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Abstract
Ecological niche modeling (ENM) algorithms, Maximum Entropy Species Distribution Modeling

(Maxent) and Genetic Algorithm for Rule-set Prediction (GARP), were used to develop models 

in Iowa for three species of mosquito – two significant, extant West Nile virus (WNV) vectors

(Culex pipiens L and Culex tarsalis Coquillett (Diptera: Culicidae)), and the nuisance mosquito,

Aedes vexans Meigen (Diptera: Culicidae), a potential WNV bridge vector. Occurrence data for 

the three mosquito species from a state-wide arbovirus surveillance program were used in 

combination with climatic and landscape layers. Maxent successfully created more appropriate 

niche models with greater accuracy than GARP. The three Maxent species’ models were

combined and the average values were statistically compared to human WNV incidence at the 

census block group level. The results showed that the Maxent-modeled species’ niches averaged 

together were a useful indicator of WNV human incidence in the state of Iowa. This simple 

method for creating probability distribution maps proved useful for understanding WNV 

dynamics and could be applied to the study of other vector-borne diseases.
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Introduction

There is a great need for better planning to 

control mosquito vectors of existing and 

emerging viruses, parasitic worms, and 

protozoa. Ecological niche modeling (ENM) 

can be used for interpolating and discovering

areas of undocumented species’ habitats,

which in turn could be useful for planners in 

creating mosquito surveillance programs and 

mosquito abatement regimens. Iowa has 

experienced significant human West Nile virus 

(WNV) incidence and likely serves as a 

transition zone between WNV vectors in the 

eastern and western United States (DeGroote 

et al. 2008). ENM for mosquitoes was 

uncommon until recently (Levine et al. 2004; 

Peterson et al. 2005; Benedict et al. 2007; 

Moffett et al. 2007; Sweeney et al. 2007; 

Foley et al. 2008) and still has not been 

utilized for modeling of WNV vector species. 

This new technology can supplement and help 

improve existing surveillance programs by 

describing, in a spatially explicitly way, 

suitable habitats for mosquito species.

Many ENMs exist including boosted decision 

trees (BIOCLIM, DOMAIN, and BRT) and 

various regression models (i.e. GAM, GLM, 

and MARS). One of the best ENMs, based on 

a comprehensive review of 17 different 

methods, is Maximum Entropy Species 

Distribution Modeling (Maxent), and one of 

the most commonly used is Genetic Algorithm 

for Rule-set Prediction (GARP) (Elith et al. 

2006). GARP has been utilized extensively at 

various scales, in different areas of the world, 

and for various species including plants,

animals, and viruses (Peterson et al. 2004; 

Elith et al. 2006). Recently, many authors 

have used Maxent to model a variety of 

species, including birds (Peterson and Pape

2006), geckos (Pearson et al. 2007), 

bryophytes (Sergio et al. 2007), and ticks 

(Estrada-Peña and Venzal 2007). Both GARP 

and Maxent require species occurrence 

records and a set of species-relevant

environmental variables in the form of 

continuous gridded surfaces across the study 

area. Detailed information exists regarding the 

parameterization and algorithms in GARP 

(Stockwell and Noble 1992; Stockwell and 

Peters 1999) and Maxent modeling (Dudík et 

al. 2004; Phillips et al. 2004; Phillips et al. 

2006).

Although ENM has been effectively used for 

predicting spatial distributions of mosquito

species in other locations, there have been few 

studies, and none in the Midwest, that 

spatially predict potential WNV vector species 

distributions. Two free and commonly utilized 

ENM programs, openModeller’s 1.0.5 imple-

mentation of GARP with best subsets and 

Maxent Version 3.0.6, were used to create and 

evaluate models of potential mosquito 

distributions in Iowa.

Previous studies using ENM to model other 

species have commonly used low resolution 

datasets and redundant environmental 

variables with few other types of 

environmental layers (usually elevation, slope, 

aspect, land cover, or vegetation cover). Also, 

ENM is typically run at the scale of a 

continent, country, or region. For example, 

Moffet et al. (2007) used 21 environmental 

variables that contained 8 different layers 

portraying precipitation and 11 variables 

related to temperature with a resolution of

approximately 4 km
2
 to study malaria vector 

species in Africa. Ortega-Huerta et al. (2008) 

used 46 environmental layers with 29 related 

to temperature and 13 related to precipitation 

at a resolution of 18 km
2
 to model 10 species 

of birds in Mexico. The present study uses 
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higher resolution data than most, includes 

more diverse and relevant environmental 

layers, and encompasses a smaller area than 

similar ENM studies.

Materials and Methods

Mosquito species selection and occurrence 

data

Mosquito occurrence data, including 

locations, were acquired from mosquito 

collection efforts using New Jersey Light 

Traps placed throughout Iowa. Two important 

WNV vectors Culex tarsalis L and Culex 

pipiens Coquillett (Diptera: Culicidae) (due to 

morphological similarity, Culex restuans

Theobald was included with Cx. pipiens) were 

considered, as was Aedes vexans Meigen 

(Diptera: Culicidae). The first two species are

likely the most significant transmitters of 

WNV in Iowa, and Ae. vexans is a significant 

nuisance species with the potential to serve a 

significant role in WNV transmission as a 

bridge vector. A bridge vector cannot maintain 

and amplify WNV in host populations without 

the help of other species, but only bridge

vectors transmit WNV to incidental hosts. 

These mosquito species were selected based 

on WNV-vector competence (Turrell et al. 

2005) and abundance of the species in Iowa. 

Because of an interest in recent mosquito 

population dynamics relating to WNV, only 

data from 2003-2006 were analyzed in this 

study. Also, only mosquito occurrences that 

were spatially unique were incorporated into 

the GARP and Maxent ENM (many more 

records exist regarding temporally unique

occurrences; however, this study focuses on 

the spatial distribution of mosquito species). 

GARP and Maxent also do not allow for more 

than one occurrence from the same location to 

be integrated into the modeling process (i.e. a 

species is either present at a given location or 

not; the abundance has no effect on the 

modeling process).

Cx. tarsalis is a vector of many pathogens 

throughout its range (generally, west of the 

Mississippi River in the United States) 

including WNV (Goddard et al. 2002; Reisen

et al. 2004; Turell et al. 2005), Western Equine 

Encephalitis virus (Barnett 1956; Reisen et al. 

1993; Reisen et al. 1995), and St. Louis 

Encephalitis virus (Reisen et al. 1993; Reisen 

et al. 1995). This species regularly has tested 

positive for WNV in Iowa. From 2002-2006,

the percentage of WNV-positive pools was 

6.7% (13 out of 193) for Cx. tarsalis

compared to Cx. pipiens, which were found to 

be positive for WNV 5.2% (41 out of 788) of 

the time (DeGroote et al. 2008). Larvae occur 

in varied habitats including roadside ditches, 

waste lagoons, temporary woodland ponds, 

marshes, and irrigation water (Edmunds 1955; 

Rapp 1985). There were 45 spatially unique 

records for this species; nine spatially unique 

occurrences of Cx. tarsalis were used for 

validating the Maxent model. While this may 

seem like a small sample, it is adequate for 

use in ENM. The effect of predicting species 

distributions from small numbers of 

occurrence records has been studied by 

Pearson et al. (2007), and the results indicated 

that, from as few as 5 records for Maxent and 

as few as 10 records for GARP, accurate

predictions of presence and absence of a 

species could be obtained at a success rate of

approximately 90% of what is achievable with 

models based on over 200 records. Other

researchers have used ENM for different 

species with relatively few unique occurrence 

records. Graham et al. (2004) successfully 

constructed ENM distributions for several

frog species in Ecuador with unique locality 

records ranging from 6 to 54 per species. 

Solano and Feria (2007) used ENM to 

uncover the geographic distribution of species 
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from the genus Polianthes. They modeled 12 

separate species and three varieties of another 

species of flowering plants using a range of 3-

128 unique localities.

Cx. pipiens and Cx. restuans were combined 

into the Cx. pipiens group due to difficulties in 

distinguishing these species based on 

morphological traits (Darsie and Ward 2005). 

Culex pipiens is an urban species, as its 

preferred larval habitat is artificial containers 

such as tin cans, old tires, bird baths, junked 

cars, etc., but it also readily breeds in storm 

sewer catch basins, clean and polluted ground 

pools, ditches, animal waste lagoons, effluent 

from sewage treatment plants, and other 

typically eutrophic or polluted water bodies 

(Kronenwetter-Koepel et al. 2005). It 

overwinters in the adult stage commonly in 

crawl spaces under houses. Cx. restuans is an 

earlier season species, and its range reaches 

north into Iowa. Cx. restuans has a similar 

habitat preference to Cx. pipiens: wheel ruts, 

animal tracks, tires, old cars, and temporary 

ponds or pools (Siverly 1972). The Cx.

pipiens group includes major vectors of WNV 

that routinely test positive for WNV in Iowa, 

particularly in the eastern part of the state 

(DeGroote et al. 2008) and in much of North 

America (Hayes et al. 2005). There were 46 

spatially unique records for this species group;

nine were used for validation of the Maxent 

modeling.

Every year, on average, Ae. vexans is the 

single most frequently captured mosquito

species in the state of Iowa (Sucaet et al. 

2008). According to Siverly (1972), Ae.

vexans is mostly a floodwater mosquito 

species, but it can also be found in roadside 

puddles, woodland pools, vehicle ruts, borrow 

pits, and waste lagoons. The habitat of Ae.

vexans includes shaded, sunlit, foul or clean 

water, and even urban areas. While mainly a 

nuisance to humans, this mosquito may also 

play a role as a bridge vector of WNV to 

humans. Although there is still uncertainty 

regarding the role of Ae. vexans in WNV 

transmission, findings from numerous studies 

indicate that the species could potentially 

serve as a bridge vector to humans and horses 

and other animals. Ae. vexans is certainly 

associated with humans as a major nuisance 

mosquito; it is the most common species, on 

average, in Iowa (Sucaet et al. 2008) and 

prefers blood feeding from large mammals. 

Host preferences of Ae. vexans, based on 

blood meal identification, show that it is an 

opportunistic feeder and even feeds on the 

American robin (Molaei et al. 2006), an 

important WNV amplification host in several 

regions of the USA (Kilpatrick et al. 2006; 

Molaei et al. 2006). Aedes vexans specimens 

have tested positive for WNV in nature every 

year in the US from 1999-2008 (CDC, 2009),

although far fewer in number than Cx. pipiens 

group mosquitoes. Also, when WNV first 

arrived in the US in New York City the only 

two species that researchers found positive for 

the virus were Ae. vexans and Cx. pipiens

(CDC 1999). Ae. vexans can become infected 

with WNV under laboratory conditions (Turell 

et al. 2000) and is acknowledged as a 

competent vector in the laboratory (Goddard 

et al. 2002; Turell et al. 2005). Research

carried out by Tiawsirisup et al. (2008) 

showed that Ae. vexans has the potential to be 

an enzootic vector involving small mammals 

(mainly chipmunks). Trevejo and Eidson 

(2008) conclude from a detailed review of the 

literature that the principal vectors of WNV in 

the USA include Cx. pipiens, Cx. restuans,

and Cx. tarsalis. In that review, mosquitoes of

secondary importance include Ae. vexans;

transmission by these secondary vectors is a 

route by which mammalian hosts can become 

infected (Trevejo and Eidson 2008). Based on 

these findings, Ae. vexans can be considered a 
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potentially significant bridge vector of WNV.

In modeling the habitat of Ae. vexans, there

were 46 unique records used for this species 

during the study period; nine were used for 

validation in Maxent.

Environmental variables

Environmental variables relevant to the 

species in question were selected based on an 

assessment of the biology of mosquitoes in 

Iowa (Table 1). All variables were 

standardized to a spatial resolution of 360 m
2

creating grids that were 1542 by 1083 cells

(1,120,889 individual cells). This resolution 

was selected based on a compromise between 

conserving the information derived from 

higher resolution data and attaining a 

reasonable processing speed. The Spatial 

Analyst extension in ESRI’s ArcGIS 

(www.esri.com) was used to convert all rasters 

into 360 m
2

cell size and then these were

converted to ASCII files as required by GARP 

and Maxent.

The environmental variables fell into two 

categories: climatic or landscape. The climatic 

variables included 30-year average annual 

temperature and precipitation from weather 

stations throughout Iowa. Climatic surfaces 

were interpolated from the weather station 

point data with a minimum curvature spline 

technique. A surface representing the freeze-

free period was included and is a categorical 

variable associated with the number of days 

without freezing in Iowa. Landscape variables 

included aspect, slope, compound topographic 

index (the wetness index, is a function of 

slope and upstream contributing area), 

distance to major and minor rivers, land cover, 

distance to urban areas, available soil water 

content to a depth of 150 cm, and hydrologic 

soil groups. Landscape variables on

topography, soils, and land cover have been 

shown to be associated with mosquito 

populations in numerous studies (Shaman et 

al. 2002; Diuk-Wasser et al. 2006; DeGroote

et al. 2007) and have been generically used for 

ENM of a variety of species (Anderson et al. 

2002; Elith et al. 2006; Stockwell et al. 2006).

Not all environmental layers were used for 

every species. For example, the distance to the 

nearest irrigated area layer was only used for 

Cx. tarsalis because larvae commonly exist in 

irrigated farmland (Edmunds 1955; Rapp 

1985) and the species is common in rural 

areas (Reisen et al. 2006). A built-in

jackknifing function in Maxent reduced the 

environmental layers to only those most 

important in modeling a single species. This 

feature rates the usefulness of the 

environmental layers leading to the rejection 

of some layers (e.g. a digital elevation model 

was included in all of the initial ENMs, but it 

always proved less important and contained

less useful information than slope and aspect, 

two layers derived from the digital elevation 

model). Also, the Cx. pipiens group included

urban-centric species, so a layer representing 

distance to urban areas was used for this

species.

Maxent and GARP modeling

Two different ENM algorithms were used:

Maxent and GARP. They function in much the 

same way, both requiring species occurrence 

records and a set of environmental variables 

relevant to the studied species (generally

temperature, precipitation, vegetation, and 

elevation) (Anderson et al. 2002; Tsoar et al. 

2007). For Maxent, 20% of the occurrence 

records were set aside for external validation,

and the maximum number of iterations was 

set at 1000. The occurrence records that were 

set aside for validation were chosen at random 

by Maxent. The remaining 80% of the records 

were used in the construction of the Maxent

niche models. Jackknife tests in Maxent were 
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used to limit the number of environmental 

layers to only those layers that showed a 

substantial influence on the distribution of the 

mosquito species (Table 1). Using the same 

environmental variables, a model was created 

using GARP with best subsets - the new 

openModeller implementation. All of the 

occurrence records for each species were 

included in the construction of the GARP 

models. The method in which GARP 

constructs a model is quite different from 

other algorithms. GARP creates a set of rules 

that predict the ecological niche of a given 

species. However, in this process of model 

building, only 50% of the occurrence points 

are used in the construction of any single

given rule. The other 50% are then used to 

validate the legitimacy of this one rule. Then 

GARP decides (based on predictive power) 

whether the rule should be included or 

excluded from the final set of rules. After this, 

GARP uses 50% of the occurrence points 

(again chosen at random) to construct the next 

rule in the series. In this manner, the 

validation dataset is 

the exact same as the dataset used to create the 

model. The parameters used in the GARP 

model were left at the default values except 

for total runs which were increased from 10 to 

50. Default values included using 50% of the 

occurrence records for training and 50% for 

validation (see above). The number of threads 

can be specified if analyses are run on a 

computer with multiple processors. The other 

values have little effect on the final outcome 

of the analysis but will affect the processing 

time of the analysis. Changing certain 

parameter’s values will stop the analysis early,

and manipulating certain values will lengthen 

the time needed for model construction. Given 

that the number of environmental layers used 

and the number of occurrence records were 

relatively few in these ENM analyses, using 

more conservative input parameters did not 

increase the stability of the models but caused 

significant increases in computing time.

Evaluation: Comparison to human WNV 

incidence

The individual models were compared to

Table 1. Environmental layers used in the construction of ENM for three mosquito species in Iowa

ENVIRONMENTAL
VARIABLE DESCRIPTION SOURCE

Culex 
pipiens
group

Culex 
tarsalis

Aedes 
vexans

Slope Steepness of terrain Derived from DEM (USGS) x x x

Aspect Direction slope faces Derived from DEM (USGS) x x x

Compound 
Topographic Index

Natural logarithm of  (Flow 
accumulation / tangent (slope))

Derived from DEM (USGS) x x

30-year average 
temperature

Historical mean of the past 
30 years in Iowa

Iowa Environmental 
Mesonet

x x x

30-year average 
precipitation

Historical mean of the past 
30 years in Iowa

Iowa Environmental 
Mesonet

x x x

Freeze-free period Number of days without 
freezing temperatures Ecoregions (Iowa DNR) x x x

Distance to rivers Distance to closest river or 
stream

Derived from Iowa DNR 
data

x

Available water 
content

Amount of water stored in 
the ground available to plants STATSGO (NRCS) x x

Hydrologic soil 
groups

Soil classification group based 
on potential runoff

STATSGO (NRCS) x x

Land cover 2002 Classification of land cover 
type in 2002

Iowa DNR x x

Distance to irrigated 
area

Distance to closest irrigated 
farmland

Derived from Iowa DNR 
data x

Distance to urban 
areas

Distance to nearest urban 
area

Derived from Land Cover 
2002

x

An 'x' indicates which environmental layer was used for constructing the ENM for the given species 
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human WNV cases, but no significant 

correlation was found between any of the 

GARP or Maxent models for the three species. 

In order to uncover a connection between 

mosquito habitats and human WNV cases, the 

individual Maxent and GARP models for the 

three species were combined and averaged 

into a single raster dataset for comparison to 

human WNV incidence data. Geocoded 

human WNV incidence data were aggregated 

to census block groups provided by the Iowa 

Department of Public Health for the years 

2002-2006 as described in DeGroote et al. 

(2008). Zonal statistics functions in ArcGIS 

were used to compile the average scores from 

the averaged ENMs by census block group. 

Bonferroni multiple comparison procedures 

(Ott and Longnecker 2006) were utilized to 

examine the relationship between the number 

of WNV cases and averaged ENM values.

Results and Discussion

Ecological niche modeling for individual 

mosquito species

The Maxent-created model for Cx. tarsalis

(Figure 1) highlighted the northwestern area 

of Iowa as an area likely to be Cx. tarsalis

habitat. Irrigation is commonly employed in 

this area to grow row crops. This model is in 

accordance with the biology of this mosquito,

because Cx. tarsalis are frequently associated 

with irrigated cropland (Surtees 1970). The 

models for Cx. tarsalis included a layer on the 

distance to the nearest irrigated farmland to 

include these important habitable areas in the 

models. Cx. tarsalis is considered an enzootic 

vector and most likely is a bridge vector of 

WNV to humans in Iowa, and the northwest 

area of the state is the most common area in 

Iowa for human WNV cases (DeGroote et al. 

2008). Also prevalent in the Maxent model 

was the distance to rivers layer. The GARP 

model (Figure 2) differed quite drastically for 

the predicted habitat of Cx. tarsalis. The 

distance to irrigated areas layer used in the 

construction of the GARP model created a 

pattern of cells with at least two areas that 

have been allowed and given permits by the 

state of Iowa to use irrigated water within 10

km. Sixty-three percent of unique occurrence 

points met this condition, and those influenced 

the modeling strongly. Also noteworthy was a 

surprising section of southern Iowa that was

predicted to be habitable. Lower numbers of 

Cx. tarsalis are collected in this area,

Figure 1. ENM for Culex tarsalis in Iowa using Maxent. High quality figures are available online.
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compared to the rest of the state (Sucaet et al. 

2008), suggesting that this is an example of 

GARP overpredicting the niche of a species,

as has been seen in other studies (Peterson et 

al. 2002; Phillips et al. 2004; Elith et al. 2006; 

Sánchez-Flores et al. 2007; Yun-sheng et al. 

2007). Visual inspection of the environmental 

layers used in the construction of the ENM for 

Cx. tarsalis revealed that a combination of 

layers including higher average temperatures 

combined with various other layers including 

distance to rivers, soil properties, and 

grassland cover was likely responsible for this 

possible exaggeration of predicted habitat in 

the southern one-third of the state.

Models created for the distribution of Cx.

pipiens group are shown in Figures 3 and 4.

Cx. pipiens is considered an urban species,

and most of the predicted habitat in both 

models was within or near residential and 

commercial areas. The GARP model more 

strictly predicted habitat areas in or very near 

urban areas. Approximately 89% of 

occurrence records fell inside or within four 

km of an incorporated city boundary. Based 

on a visual comparison between the 

environmental layers and the GARP model, 

the GARP model appeared dominated by the 

distance to urban areas layer with other layers 

having limited influence. Maxent predicted a 

greater area with low to moderate 

probabilities across the state and higher 

probabilities near urban areas. The Maxent

model seemed to be influenced by the other 

environmental layers much more than the 

GARP model. A greater area in the southern 

part of the state was probably influenced by 

the climatic layers. Maxent and GARP seemed

to model some linear features (i.e. roads). This 

may have been an artifact of misclassified 

road pixels in the land cover data that were

wrongly classified as commercial/industrial.

The two models created for Ae. vexans

(Figures 5, 6) are dominated by the distance to 

rivers layer, based on visual analysis. 

Approximately 90% of the Ae. vexans

presence points fell within 4 km of a major 

river in Iowa, and the models appropriately

showed likely habitat in potential floodplains. 

However, the GARP model predicted a greater 

area of Iowa as probable habitat, especially in 

southern Iowa. It is likely that the GARP 

model overpredicted the fundamental niche of 

this species also. In southern Iowa, the GARP 

Figure 2. ENM for Culex tarsalis in Iowa using GARP. High quality figures are available online.



Journal of Insect Science: Vol. 10 | Article 110 Larson et al.

Journal of Insect Science | www.insectscience.org 9

model seemed to be heavily influenced by the 

grassland areas from the land cover data. This 

was based on comparing the model to the land 

cover data visually. Due to the sampling 

regime, many points fell in mapped grassland 

cells that were in a mixed landscape fabric 

around cities (possibly misclassified cells). 

Subsequently, the model likely overpredicted

the habitat of Ae. vexans in the grassland 

dominated areas of southern Iowa. In an 

eastern Iowa county, DeGroote et al. (2007)

showed a weakly positive correlation between 

Ae. vexans counts and grassland areas, while 

showing a much stronger positive correlation 

to forested areas, which generally fall along 

river corridors in Iowa.

Receiver operating characteristic (ROC) 

curves and the area under the curve (AUC) 

values were used to compare the models 

Figure 3. ENM for Culex pipiens in Iowa using Maxent. High quality figures are available online.

Figure 4. ENM for Culex pipiens in Iowa using GARP. High quality figures are available online.
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constructed using GARP and Maxent for each 

of the species being studied. An AUC score of 

one would mean perfect prediction with zero 

omission (an AUC score equal to 0.5 would be 

expected from a random prediction). This is a 

standard method for analyzing ENM (Phillips 

et al. 2004; Elith et al. 2006; Sérgio et al. 

2006), and the AUC can be a useful indicator 

of accuracy between ENM models. See Figure 

7 for the ROC curves from both Maxent and 

GARP models and AUC values for each of the 

species’ models. GARP produces only one 

ROC curve and AUC value due to the nature 

of the algorithm (see above), but Maxent 

produces two ROC curves (based on either the 

initial (training) data and on the validation 

(test) data) with associated AUC values. The 

AUC values based on the validation dataset 

Figure 6. ENM for Aedes vexans in Iowa using GARP. High quality figures are available online.

Figure 5. ENM for Aedes vexans in Iowa using Maxent. High quality figures are available online.
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for the Maxent modeling were 0.848, 0.908, 

and 0.991 for Ae. vexans, Cx. tarsalis, and the 

Cx. pipiens group, respectively. However, the 

AUC values from the Maxent models in 

relation to the initial (training) datasets were 

0.936 for Ae. vexans, 0.935 for Cx. tarsalis,

and 0.946 for Cx. pipiens. The AUC values 

derived from the GARP models were 0.81 for 

Ae. vexans, 0.81 for Cx. tarsalis, and 0.87 for

Cx. pipiens.

Comparison to human WNV incidence

Initially, the individual habitat maps were

compared to human WNV cases, but no single 

species’ predicted habitats compared 

favorably. WNV transmission to humans is 

complicated by the existence of both enzootic 

and bridge vector species. Since both types of 

vectors are needed for incidental hosts (i.e.

humans) to become infected, it was decided to 

combine the predicted habitats for Cx. pipiens, 

Cx. tarsalis, and Ae. vexans. After 

experimenting with weighting the different 

species based on estimated transmission rates

or abundance of mosquito species, the 

probabilities of these species occurrences 

were averaged in order to define areas that 

have both enzootic and bridge vector species 

(a criterion for transmission of WNV to 

humans). This shared habitat was then 

compared to human WNV cases in Iowa at the 

census block group level. Figure 8 shows the 

raster surface created by averaging the 

individual Maxent probability distribution 

models overlaid with human WNV incidence,

symbolized by graduated symbols based on 

the census block group centroid. The 

combination of the probability distribution 

models highlights the river systems in Iowa. 

Iowa is considered one of the most 

ecologically disrupted states. Based on 

surveys conducted in the mid-1800s, the 

landscape of Iowa was dominated by prairie 

that occupied 28.5 million acres (79%) of the 

state; 99.9% of those acres have been 

converted to agricultural land (Smith 1998). 

Therefore, much of the suitable habitat for 

mosquito species that do not normally seek 

out agricultural areas or urban environments is 

likely to occur along the streams and rivers 

with their associated boundary forests and 

floodplains with wetland-like corridors. The 

Bonferroni multiple comparisons procedure 

showed that there were statistically significant 

variations in mean values of combined model Figure 7. ROC curves and AUC values for all Maxent and GARP 
models. High quality figures are available online.
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scores in census block groups with zero 

(0.097058), one (0.0886), two (0.099844), and 

three (0.152527) cases of WNV in humans. 

The average value for the cells that fell into 

census block groups with only one case of 

WNV was actually lower than the average of 

the values of cells that fell into census block 

groups with zero cases of WNV. However, the 

average values of cells that fell into census 

block groups with either two or three cases of 

WNV were significantly greater (p < 0.05) 

than the average value of cells that fell into 

the census block group with either zero or one 

WNV case. A person’s residence is not 

necessarily the site of virus transmission.

However, when multiple cases of WNV in 

humans occur in the same census block group,

it is more likely that a ‘hot spot’ for virus 

activity exists in that area, and thus this 

analysis indicates that the combined Maxent 

models highlight areas of higher risk 

(DeGroote et al. 2008). Individual species 

predicted habitats compared to human WNV 

cases resulted in no statistically significant 

differentiation between census block groups. 

The combined GARP models failed to show 

significant differences between census block 

groups with varying numbers of WNV cases.

Conclusions

In conclusion, these probability distribution 

maps are an initial step in understanding the 

transmission of mosquito-borne pathogens in 

the state of Iowa, a probable transition zone 

between WNV vectors in the eastern and 

western parts of the USA and a common site 

of human WNV infection. Maxent appears to 

be better able to fit the occurrences of 

mosquito species without overpredicting the 

area in which they are able to live, a common 

drawback of GARP (Peterson et al. 2002; 

Phillips et al. 2004; Elith et al. 2006; Sánchez-

Flores et al. 2007; Yun-sheng et al. 2007). 

Census block groups with greater numbers of 

human WNV cases had higher average 

Figure 8. Averaged mosquito distributions of the three Maxent models overlaid with West Nile virus cases based on census 
block group centroids. High quality figures are available online.
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probability scores for the combined Maxent 

models for the three species. This indicates 

that this methodology is valuable in creating a 

static WNV human risk map for the whole 

state based on ecologically relevant data.

Ideally, a more exhaustive sampling regime 

would allow for mosquito traps to be placed in 

a continuous grid throughout the state. In 

reality, the sampling regime is restricted by 

resource and logistical constraints, but is data-

rich in that the same sites have been sampled 

for many consecutive years. Using this 

sampling regime, ENM has proven to be a 

useful method for determining the overall 

distribution of different mosquito species in 

the state of Iowa, which is 145,743 km
2
 in 

size. Ecological niche modeling is useful for 

interpolating the distribution of mosquitoes in 

unsampled and undersampled areas. The

probability maps created for this study can 

help to inform researchers where to place 

other types of mosquito surveillance 

equipment such as gravid traps and CDC-style

CO2-baited mosquito traps, which collect live 

samples valuable for testing mosquitoes for

WNV. Ground truthing in undersampled sites 

would provide additional validation of the 

models developed herein.

The next step would be to use ENM with 

climatic data (i.e. precipitation, temperature, 

humidity, etc.) or remotely sensed derived 

data such as the Normalized Difference 

Vegetation Index, which can be used as a 

surrogate for climatic data, for different time 

periods in order to discover not just the spatial 

distribution of vectors but also their temporal 

population dynamics. This could help to 

inform further efforts to predict, in near real 

time, the distributions of potential WNV 

vectors which pose a health risk to humans 

across the state of Iowa.
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