wwox that are likely to account for its
reported impact on metabolism (19-25).

Candidate Wwox interactors

Proteomic and microarray analyses confirmed an increase in
Wwox protein and transcript levels in da> Wwox flies that ecto-
pically over-express Wwox as well as a decrease in Wwox tran-
script levels in each of the Wwox mutants (Table 1). We have
previously shown the absence of Wwox protein in Wwox’
mutant embryos by western analysis and have now confirmed
the absence of Wwox protein in both Wwox! and Wwox/"**
adult flies (28 and Supplementary Material, Fig. S1).
Biochemical analyses of adult flies and embryos with altered
levels of Wwox identified a total of 27 different candidate pro-
teins and/or mRNAs that were altered in response to increased
and/or decreased levels of Wwox (Table 1). Interestingly, a sig-
nificant number of these are known or predicted, based on
sequence similarities (as listed on FlyBase; 31), to participate
in various metabolic pathways. This highlights the impact of
altered Wwox levels on metabolic processes; a common
feature of all the WIWOX knockout rodent animals (19-25).
Of significance is the finding that many of these candidates
are either directly or indirectly involved in metabolic pathways
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that converge on the tricarboxylic acid (TCA) cycle (Fig. 2).
This is supportive of altered Wwox levels having an impact
on aerobic metabolism in this in vivo model. Two of the candi-
date interactors identified encode proteins with isocitrate dehy-
drogenase (CG6439) and malate dehydrogenase (CG7998)
activities, both of which catalyse enzymatic reactions that are
integral to the TCA cycle. Twelve other interactors are pre-
dicted to be involved in the regulation of metabolism of
various energy sources within cells that ultimately have
effects on the TCA cycle. Several candidates are involved in
regulation of available glucose levels including phosphoglyce-
rate kinase (Pgk)/CG3127, CG7430 which encodes a predicted
dihydrolipoyl dehydrogenase, malic enzyme (Men)/CG10120,
glyceraldehyde-3-phosphate dehydrogenase (Gapdh)/
CG12055, CGI10638 which encodes a predicted aldehyde
reductase and CG10924 which encodes a phosphoenolpyruvate
carboxykinase (PEPCK). Four other interactors required for
metabolism of ethanol —alcohol dehydrogenase (Adh)/
CG3481, aldehyde dehydrogenase (Aldh)/CG3752, AcetylCoA
synthase (AcCoAS)/CG9390 and CG31075 which also
encodes an aldehyde dehydrogenase—were also detected. A
further two interactors—fat body proteinl (Fbpl)/CG17285
and glycerol-3-phosphate dehydrogenase (Gpdh)/CG9042—
encode enzymes that are involved in the metabolism of lipids.
Another two of the candidate Wwox interactors, Cu—Zn
superoxide dismutase (Sod)/CG11793 and CG5590, encode
enzymes that are involved in regulation of oxidative pathways.
The formation of ROS is a normal by-product of the electron
transport chain, which is tightly linked to the TCA cycle.
Wwox also encodes an oxidoreductase suggesting that it has
function(s) in similar pathways. CG11089 and CG7470 are
involved in the biosynthesis of inosine monophosphate
(IMP) and proline, respectively. Other interactors identified
are predicted to have various functions as listed in Table 1.

In vivo functional screen for candidate Wwox interactors

The Drosophila genetic model organism enables verification of
functional interaction(s) between Wwox and the various candi-
date Wwox interactors, however a phenotype is required to form
the basis of genetic screening. We have previously determined
that the loss of Wwox function has no phenotype (29), thus the
strategy for our in vivo RNAI screen was first to identify pheno-
types produced by altered levels of any of the candidates on their
own and then to look for modification of these phenotypes by
altered levels of Wwox (Fig. 3A). Candidates were screened
for phenotypes resulting from reduced levels of endogenous
mRNAs via the ectopic expression of specific homologous
RNAi sequences. Given that a significant proportion of the can-
didates encode genes that are involved in aerobic metabolism,
we screened for any effect(s) on survival with ubiquitous
expression of RNAI targeted to these candidates.

The binary GAL4-UAS system was used to ectopically
express various candidate RNAi constructs (32,33) throughout
Drosophila development using the da-GAL4 driver stock. Six
of the candidate RNAi lines tested showed a significant
decrease in viability when expressed ubiquitously, while a
further four were completely lethal (Supplementary Material,
Fig. S2B). These reduced viability phenotypes formed the
basis of genetic screening to identify functional interaction(s)
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Table 1. Candidate Wwox interactors identified from proteomic and microarray analyses

Candidate Wwox Interactor Spot  Protein abundance Transcript abundance (measured by Molecular function
# qPCR)
w!?'8 versus Wwox da>+ versus w! 1% versus Wwox da>+ versus
mutants da>Wwox mutants da>Wwox
Wwox!  Wwox" % da>Wwox Wwox'  Wwox" % da>Wwox
Wwox/CG7221 1 n/d n/d 1.49 —-2.72 —17.38 172 Oxidoreductase activity
AEROBIC METABOLISM
TCA cycle
CG6439 (I1dh) 2 -1.12 -1.19 n/c - - - Isocitrate dehydrogenase (NAD+) activity
CG7998 (Mdh) 3 —-1.30 —1.13 n/c - - - L-malate dehydrogenase activity
Glucose metabolism
Phosphoglycerate kinase (Pgk)/CG3127 4 n/c n/c 1.23 - - - Phosphoglycerate kinase activity
CG7430 5 1.14 1.18 n/c - - - Dihydrolipoyl dehydrogenase activity
Malic enzyme (Men)/CG10120 6 n/c n/c 1.48 - - - Malate dehydrogenase
7 n/c n/c 1.43 - - - (oxaloacetate-decarboxylating) (NADP+)
activity
Glyceraldehyde-3-phosphate dehydrogenasel 8 n/c n/c 1.22 - - - Glyceraldehyde-3-phosphate dehydrogenase
(Gapdhl)/CG12055 (phosphorylating) activity
CG10638 - - - - —2.15 —1.70 2.17 Aldehyde reductase activity
CG10924 (PEPCK) - - - - 5.00 3.77 —1.82 Phosphoenolpyruvate carboxykinase (GTP) activity
Ethanol metabolism
Alcohol dehydrogenase (Adh)/CG3481 9 1.53 1.27 n/c - - - Alcohol dehydrogenase (NAD) activity
Aldehyde dehydrogenase (Aldh)/CG3752 10 1.25 1.36 n/c - - - Aldehyde dehydrogenase (NAD) activity
Acetyl Coenzyme A synthase (AcCoAS)/ 11 n/c n/c —1.57 - - - Acetate-CoA ligase activity
CG9390
CG31075 12 1.23 n/c - - - Aldehyde dehydrogenase (NAD) activity
13 1.08 n/c - - -
Lipid metabolism
Glycerol-3-phosphate Dehydrogenase (Gpdh)/ 14 1.16 1.21 n/c - - - Glycerol-3-phosphate dehydrogenase (NAD+)
CG9042 activity
Fat body protein 1 (Fbpl)/CG17285 15 2.70 2.00 n/c - - - Protein transporter activity
16 n/c n/c 3.04 - - -
17 n/c n/c 1.60 - - -
18 n/c n/c —2.20 - - -
Oxidation reduction
Superoxide dismutase (Sod)/CG11793 19 2.15 1.64 —1.23 1.33 1.64 —1.10 Antioxidant activity; superoxide dismutase activity
20 —-223 —1.53 n/c
CG5590 21 n/c n/c —-1.37 - - - Oxidoreductase activity, acting on the CH-OH
group of donors
OTHER CATEGORIES
CG7470 22 n/c n/c —1.43 - - - Deltal-pyrroline-5-carboxylate synthetase
Suppressor of Profilin 2 (Sop2)/CG8978 - - - - —1.08 1.13 —1.23 Actin binding
Hsp60C/CG7235 23 —1.08 —124 n/c - - - ATPase activity, coupled
CG2852 24 n/c n/c 1.31 - - - Peptidyl-prolyl cis-trans isomerase activity
CG11089 25 1.13 1.21 n/c - - - IMP cyclohydrolase activity
CG14526 26 n/c n/c —1.26 - - - Metalloendopeptidase activity
Bancal (bl)/CG13425 - - - - 1.10 1.01 —-1.29 mRNA binding; transcription factor binding
Prp19/CG5519 - - - - 1.47 1.78 —1.52 Ubiquitin-protein ligase activity
Tudor-SN/CG7008 27 n/c n/c —1.23 - - - Transcription coactivator activity
CG30152 — - - - 1.13 1.23 —-1.29 Unknown
CG8193 28 n/c n/c 1.22 - - - Monophenol monooxygenase activity

Average fold change ratios of protein abundance for 2D-DIGE spots and transcript abundance for candidates that exhibit significant changes in response to altered levels of Wwox in adult flies. n/d, protein
was not detected; n/c, no change in protein abundance was detected.
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Figure 2. Metabolic pathways impacted by altered Wwox levels. Alteration of Wwox levels resulted in changes to many enzymes with roles in the TCA cycle,
glucose metabolism, ethanol metabolism, lipid metabolism and oxidation/reduction supportive of a contributing role for Wwox in the maintenance of aerobic
metabolism. Arrows indicate up- or down-regulated Wwox interacting candidates: solid black arrows for those altered following ectopic over-expression of
Wwox and open arrows for those altered in Wwox loss of function mutants. Side arrows indicate that changes were detected in different isoforms of the

protein. Gene abbreviations are listed in Table 1.

with Wwox. The use of the GAL4-UAS system to lower candi-
date gene expression also allowed the simultaneous expression
of constructs either to increase (>Wwox) or decrease (>
Wwox®™') Wwox levels, and thereby assess any modification
to the candidate gene phenotype by altered Wwox levels
(Fig. 3A). Altered levels of Wwox transcript in each of these
genotypes (da > Wwox™ " and da > Wwox) were confirmed
by qPCR analysis (Supplementary Material, Fig. S3) and no
effect was observed on viability when levels of Wwox alone
were increased or decreased via this GAL4-UAS system (Sup-
plementary Material, Fig. S2C); thus any significant altera-
tion(s) in viability observed for each candidate RNAi would
suggest a functional interaction of that candidate with Wwox.
The absence of such an interaction, however, does not necess-
arily rule out a functional interaction between a candidate and

Wwox, but rather suggests that within this assay system any
interaction between the two proteins is not a rate-limiting
requirement for survival of the animal.

Viability assays were thus performed for candidate RNAi
lines alone (da > candidate™ ") and the percentage survival
to adulthood was compared with that observed when Wwox
levels were either decreased (da > candidate™ "> Wwox"""
or increased (da > candidate™ "> Wwox) as summarized in
Supplementary Material, Table S2. A significant amount of vari-
ation was observed in these assays and statistical analyses (as
described in the experimental procedures) were used to identify
any significant modifications resulting from altered levels of
Wwox. Only one of the candidate RNALI lines tested showed a
clear and significant interaction with Wwox. This candidate
RNAI line is directed against CG6439 which encodes an
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Figure 3. In vivo functional interactions of Wwox with CG6439/Idh. (A) Rationale of the in vivo genetic screens for Wwox functional interactors in Drosophila.
Flies with ubiquitous knockdown of the candidate interactors alone were assayed for any resultant phenotypes that could be modified by either decreased or
increased levels of Wwox. (B) Wwox interacts genetically with CG6439/Idh in viability assays. A deviation from the expected proportion (50%, indicated
by the bold line) of non-TM6B progeny (see Supplementary Material, Fig. S1A) was observed when CG6439/Idh was knocked down ubiquitously (blue), indica-
tive of a decrease in viability. This decrease in viability (blue) was enhanced when Wwox levels were decreased (red) and suppressed when Wwox levels were
increased (green). Chi-square test was performed on each of the five separate experimental replicates and “*’ denotes statistical significance with P < 0.05.
(C) Correlation of WWOX and IDH]I transcript levels in human cancer cell lines. qPCR analyses of WIWOX and IDHI transcript levels were determined for
four different time points/confluencies in each of 15 exponentially growing human cancer cell lines. Regression analysis of WIWOX and IDHI mRNA levels
revealed a positive correlation with a P-value of 2.5E—12 (see also Supplementary Material, Figs S2, S3 and Table S2).

enzyme with isocitrate dehydrogenase activity. Knockdown of
endogenous levels of CG6439 transcript following ectopic
expression of this RNAi line was confirmed by qPCR analyses
(Supplementary Material, Fig. S3).

Functional interaction of CG6439/isocitrate
dehydrogenase (Idh) with Wwox

RNAi knockdown of endogenous levels of CG6439/Idh
throtll\ghout the development in Drosophila (da > CG6439/
Idh™™ 7 resulted in a decrease in viability (Fig. 3B). Droso-
phila with RNAi knockdown of CG6439/Idh as well as
altered (increased or decreased) levels of Wwox were tested
in five separate experiments to determine whether the

observed decrease in viability could be modified by altered
levels of Wwox. A trend was observed across all five exper-
imental replicates, where a further decrease in viability was
observed when Wwox levels were also decreased in these
flies, indicating an enhancement of the CG6439/Idh RNAi
phenotype (Fig. 3B). Conversely, ectopic over-expression of
Wwox in flies with reduced expression of CG6439/Idh
revealed suppression of the decreased viability observed
when CG6439/Idh was knocked down alone (Fig. 3B).
Together, these results are consistent with an in vivo functional
interaction between Wwox and CG6439/1dh.

Independent verification of a genetic interaction between
Wwox and Idh/CG6439 was performed using mutant alleles
for each of these genes. The Idh/CG643957%7?7% mutation
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consists of a transposon inserted 174 bp upstream of the
initiator ATG codon (and within the reported 5-UTR) for
Idh/CG6439 (34). Drosophila homozygous for this mutation
are viable and fertile as previously observed for the Wwox’
mutants. However, we were unable to obtain adult flies that
were homozygous for both Idh/CG643957°%?7% and Wwox',
consistent with the enhanced decrease in viability of da >
Idh/CG6439"N4" observed when Wwox levels were also
decreased by RNAi (Fig. 3B). Although the precise impact
of this insertion mutation is not known, the altered activity
of both Wwox and Idh/CG6439 has a significant effect on
the viability of adult Drosophila, supporting their functional
interaction in normal metabolic pathways during development.
Thus, decreased levels of Wwox were found to significantly
decrease endogenous levels of CG6439/Idh protein in this
model and these changes could account for the functional
interactions observed between Wwox and CG6439/1dh.

Correlation between WWOX and IDH1 mRNA levels in
human cell lines

In order to assess whether WWOX and IDH also exhibit evi-
dence of a functional interaction in human cancer cells, the
steady-state levels of their respective mRNA were assessed.
Fifteen different human cancer cell lines (AGS, Co-115,
HCT116, HeLa, HT29, KATOIIl, KMI12C, KMI12SM,
LOVO, LS180, MCEF-7, MDA-MBI157, MDA-MB436,
SK-BR-3, U2-OS) were each grown to different levels of
confluence (a factor which affects WWOX mRNA levels,
S. Dayan, unpublished data). Each of these samples was then
assayed for the mRNA level of WWOX as well as the mRNA
levels for isocitrate dehydrogenase family members: IDHI,
IDH2 and IDH3. A significant positive correlation was observed
between endogenous WWOX and IDHI mRNA levels
(Fig. 3C), consistent with a functional interaction between
their respective encoded proteins. This positive correlation
between WWOX and IDH1 transcripts in these cells is consist-
ent with the relationship observed between Wwox and CG6439/
Idh protein levels in flies. IDH has been found to be altered
specifically in human cancers (35—37). Thus, it is clear that
there is a relationship between endogenous WWOX and IDH1
levels that is consistent with WWOX contributing to metabolic
balance in human cancer cells as well as in the context of the
whole organism of Drosophila.

Cu-—Zn superoxide dismutase interacts with Wwox

Proteomic analyses identified two different spots of similar
molecular weight but different isoelectric point corresponding
to Cu—Zn superoxide dismutase (Sod). Spot #19 showed reci-
procal changes in abundance in Wwox mutants and ectopic
over-expression, while spot #20 showed a decrease in Wwox
mutants (Table 1). These results suggest a role for different
isoforms and/or differently modified forms of Sod in response
to altered levels of Wwox. Since it has previously been shown
that Sod mutants are viable but have a decreased lifespan (38),
we determined the ability of altered levels of Wwox to modify
this phenotype.

Missense mutations in Sod (Sod" and Sod"®*) result in the
expression of mutant forms of the protein, each with decreased

dn64
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levels of enzyme activity (Sod™’ is also known as Sod"'%%; 39).
The Sod" mutation (G50S) disrupts dimer contact, while the
Sod"** mutation (G43E) affects metal ion binding. We gener-
ated adult flies that were trans-heterozygous for these two
mutations (Sod"’/Sod"®?). This mutant combination showed
no effect on viability of adult flies as the expected percentage
of non-balancer flies was obtained from this cross (Fig. 4A and
Supplementary Material, Fig. S4A). However, the introduction
of homozygous Wwox' or trans-heterozygous Wwox'/
Wwox"** mutations into this Sod mutant background
resulted in a decrease in viability, where the number of adult
progeny obtained for each of the Wwox,;Sod double mutants
was decreased to less than one-third of that expected
(Fig. 4A and Supplementary Material, Fig. S4A). Although
only low numbers of Wwox;Sod double-mutant flies were
able to be collected due to this decreased viability, the effect
of the homozygous Wwox’ mutation on the lifespan of these
Sod mutants was determined. Sod"’/Sod"** trans-heterozygous
mutants showed a decreased lifespan compared with wild-type
or Wwox mutant flies where the Sod mutants were all dead by
the tenth day of the lifespan assay (Fig. 4B). This decreased
lifespan phenotype was enhanced when the flies were also
homozygous mutant for the Wwox’ mutation as Wwox;Sod
double-mutant flies all died within the first 24 h of the assay.
This was confirmed for Sod"®?/Sod" trans-heterozygous
mutants where crosses were set up in the opposite direction.

Proteomic analysis showed qualitative changes in endogen-
ous Sod in adult flies both with increased or decreased levels
of Wwox, while qPCR revealed that Sod transcript levels were
increased in Wwox mutants (Table 1). To determine whether
alterations in Sod could similarly affect endogenous Wwox
transcript levels, qPCR analysis was performed on Sod
mutants. Wwox mRNA levels were significantly down-
regulated in  Sod"'/Sod"® mutant third instar larvae
(Fig. 4C). To check whether endogenous Wwox mRNA
levels were directly altered by increased Sod activity, we ubi-
quitously expressed a full-length human SODI1 construct in
Drosophila. Over-expression of SODI resulted in an increase
in Wwox transcript showing reciprocal changes in endogenous
Wwox transcript levels in the presence of Sod mutations com-
pared with ectopically over-expressed human SOD1 (Fig. 4C).
We further investigated this relationship in human HEK293
cells and found ectopic expression of human SODI also
resulted in an increase in endogenous WWOX mRNA
expression. This increase in endogenous WWOX mRNA
expression was not observed when a G37R mutant form of
SODI1 that is associated with ALS (40) was over-expressed
as an appropriate negative control (Fig. 4D). Together, these
results suggest clear conservation of a functional relationship
between these two genes.

Wwox affects endogenous levels of ROS

We have shown functional interactions between Wwox and
two of the candidate interactors identified: CG6439/Idh and
Sod. Given the known role of CG6439/Idh as an integral
member of the TCA cycle (a known generator of ROS) and
Sod in the direct regulation of ROS levels, we determined
the endogenous level of ROS in Drosophila with altered
levels of Wwox expression. ROS levels were measured
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Figure 4. Wwox and Sod interact genetically. (A) A decrease in viability was observed when homozygous Wwox' or trans-heterozygous Wwox'/ Wwox"##
mutations were introduced into the Sod"/Sod"®* mutant background (as indicated by the negative deviation from the expected 33.3% proportion of
non-TM6B progeny, see Supplementary Material, Fig. S2). (B) A decreased lifespan was observed for the trans-heterozygous Sod mutations compared with
wild-type and Wwox mutants. Each of the Wwox,;Sod double mutants showed a further decrease in viability. Survival curves for the two Wwox;Sod double
mutants overlap on the graph with all flies dead after 24 h. (C) qPCR showed decreased levels of Wwox transcript in Sod""%* compared with '/’ larvae
(P =0.003) and increased levels of Wwox transcript in SOD1 overexpressing compared with control GFP overexpressing larvae (P = 0.043). (D) qPCR of
WWOX levels in a HEK293 cells overexpressing SOD1 showed increased levels of endogenous WWOJX transcript compared with the control line overexpressing
GFP (P = 0.008, see also Supplementary Material, Fig. S4). No such increase in WIWOJX transcript was observed when cells were overexpressing a G37R mutant

form of SODI.

indirectly in dispersed cells from Drosophila by
fluorescence-activated cell sorting. In two independent lines
of Wwox over-expressing larvae, the percentage of cells
with ROS levels above an arbitrary threshold was found to
be higher than for control larvae, while Wwox mutants had
consistently lower levels of ROS compared with their
control larvae (Fig. 5A and B). Thus, these reciprocal results
strongly suggest a role for Wwox in the regulation of ROS.

DISCUSSION

Common chromosomal fragile sites are regions that are predis-
posed to DNA instability in cancer. FRA3B (within the FHIT
gene) and FRA16D (within the WIWOX gene) are the most sus-
ceptible sites (3). This DNA instability varies between differ-
ent cells, sometimes comprising multiple events (6) that
together constitute a scar on the genomic landscape that indi-
cates the passage of the damaged cell through some form of
environmental (replicative) stress. The biological conse-
quences of fragile site-mediated DNA instability in cancer
are dependent not only upon the frequency of such instability,
but also upon the perturbation of the normal function of genes
in the vicinity.

Here we report that the highly conserved Drosophila ortho-
logue of WWOX has biologically significant roles in pathways
that control aerobic metabolism and ROS. Alterations were
observed in a number of genes encoding various members of
aerobic metabolic pathways that converge on the TCA cycle

as summarized in Figure 2. A common feature of all of the
rodent WIWOX mutants was decreased size and early death
of mutant animals (19-25). These effects could also arise
from Wwox mutations leading to altered regulation of
aerobic metabolism in these mouse models, perhaps via com-
ponents of the TCA cycle. Consistent with this is the reported
hypoglycaemia of the conditional Wwox knockout (23). In the
present study, conserved functional interactions were ident-
ified between Wwox and isocitrate dehydrogenase, an integral
component of the TCA cycle as well as superoxide dismutase,
a known regulator of ROS. Our findings support a protective
role for Wwox under conditions of oxidative stress given the
observed decrease in survival of the Wwox,;Sod double
mutants. Significantly, levels of endogenous ROS were
found to correlate both with increased and decreased Wwox
expression. This role for Wwox in regulating ROS levels
could explain previous observations of the biological proper-
ties of WWOX, notably its ability when over-expressed to
inhibit tumour cell growth and the participation of WWOX
in cellular responses to TNF (41), since this pathway is
mediated by ROS (42-44).

ROS are effectors of a vast number and range of essential bio-
chemical pathways although they are also inherently dangerous
chemicals to cells (45). It is, therefore, not surprising that cells
have evolved intricate and integrated strategies to regulate ROS
with cellular metabolism. Perturbations in ROS have previously
been linked to aerobic glycolysis (Warburg effect) in cancer
cells (46,47). Cancer-associated isocitrate dehydrogenase
mutations produce 2-hydroxyglutarate that in turn leads to an
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Figure 5. Altered Wwox expression affects the levels of ROS in Drosophila larvae. (A) Fluorescence-activated cell sorter (FACS) analysis of ROS levels in cells
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percentage of cells from the total population exhibiting fluorescence above that threshold was measured every 30 min for 3 h.

increase in ROS (48,49). Our finding of a direct correlation
between Wwox and ROS levels, together with functional inter-
actions of Wwox with superoxide dismutase and isocitrate
dehydrogenase, uncover perturbation in Wwox levels as
another contributor to the differences seen in aerobic glycolysis
(Warburg effect) between cancer and normal cells.

How could perturbation of WWOX levels (through DNA
instability at FRA16D) contribute to cancer cell biology? A
plausible explanation for the dramatic inhibition of breast
cancer tumour cell growth by WWOX over-expression (14)
is that increased WWOX results in higher ROS in these
cancer cells. Levels of ROS are known to limit the self-
renewal of stem cells (50) which are consistent with mounting
evidence that breast cancer cells derive from stem cells (51)
and are therefore likely to retain some of their properties.
The corollary of this is that decreased WWOX (via FRA16D
DNA deletion) will lead to decreased ROS levels that could
relieve this limitation on self-renewal and therefore promote
tumour cell growth. This latter property of WWOX could
explain its behaviour as a non-conventional tumour suppressor
in both human cancers and mouse models. Reduction of
WWOX levels to 50% may result in a sufficient decrease in
endogenous ROS to cause cellular consequences (i.e. further
knockout of the second WWOX allele is not necessary).

Our studies on the Wwox function in Drosophila reveal a
number of similarities with pathways that involve FHIT ident-
ified in human cancer cells (52,53). Both WWOX and FHIT

are lost in most cancers and their restoration suppresses tumour-
igenicity (13,14). FHIT gene transfer into cancer cells increases
production of ROS, while Wwox over-expression in Droso-
phila larval tissue also leads to increases in ROS. FHIT is
known to functionally interact with ferredoxin reductase and
physically associate with malate dehydrogenase and mitochon-
drial aldehyde dehydrogenase (as well as other proteins; 52). In
addition to Wwox functional interactions with Sod and Idh
described herein, we have also detected Wwox associated
alterations in malate dehydrogenase and mitochondrial alde-
hyde dehydrogenase protein levels in Drosophila by proteomics
(Table 1). These alterations would affect pathways leading to
alterations in aerobic metabolism (Fig. 2), a hallmark of
cancer cells, and give further evidence of the role of Wwox as
a surveyor of the cell’s metabolic status. In addition, WWOX
and FHIT also share Hsp60 as a common interactor (52,53)
with the Drosophila orthologue, Hsp60c, being detected in
the Wwox proteomics analysis (Table 1).

These parallels lead us to propose that there is a functional
basis for the association of the tumour suppressor genes
WWOX and FHIT with the most unstable common chromoso-
mal fragile sites in humans. The presence of these fragile sites
confers the potential for DNA damage within the respective
genes. DNA damage at these sites is an early event in tumour-
igenesis and the variable extent of damage (6) can result in
either decreases or increases in gene expression (15—18).
Those cells with a resultant increase in expression of



506 Human Molecular Genetics, 2011, Vol. 20, No. 3

WWOX and/or FHIT therefore have increased resilience to
further oxidative stress by virtue of increased ROS. We there-
fore propose that the common pathways in which WWOX and
FHIT participate form a network of ‘front-line’ responses to
environmental stresses. These responses include altered meta-
bolic status of cells that impact on their likelihood to proceed
along the path of tumourigenesis.

MATERIALS AND METHODS

Fly lines and crosses

All Drosophila stocks were maintained in vials containing
Fortified (F1) medium and kept at either 18 or 25°C. The F1
medium was composed of 1% agar, 18.75% compressed
yeast, 10% polenta, 10% treacle, 1.5% acid mix and 2.5%
tegosept. /%, da-GAL4, CG6439%7°%%7°  UAS-GFP, Sod"'/
TM3Sh and Sod"®/TM3Sh were all obtained from the Bloo-
mington stock centre. Wwox!, Wwox"** and UAS-Wwox
lines have been previously described, with Wwox’ and
Wwox'"** having undergone four rounds of backcrossing to
w!18(29). UAS-candidate™ " lines (listed in Supplementary
Material, Table S2) were obtained from the Vienna Drosophila
Research Centre. Multiple transgenic lines of UAS-SOD1 were
generated by standard P-element transformation techniques.
da > Wwox stock was generated by recombination
between da-GAL4 and UAS-Wwox #I both of which are
located on the third chromosome. The mutant alleles: Sod"’
and Sod"* were rebalanced and maintained as stocks over
TM6B. The double-mutant stocks: UAS-WwoxRNAi/CyO;da-
GAL4/TM6B, Wwox'/CyO:CG64395Y0?75/TM6B,  Wwox'/
CyO:Sod" /TM6B, Wwox' /CyO:Sod"**/TM6B and
Wwox'" % /Cy0:Sod"**/TM6B were all generated by standard
genetic techniques and confirmed by PCR and sequencing (for
Sod alleles using primers from reference 39) or by western
analysis for Wwox alleles.

SOD1 and GFP constructs and expression

SOD1 was amplified from cDNA obtained from HCT116 cells
using primers CACCATGGCGACGAAGGCCGTGT and
CTACAGCTAGCAGGATAACAG and blunt-end cloned
into the pENTR/D-TOPO vector (Invitrogen). The construct
was recombined into either pcDNA 3.2-DEST (Invitrogen)
containing the CMV promoter for expression into human
cells or a pUAST vector containing the Gateway®™ ccdb cas-
sette (Invitrogen, from H. Dalton) for expression in
Drosophila (as described in Gateway cloning methods, Invi-
trogen). Human SOD1 ALS mutant G37R was made by the
QuickChange method as described by Stratagene (Quick-
Change Site-Directed Mutagenesis Kit). The forward and
reverse complement primers were designed with a single-base
mutation (underlined), 5'-GTGGGGAAGCATTAAAA
GACTGACTGAAGGCC-3 and used to PCR pENTR/
D-TOPO-SOD1 plasmid. Parental methylated and hemimethy-
lated DNA was digested with Dpnl and the intact SODI1-
mutated plasmids were used for transformation and
subsequent cloning into pcDNA 3.2-DEST vector. GFP was
amplified from pEGFP-N2 (Clontech) using primers CAC
CATGGTGAGCAAGGGCG and TGGCTGATTATGATC

TAGAGTCG and was similarly cloned into pcDNA
3.2-DEST for expression in human cells. Purified plasmids
were used for injecting into Drosophila w'’'® embryos or
for transfection using standard protocols for Fugene (Roche).

Cell-line culture

The cancer cell lines: AGS, Co-115, HCT116, HeLa, HT29,
KATOIIl, KMI2C, KMI12SM, LOVO, LS180, MCF-7,
MDA-MB157, MDA-MB436, SK-BR-3 and U2-OS were
obtained from the American Type Culture Collection. Cell
lines AGS and Lovo were grown in F-12K culture media
while Co-115, HCT116, HT29, Katolll, KM12C, KM12SM,
LS180, MCF-7, MDA-MB157 and SK-BR-3 were grown in
RMPI. HeLa and U2-OS cell lines were grown in DMEM
while MDA-MB436 cells were grown in OPI-MEM. All cell
lines were grown in their respective culture media containing
10% foetal calf serum.

Protein sample preparation and DIGE labelling

Ten 0—1 day male flies were homogenized in sample buffer
(7m urea, 2™ thiourea, 30 mm Tris, 4% CHAPS) and
protein purification was performed using a Ready Prep™
2D clean-up kit (BioRad) according to the manufacturer’s pro-
tocol. Protein concentrations were estimated using an EZQ
protein quantitation kit (Molecular Probes). One hundred
micrograms of protein were labelled with 200 pmol of Cy
Dye. An internal standard sample comprised of a protein
pool consisting of 50 g of each of the adult fly protein
samples was labelled with 2.8 nmol Cy2 dye.

2D-electrophoresis and gel imaging

Cy labelled adult fly sample mixtures were applied to the IPG
strips (24 cm, pH 3—11, GE Healthcare) and isoelectric focus-
ing was performed on an IPGphor II (GE Healthcare) at 20°C
using a stepwise gradient. Second-dimension SDS—PAGE was
performed using the Ettan™ DALTtwelve Large Vertical
electrophoresis system (GE Healthcare). DIGE gels were
scanned using the Ettan DIGE Imager (GE Healthcare) at
100 wm resolution and image analysis was undertaken using
DeCyder 2D software (version 6.5, GE Healthcare). Each
analytical gel image was processed separately in the differen-
tial in-gel analysis module of DeCyder prior to export to the
biological variation analysis module.

Mass spectrometry

Spots were excised using an Ettan™ Spot Picker robot (GE
Healthcare). Excised gel pieces were dehydrated in 100%
acetonitrile then vacuum dried before being rehydrated in
10 ng/pl trypsin in 5 mM ammonium bicarbonate and incu-
bated over night at 37°C. Following digestion, peptides were
extracted twice with 50% acetonitrile containing 1% formic
acid, concentrated and reconstituted with FA30 (0.1% formic
acid, 3% acetonitrile) to a final volume of 5 ul. Samples
were then analysed either by LC-ESI-IT-MS where samples
were chromatographed using an Agilent Protein ID Chip
column assembly (40 nl trap column with 0.075 x 43 mm
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C-18 analytical column) housed in an Agilent HPLC-Chip
Cube Interface connected to an HCT ultra 3D-Ion-Trap mass
spectrometer (Bruker Daltonics) or by Matrix Assisted Lazer
Desorption Ionisation—Time Of Flight—Mass Spectrometry
(MALDI-TOF-MS) using a Bruker ultraflex III MALDI
TOF/TOF mass spectometer (Bruker Daltonics).

RNA purification

The equivalent of 50 pl of 4—8 h embryos, five third instar
larvae or five 1-day old male flies were used for each biologi-
cal replicate. Samples were frozen in liquid nitrogen and hom-
ogenized in Trizol reagent (Invitrogen). Total RNA was
extracted with chloroform and precipitated with isopropanol.
RNA was further purified using the RNeasy Mini Kit
(Qiagen). For human cell lines, the protocol for total RNA iso-
lation from animal cells as described in Qiagen RNeasy
Minikit was used.

Microarray analyses

RNA from an equivalent volume of 50 pl of 4—8 h embryos
was processed using the One-Cycle Target Labelling and
Control Reagents Kit, as per manufacturer’s instructions
(Affymetrix, Inc). Briefly 2 g of total RNA was converted
to cDNA (Superscript II, Invitrogen) and an overnight
in vitro transcription reaction performed to generate a pool
of cRNA carrying a biotin tag (MEGAscript T7 Kit,
Ambion, Inc). The Drosophila Genome 2.0 Array was hybri-
dized for 16 h and washed/stained on a FS 450 Fluidics
Station using the Midi euk2 v3 script. Data were acquired
on a 7G GeneChip Scanner 3000 and data extraction per-
formed in GCOS v1.2. Candidates were identified as those
that showed a ‘present’ call in each of three biological repli-
cates. 7T-tests were performed on raw values to determine
samples that showed a significant difference with a
P-value < 0.05. The microarray data have been deposited on
the NCBI database (GEO accession number GSE22689).

Quantitative real-time PCR (qPCR) assays

The quantitative PCR assays were carried out using protocols
provided by the manufacturers. Superscript III (Invitrogen)
was used to perform reverse transcription on the RNA and
quantitative PCR was carried out using the SYBR Green
mix (Applied Biosystems) in an Applied Biosystem ABI
Prism 7000 Sequence Detection System (Applied Biosys-
tems). The relative standard curve method for quantification
as outlined by Applied Biosystems was used. For Drosophila,
mRNA levels were normalized against the house-keeping gene
ribosomal protein 49 (rp49). Triplicate reactions for each of
three biological replicates were performed for each sample.
Drosophila  qPCR  primer pairs for Wwox were:
ATTGTGCTGTCATCCGAGTCG/ATTCTCCACGGGCAG
GTTG, CG6439/Idh: GGTCTACTCCCTCCAGGAGGTCT/
TCGAAGTCCACGGGAACG, Sod: GAGACCTTCACGGG
CGTA/GGCACGGTTTTCTTCGAACA, rp49: ATCGATAT
GCTAAGCTGTCGCAC/TGTCGATACCCTTGGGCTTG.
For human cell lines, B-Actin was used as the endogenous
control. Human qPCR primers for /IDHI were ACGTG
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CAGTCGGACTCTGTG/TCATCATGCCGAGAGAGCC, and
for WWOX, GAGGCCTTTCACCAAGTCCAT/TCCCAGA
CCCTCCAGTTCTG.

Viability assays

Drosophila crosses (see Supplementary Material, Fig. S2A)
were set up in medium-sized vials containing FI medium
and maintained at 25°C. Progeny from the crosses were
scored and only the crosses with a minimum of 30 progeny
carrying the TM6B balancer were included in the analyses.
The ratio of non-TM6B:TM6B progeny was recorded for
each cross and chi-square test analysis using GraphPad
Prism 5 was carried out to determine whether there was a sig-
nificant difference between the ratios when Wwox levels were
increased or decreased compared with the control in each
experiment. The standard value of P < 0.05 was chosen to
indicate significance.

Lifespan assays

Male Drosophila 0 to 1 days old were collected and placed in
a vial containing fly food. Flies were kept at 25°C with 70%
humidity. Flies were turned into fresh vials everyday and
deaths recorded at the same time. Statistical analyses and
graphing were done using GraphPad Prism 5.

Reactive oxygen species measurements

Single cells from 10 third instar Drosophila larvae were isolated
using a modification of Singh et al. (54). Larval cuticle was
removed and tissue was digested with 0.5 mg/ml Collagenase
(Sigma) in phosphate buffered saline (PBS: 0.8% NaCl,
0.02% KCl, 0.02% KH,POy, 0.115% Na,HPO,, pH 7.4) for
1 h at 25°C. The digest was filtered through a 100 M cell strai-
ner and diluted to 1 ml with PBS. Intracellular ROS was
determined using  5-(and-6)-chloromethyl-2’,7’-dichlorodi
hydorfluorescein  diacetate (CM-H2DCFDA, Molecular
Probes), a non-fluorescent dye, which upon deacetylation by
cellular esterases and oxidation by ROS becomes fluorescent.
Cells were incubated at 25°C for 30 min with 10 um
CM-H2DCFDA and FACS analysis was performed immedi-
ately and every 30 min for 3h to allow for dye loading
differences.

SUPPLEMENTARY MATERIAL
Supplementary Material is available at HMG online.
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