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Recent research in neuroeconomics has demonstrated that the
reinforcement learning model of reward learning captures the
patterns of both behavioral performance and neural responses
during a range of economic decision-making tasks. However, this
powerful theoretical model has its limits. Trial-and-error is only one
of the means by which individuals can learn the value associated
with different decision options. Humans have also developed
efficient, symbolic means of communication for learning without
the necessity for committing multiple errors across trials. In the
present study, we observed that instructed knowledge of cue-
reward probabilities improves behavioral performance and dimin-
ishes reinforcement learning-related blood-oxygen level-dependent
(BOLD) responses to feedback in the nucleus accumbens, ventrome-
dial prefrontal cortex, and hippocampal complex. The decrease in
BOLD responses in these brain regions to reward-feedback signals
was functionally correlated with activation of the dorsolateral pre-
frontal cortex (DLPFC). These results suggest that when learning
action values, participants use the DLPFC to dynamically adjust
outcome responses in valuation regions depending on the useful-
ness of action-outcome information.

functional MRI | striatum | instruction | computational modeling |
prediction error

Maximizing reward obtained over time can be a daunting
challenge to any organism (1). Without concrete in-

struction, an animal can only develop and fine-tune its reward-
harvesting strategy through trial and error. Reinforcement
learning (RL) theory has formalized this intuition and associated
prediction error to the phasic changes of activities in dopami-
nergic neurons that track the ongoing difference between expe-
rienced and expected reward (2). Under this framework,
prediction error is thought to broadcast to valuation structures,
such as the striatum and ventromedial prefrontal cortex
(vmPFC), to direct learning and integrate with other streams of
information to facilitate decision making (3–6).
Recent research in neuroeconomics has demonstrated that

this theoretical model of trial-and-error reward learning captures
the patterns of both behavioral performance and the blood-ox-
ygen level-dependent (BOLD) signals during a range of eco-
nomic decision-making tasks (3, 7–10), demonstrating important
cross-species similarities in the mechanisms of reward learning
(11). Because of this finding, RL models have become a primary
means to characterize neural responses in neuroeconomics.
However, this powerful theoretical model has its limits. Trial and
error is only one of the means by which individuals can learn the
value associated with different decision options. Humans have
also developed efficient, symbolic means of communication,
namely language, that allow the social communication of in-
formation about value without the necessity for committing
multiple errors across trials to learn. Little is known about how
this explicit, symbolic knowledge can infiltrate the valuation
structures mentioned above and exert its influence on action
selection, and how the brain’s embodiment of the RL algorithm
differs in the face of instructed knowledge.
To address these questions, we used functional MRI (fMRI)

together with a probabilistic reward task (Fig. 1) to assess the
relative contributions of trial-and-error feedback and instructed

knowledge on choice selection (12, 13). We designed an exper-
iment with two sessions. In the “feedback” session, participants’
choices were only based on the win/loss feedback, and in the
“instructed” session participants could also incorporate the
correct cue-reward probability information provided by experi-
menter to guide choice behavior. We hypothesize that: (i) RL is
a robust algorithm to explain and predict choice behaviors and
BOLD responses in an environment where trial-and-error
feedback is the only information to guide learning and influence
choices (13–17), and (ii) when instructed knowledge about re-
ward probabilities is also available, participants use this extra
information to achieve better performance by modulating the
degree to which RL algorithms are involved. We also explored
which brain systems may influence the implementation of
instructed knowledge by modulating the patterns of BOLD
responses in brain areas typically implicated in RL, valuation and
choice selection (13, 18–26).

Results
Behavioral Results. For both sessions, the participants’ frequency
of win trials varied across four different probability conditions
(F3,76 > 90, P < 0.0001). A repeated measure two-way ANOVA
was performed using probability condition (25, 50, 75, and
100%) and session condition (feedback and instructed) as within-
participant factors. As expected, participants showed better per-
formance, as indicated by the frequency of win trials, in the
instructed session (F1,152 = 5.8, P < 0.02) (Fig. 2A). Post hoc t
tests showed that the differential performance existed in the 25,
75, and 100% probability conditions (P < 0.05), but not the 50%
condition (P = 0.16) (Fig. 2A). We then examined how partic-
ipants’ choices were influenced by the most recent outcome they
received upon their subsequent choices. We calculated how likely
participants would stay with their previous choice when the out-
come of the previous choice was positive (win) or negative (loss)
in both sessions (Fig. 2B). Using previous trial outcome (win or
loss) and session condition (feedback or instructed) as two fac-
tors, a two-way ANOVA revealed that there is a main effect for
outcome type. Participants were more likely to follow their pre-
vious choice when the outcome was positive (F1,76 = 26.9, P <
0.001). Further post hoc analysis showed participants in the
feedback session were more influenced in their subsequent choice
action by positive outcomes than participants in the instructed
session (P < 0.05). A similar trend was observed for negative out-
comes, but it was not significant (P = 0.18) (Fig. 2B). Overall, the
loss trials were less than 30% of all of the trials, resulting in di-
minished statistical power for analyses of loss, relative to win, trials.
We fitted a Q-learning model to participants’ choice behavior

in both the feedback and instructed sessions using the maximum
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likelihood estimation. Different prominent RL models were fit-
ted to the participants’ behavioral data to determine the optimal
model. We considered popular models: a RL model with a single
learning rate for both positive and negative prediction errors
(PEs) (δ+ and δ−), and a RL model with different learning rates
for both positive and negative PEs (δ+ and δ−). In the instructed
session, we also included a RL model that assigns a “confirma-
tion bias” to outcomes that match the instructions (27, 28) (SI
Appendix, Tables S1 and S2). In the feedback session, a simple
RL model with a single learning rate (α) for both positive and
negative PEs (δ+ and δ−) tended to fit participants’ behavior
better. However, a Q-learning model with two different learning
rates (α+ and α−) for positive and negative PEs (δ+ and δ−) best
explained participants’ behavior in the instructed session
(implementation of model fitting is detailed in SI Appendix). The
McFadden’s pseudo R-square was 0.50 for the feedback session
and 0.61 for the instructed session (SI Appendix, Table S1). A
single learning rate of 0.24 was estimated for the feedback ses-
sion; however, the learning rates associated with positive PE (α+)
was 0.05 and was 0 with negative PE (α−) in the instructed ses-
sion (SI Appendix, Tables S1 and S2). The significant difference
of learning rates indicates that the PEs were not as efficiently
incorporated to the updating of action value in the instructed
session, especially when the outcome was worse than partic-
ipants’ expectation. These results suggest that participants’
actions were simply governed by the a priori action value

instructed by experimenter, as indicated by the initial Q value
associated with different stimuli (α- = 0) (SI Appendix, Table S2).

Functional MRI Results. RL model predicts BOLD signals in the feedback
session. Our behavioral results suggest that a RL model captures
participants’ performance in the feedback session, but does not
adequately describe learning in the instructed session. To explore
if a similar pattern was reflected in the patterns of BOLD
responses, we constructed a general linear model (GLM) with
the PE regressors generated from the best fitting Q-learning
models for both sessions (SI Appendix, Tables S1 and S2) and in-
vestigated the neural correlates of PE in the feedback session and
the instructed session (Fig. 3A). Ventral striatum BOLD response
was significantly correlated with PE signals in the feedback session
[P < 0.05, corrected, peak Montreal Neurological Institute (MNI
coordinate) (–27 3 0), z = 3.59] (Fig. 3A and SI Appendix, Table
S2). There was no such correlation observed in the instructed
session, even under a more relaxed threshold (P < 0.01, un-
corrected). A direct comparison between the BOLD responses
that correlated with PEs in the feedback and instructed sessions
further confirmed the differential involvement of striatum in
encoding PEs in both sessions (SI Appendix, Fig. S1). Because PE
and monetary outcome often tend to correlate with each other,
PE regression analyses were performed by including the mone-
tary outcome regressor in the GLM for both sessions to separate
PE-related BOLD responses from the outcome-related ones.
As a learning signal, PE has its unique activity pattern. At the

beginning of the learning phase, PE signals tend to respond to
the onset of the outcome delivery, but as learning progresses PE
signal shifts toward the onset of the cue/decision accompanied by
a diminished response to the actual outcome. To further test that
BOLD response in the striatum indeed encodes PEs in the
feedback session, we conducted an independent two-way
ANOVA to identify brain regions whose activities were modu-
lated by the interaction between the session (instructed vs.
feedback) and learning phase (early vs. late learning). We hy-
pothesized that if a RL mechanism was engaged differentially
between the instructed and the feedback session, we should
observe an interaction between the session and learning phase
factors in a two-way ANOVA. Indeed, this analysis yielded
similar brain regions as the PE regression analysis [P < 0.05,
small volume corrected for 343 surrounding voxels, peak MNI
coordinate (−15 −6 0), F1,304 = 15.55, z = 3.72] (Fig. 3B). A
further region of interest (ROI) time-series analysis in the
overlapping region of activation in the ventral striatum (Fig. 3C)
revealed a pattern of BOLD response consistent with a PE
learning signal in the feedback session. In early trials, striatum
activation peaked at the onset of outcome. As learning pro-
gressed, this peak activation shifted toward the decision onset
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Fig. 2. Behavioral results for both sessions. (A) Percentage of win trials (±SEM) for the different visual cue probabilities for both sessions. (B) The probability
of staying with the previous choice (±SEM) given its outcome (positive or negative) for both sessions. (*, significant difference between sessions, P < 0.05).
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(Fig. 3D, Left). However, this characteristic PE response pattern
was absent in the instructed session (Fig. 3D, Right).
Reduced BOLD responses to outcomes in the instructed session. In-
spired by the results that participants’ choices are differentially
influenced by previous trial outcomes (Fig. 2B), we examined
participants’ BOLD responses when participants processed
monetary outcome (win or loss) in both sessions. From a general
contrast of win over loss at the onset of outcome revelation
across both sessions, we found significant activation in the nu-
cleus accumbens (NAc) [peak MNI coordinate (−2 12 −10), z =
6.12] and vmPFC [peak MNI coordinate (−4 42 −10), z = 5.94;
P < 0.05 corrected] (Fig. 4A), regions previously linked to the
brain’s reward valuation system (25, 29–34) (SI Appendix, Table
S3). In addition, we observed bilateral activation in the hippo-
campal complex [peak MNI coordinates (−18 −18 −20), z= 4.31
and (28 −18 −20), z = 3.61], which was centered on the peri-
rhinal cortex, a region that has been implicated in processing
item-reward associations (35–37) (Fig. 4A). Similar outcome-
related activation patterns were also observed by including the
prediction error regressor in the GLM.
ROI analyses of these brain regions showed that overall

BOLD responses to outcomes (win minus loss) were smaller in
the instructed session than the feedback session. Examining win
and loss trials independently revealed diminished activation to
monetary gains in the instructed session in all three regions (P <
0.05 at the peaks of activation). Although a similar pattern was
observed for loss trails, no significant differences were observed

for loss evoked responses between the two sessions, perhaps
because of the diminished statistical power resulting from fewer
overall loss trials (Fig. 4B).
Higher dorsolateral prefrontal cortex activity paralleled better per-
formance in the instructed session. RL model fitting of the behav-
ioral data suggested that participants were less influenced by
monetary outcomes in the instructed session, most likely because
of the strong a priori instructed knowledge of the cue-reward
probabilities. Accordingly, participants achieved better perfor-
mance in the instructed session. This reliance on instructed
knowledge reduced BOLD responses in regions implicated in
reward learning, suggesting that instructed knowledge enables
the brain to diminish the impact of outcome feedback on de-
cision making. If this process is the case, there should also be
a corresponding increase in activation in brain regions that me-
diate the implementation of instructed knowledge. To determine
which brain regions may enable the effects of instructed knowl-
edge on trial-and-error reward learning tasks, we conducted an
exploratory analysis to locate brain areas where activation to
monetary outcomes was greater in the instructed relative to
feedback session. We focused on win trials because our previous
analyses found significantly diminished BOLD responses to wins
in reward learning (NAc and hippocampal complex) and valua-
tion (vmPFC) regions in the instructed session. This analysis
revealed the left dorsolateral prefrontal cortex (DLPFC) [P <
0.05 corrected, peak MNI coordinate: (−48 24 33), z = 3.98]
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Fig. 3. BOLD responses for prediction errors in both sessions. (A) Activity of the striatum showed significant correlation to the PE signal in the feedback
session (P < 0.05, corrected). Such correlations were not observed in the above structures in the instructed session (P < 0.01, uncorrected). (B) A two-way
ANOVA showed an interaction between session (feedback and instructed) and learning phase (early and late) in the left striatum. (C) Striatal activation
identified in the PE (A, yellow) and session × learning phase interaction (B, green) analyses, and the overlapping region (red). (D) BOLD response patterns in
the overlapping region for the early and late phases of learning in the feedback and instructed sessions (*, time points with significantly different BOLD
responses between early and late learning phases, P < 0.05; ± SEM).
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showed a greater BOLD response to win outcomes during the
instructed session (Fig. 5A and SI Appendix, Table S5).
Functional connectivity between DLPFC and reward-related brain
structures. The DLPFC has previously been implicated in decision-
making and emotion regulation tasks that require the top-down
modulation of valuation regions (25, 26, 34). To determine if the
left DLPFC acted as a cognitive modulator of reward learning
regions in the presence of instructed knowledge, we conducted
a psychophysiological interaction (PPI) analysis using the peak
voxels in the left DLPFC (Fig. 5A) as the seed region, and tested
which brain areas showed significant functional connectivity in the
win trials vs. loss trials. We found an inverse, win-trial specific
functional connectivity between the DLPFC and the NAc [peak
MNI coordinate (−3 6 −12), z = 3.17], vmPFC [peak MNI co-
ordinate (−6 48 −18), z = 4.86], and left parahippocampal gyrus
[peak MNI coordinate (−36 −24 −18), z = 3.77] only in the
instructed session (P < 0.05 corrected) (Fig. 5B and SI Appendix,
Table S6). Similar results were obtained by directly comparing the
functional connectivity of the DLPFC and these reward-related
brain areas in the feedback and instructed session (SI Appendix,
Fig. S2). This result is particularly interesting because the valua-
tion structures, whose BOLD responses are negatively corre-
lated with the left DLPFC when reliable instructed knowledge is
available to guide choices (vmPFC, NAc, and hippocampal com-
plex), overlap with those regions showing diminished response
to reward outcomes in the instructed session (Figs. 4 and 5).

Discussion
Optimal decision making requires the brain to dynamically allo-
cate control among different types of information for action

selection (17, 38, 39). When feedback is the only source of in-
formation, choice-dependent outcomes can be evaluated and fed
back to valuation systems to provide a better approximation of
action values and guide individuals toward choices that maximize
accumulated rewards in the long run. The RL algorithm provides
a formal framework to incorporate feedback information to fa-
cilitate learning anddecision-making (1, 2, 40–43). Consistent with
this previous research, in the feedback session of our task we fit
aRLmodel to participants’ behavioral data and located the neural
basis of PE in the ventral striatum (Fig. 3 and SI Appendix, Table
S1) using two independent approaches (Fig. 3 A and B). Addi-
tional ROI time-series analyses in the feedback session further
revealed that striatal BOLD responses were sensitive to the onset
of both decisions and outcomes early in learning, but migrated to
the onset of the decision as learning progressed. This pattern is
consistent with the unique characteristics of PE learning signals
and is absent in the instructed session (Fig. 3D) (2).
In contrast, when correct instructed knowledge about the cue-

reward probabilities was available, participants used this in-
formation to achieve better performance and the RL model was
less successful in interpreting participants’ behaviors and BOLD
activation pattern (Fig. 3D and SI Appendix, Fig. S1). Previous
research has formalized the intuition of instructional control and
suggested a “confirmation bias” model to amplify the effect of
positive PEs and diminish the effect of negative PEs when par-
ticipants made choices based on instructed information (27, 28).
We compared the performance of different RLmodels [including
the confirmation-bias model suggested by Doll et al. (27)] and
interestingly, the RL model with different learning rates (α+ and
α−) for positive and negative PEs (δ+ and δ−) tended to fit par-
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ticipants’ behavior best in the instructed session (see SI Appendix
for technical details). Using the PEs generated from the above
best-fitting RL model, our fMRI analysis did not reveal a corre-
lation between PE signal and striatal BOLD responses (P < 0.01,
uncorrected) in the instructed session. Taken together, these
results suggest that participants might rely less on PE signals for
action-value updating when symbolic, instructed knowledge of the
reward probabilities is available. Consistent with this hypothesis,
both behavior (Fig. 2B) and BOLD responses were less influenced
by outcomes in the instructed session. Indeed, we observed rela-
tively smaller activations in brain areas (NAc, vmPFC, and hip-
pocampal complex) typically associated with reward learning and
valuation (11, 25, 30, 31, 33, 35–37, 44–50) when participants were
rewarded for their choices in the instructed session (Fig. 4B and SI
Appendix, Table S4). These findings suggest that the brain assigns
less weight to actual outcomes when other sources of reliable
information (instructed knowledge) about the cue-reward prob-
ability and optimal choice strategies are available.
The mechanism by which participants dynamically adjust their

reliance on outcome information when symbolic knowledge of the
reward probabilities is available was revealed in an exploratory
analysis that showed higher left DLPFC activity when participants
experienced monetary wins in the instructed relative to the feed-
back session (Fig. 5A). Importantly, PPI analysis using this DLPFC
area as a seed region revealed negative functional connectivity
between BOLD activities in the left DLPFC, and those in brain
regions related to reward learning and valuation (NAc, vmPFC,
and the hippocampal complex) among other brain areas (Fig. 5B
and SI Appendix, Fig. S2 and Table S6). Interestingly, these regions
overlapped remarkably well with those identified previously
through the win-loss contrast (Figs. 4A and 5B). Thus, we propose
a functional link between the DLPFC and an outcome-valuation
learning system. This latter system is pivotal in providing correct
value or “utility” information to facilitate learning based on mon-
etary feedback, but appears to be less important when preexisting,
symbolic knowledge to guide choices is available.
Taken together, these results suggest that when learning action

values, the DLPFC tends to dynamically adjust outcome responses
in reward-related brain regions depending on the usefulness of ac-
tion-outcome information compared with explicit knowledge par-
ticipants directly obtained from social communication. Although
the current study demonstrates the importance of this DLPFC, re-

ward-related structure circuitry for learning and reward processing,
previous neuroeconomic research has outlined a similar circuitry
across a range of decision-making tasks in which preexisting reward
values that are represented in valuation regions can be modulated
based on social processes (51, 52), goals (34), or other cognitive
factors (52, 53). Although there have been suggestions that the
DLPFC and reward-related regions represent independent systems
in the brain competing with each other for the dominance of action
selection (27, 28, 53, 54), our results are more consistent with a
general role for the DLPFC in modulating the engagement of re-
ward-related regions depending on the relative importance of the
information during a learning paradigm.
Our findings also lend neurological evidence to support recent

computational approaches to reconcile a broad range of literatures
suggesting multiple representation systems in the brain for behav-
ioral control. One such system deploys a model-free method and
“learns putatively simpler quantities,” such as policies that are suf-
ficient to permit optimal performance through processing action
outcomes. It is suggested this computation is carried out in the
dorsolateral striatum. The other system, which employs the pre-
frontal cortex, adopts a model-based method to make use of avail-
able or learned rules and derives optimal choice through dynamic
programming. The brainarbitrates betweendifferent representation
systemsaccording to theuncertainty estimated fromeach system(38,
39, 55). In our task, the state transition probabilities (reward prob-
abilities) were more accurate in the instructed session (provided by
the experimenter), thus the model-based approach would dominate
participants’ choice by recruiting theDLPFC tobias responses in the
reward-valuation systems.
The brain’s reward-learning circuitry as instantiated in the RL

model is a phylogenetically old system for learning based on trial-
and-error.When social structures andmeans of communication are
more complex, these basic reward-learning processes may not be
optimal to promote the best decision. Errors are costly and un-
necessary when additional, symbolic information about the best
decision is available. The current study demonstrates how the
DLPFC interacts with the reward-learning circuitry to diminish the
impact of actual trial-outcome information, presumably enabling
symbolic knowledge of reward probability to guide choices. Our
dataadd to thegrowing literatureof interactionsofdifferent typesof
information to achieve optimal behavior in decision making and
provide direct support to the computational theory that arbitrates
between different representation systems by assigning control to the
one that has less uncertainty of the correct action values.

Methods
Participants. Twentyparticipantswere recruitedand tested in compliancewith
the university committee on activities involving human subjects [University
Committee onActivities InvolvingHuman Subjects (UCAIHS)]. The experiment
was approved by the UCAIHS at NewYork University and all subjects provided
informed consent before the experiment. Of the 20 participants, 7 weremale,
9were non-Caucasian, and the group had an average age of 21.6 y (SD = 3.72).

Experimental Procedures. Each participant played two sessions of the task. One
session was named the “feedback” session and the other session was titled the
“instructed” session (Fig. 1). For both sessions, participants were told that they
would see different visual cues which represent how likely the number un-
derneath the cuewould be greater or less than 5 (value of underlying number∈
{1, 2, 3, 4, 6, 7, 8, 9}). The sequence of the two sessions was randomized across
participants, so that 10 out of 20 participants experienced the feedback session
first. In both sessions, four different visual cues representing different proba-
bilities (P∈ {25, 50, 75, 100%}) of the number underneath the cue being greater
than 5 were presented to participants. For both sessions, participants saw a cue
next to the number 5 on each trial. Each cue was randomly presented 20 times
for a total of 80 trials per session (see SI Appendix for details).

Functional MRI Image Acquisition. Scanningwasperformedonall 20participants
with a 3-T SiemensAllegrahead-only scanner andaSiemens standardhead coil at
New York University’s Center for Brain Imaging (see SI Appendix for details).

Behavioral Analysis. Participants’ choice behaviors in both sessions were
modeled by a simple RL algorithm (See SI Appendix for details). We tested

A Bx = -48

y = 6

y = -24

y = 45

y = 27

Fig. 5. Left DLPFC activity showed negative functional connectivity to brain
structures related to rewardvaluation. (A) LeftDLPFC showedrelativelygreater
activation to monetary gains in the instructed than the feedback session (P <
0.05, corrected). (B) PPI analysis showing regions negatively correlatedwith the
left DLPFC onwin trials in the instructed session (P < 0.05, corrected) but not in
the feedback session (P < 0.01, uncorrected) (SI Appendix, Fig. S2).
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our model against others suggested in the literature based on behavioral
data with similar tasks (27, 28) using the Bayesian information criterion as
a criterion for model selection. For the feedback session, the simple RL with
one learning rate (α) for both positive and negative prediction errors fits
participants’ behavior better. However, RL with different learning rates
(α+ and α−) for positive and negative (δ+ and δ−) PEs fits participants’ choices
the best in the instructed session (see SI Appendix for details).

Imaging Analysis. We first regressed PEs that were generated for both the
feedback and instructed sessions using the best-fitting parameters to the
whole-brain BOLD signals at the revelation of monetary outcome to identify
the brain areas whose activities were correlated with the calculation of PE.
Monetary outcomes were also included as dummy regressors to account for
the effect of the magnitude of the reward value.

Repeated-measures two-way ANOVA was performed on the functional im-
agingdatawith two factors (sessionand learningphase) at theonset of feedback.

The finite impulse response from time 0 to∼12 s (TR0 to∼TR6) was generated by
resamplingtheBOLDtimeseriesofeachvoxel inthebrainandaveragingacross40
trials each for the early and late learning phases in both sessions. Because ca-
nonical hemodynamic response function typically peaks at 6 to ∼8 s after the
stimulus onset, the two-way ANOVA was performed on both TR3 (6 s) and TR4
(8 s). These whole-brain analyses were performed on each voxel to identify brain
regions that showed a significant interaction effect with time (i.e., early vs. late
learning) and session (i.e., feedback vs. instructed session).

Finally, we conducted a PPI analysis to investigate the connectivity be-
tween brain regions that may modulate the impact of instructed knowledge
on RL learning signals (see SI Appendix for technical details).

ACKNOWLEDGMENTS. We thank K. Sanzenbach and the Center for Brain
Imaging at New York University for technical assistance. This study was
funded by a James S. McDonnell Foundation grant and National Institute of
Mental Health Grants MH 080756 (to E.A.P.) and MH 084081 (to M.R.D.).

1. Sutton RS, Barto AG (1998) Reinforcement Learning: An Introduction (MIT Press,
Cambridge, Mass.), p 322.

2. Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward.
Science 275:1593–1599.

3. Montague PR, King-Casas B, Cohen JD (2006) Imaging valuation models in human
choice. Annu Rev Neurosci 29:417–448.

4. Tanaka SC, et al. (2006) Brain mechanism of reward prediction under predictable and
unpredictable environmental dynamics. Neural Netw 19:1233–1241.

5. Padoa-Schioppa C, Assad JA (2006) Neurons in the orbitofrontal cortex encode
economic value. Nature 441:223–226.

6. Rudebeck PH, et al. (2008) Frontal cortex subregions play distinct roles in choices
between actions and stimuli. J Neurosci 28:13775–13785.

7. McClure SM, Berns GS, Montague PR (2003) Temporal prediction errors in a passive
learning task activate human striatum. Neuron 38:339–346.

8. King-Casas B, et al. (2005) Getting to know you: Reputation and trust in a two-person
economic exchange. Science 308(5718):78–83.

9. Rangel A, Camerer C, Montague PR (2008) A framework for studying the neuro-
biology of value-based decision making. Nat Rev Neurosci 9:545–556.

10. Hare TA, O’Doherty J, Camerer CF, Schultz W, Rangel A (2008) Dissociating the role of
the orbitofrontal cortex and the striatum in the computation of goal values and
prediction errors. J Neurosci 28:5623–5630.

11. Breiter HC, Aharon I, Kahneman D, Dale A, Shizgal P (2001) Functional imaging of
neural responses to expectancy and experience of monetary gains and losses. Neuron
30:619–639.

12. Delgado MR, Miller MM, Inati S, Phelps EA (2005) An fMRI study of reward-related
probability learning. Neuroimage 24:862–873.

13. Burke CJ, Tobler PN, Baddeley M, Schultz W (2010) Neural mechanisms of
observational learning. Proc Natl Acad Sci USA 107:14431–14436.

14. Kaelbling LP, Littman ML, Moore AW (1996) Reinforcement learning: A survey. J Artif
Intell Res 4:237–285.

15. Bogacz R, McClure SM, Li J, Cohen JD, Montague PR (2007) Short-term memory traces
for action bias in human reinforcement learning. Brain Res 1153:111–121.

16. Schönberg T, Daw ND, Joel D, O’Doherty JP (2007) Reinforcement learning signals in
the human striatum distinguish learners from nonlearners during reward-based
decision making. J Neurosci 27:12860–12867.

17. Niv Y (2009) Reinforcement learning in the brain. J Math Psychol 53(3):139–154.
18. Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu

Rev Neurosci 24:167–202.
19. Ochsner KN, Gross JJ (2005) The cognitive control of emotion. Trends Cogn Sci 9:

242–249.
20. LaBar KS, Cabeza R (2006) Cognitive neuroscience of emotional memory. Nat Rev

Neurosci 7:54–64.
21. Li J, McClure SM, King-Casas B, Montague PR (2006) Policy adjustment in a dynamic

economic game. PLoS ONE 1:e103.
22. Knoch D, Fehr E (2007) Resisting the power of temptations: The right prefrontal

cortex and self-control. Ann N Y Acad Sci 1104:123–134.
23. Sakai K (2008) Task set and prefrontal cortex. Annu Rev Neurosci 31:219–245.
24. Kouneiher F, Charron S, Koechlin E (2009) Motivation and cognitive control in the

human prefrontal cortex. Nat Neurosci 12:821–822.
25. McClure SM, et al. (2004) Neural correlates of behavioral preference for culturally

familiar drinks. Neuron 44:379–387.
26. Li J, Xiao E, Houser D, Montague PR (2009) Neural responses to sanction threats in

two-party economic exchange. Proc Natl Acad Sci USA 106:16835–16840.
27. Doll BB, Jacobs WJ, Sanfey AG, Frank MJ (2009) Instructional control of reinforcement

learning: A behavioral and neurocomputational investigation. Brain Res 1299:74–94.
28. Biele G, Rieskamp J, Gonzalez R (2009) Computational models for the combination of

advice and individual learning. Cogn Sci 33:206–242.

29. Delgado MR, Nystrom LE, Fissell C, Noll DC, Fiez JA (2000) Tracking the hemodynamic
responses to reward and punishment in the striatum. J Neurophysiol 84:3072–3077.

30. de Quervain DJ, et al. (2004) The neural basis of altruistic punishment. Science 305:
1254–1258.

31. Kuhnen CM, Knutson B (2005) The neural basis of financial risk taking. Neuron 47:
763–770.

32. Delgado MR (2007) Reward-related responses in the human striatum. Ann N Y Acad
Sci 1104:70–88.

33. Glimcher PW (2008) Neuroeconomics: Decision Making and the Brain (Academic
Press, Burlington, MA), p 552.

34. Hare TA, Camerer CF, Rangel A (2009) Self-control in decision-making involves
modulation of the vmPFC valuation system. Science 324:646–648.

35. Liu Z, Murray EA, Richmond BJ (2000) Learning motivational significance of visual
cues for reward schedules requires rhinal cortex. Nat Neurosci 3:1307–1315.

36. Liu Z, Richmond BJ (2000) Response differences in monkey TE and perirhinal cortex:
Stimulus association related to reward schedules. J Neurophysiol 83:1677–1692.

37. Mogami T, Tanaka K (2006) Reward association affects neuronal responses to visual
stimuli in macaque te and perirhinal cortices. J Neurosci 26:6761–6770.

38. Daw ND, Niv Y, Dayan P (2005) Uncertainty-based competition between prefrontal
and dorsolateral striatal systems for behavioral control. Nat Neurosci 8:1704–1711.

39. Dayan P, Daw ND (2008) Decision theory, reinforcement learning, and the brain. Cogn
Affect Behav Neurosci 8:429–453.

40. McClure SM, Daw ND, Montague PR (2003) A computational substrate for incentive
salience. Trends Neurosci 26:423–428.

41. O’Doherty JP, Dayan P, Friston K, Critchley H, Dolan RJ (2003) Temporal difference
models and reward-related learning in the human brain. Neuron 38:329–337.

42. O’Doherty J, et al. (2004) Dissociable roles of ventral and dorsal striatum in
instrumental conditioning. Science 304:452–454.

43. Hampton AN, Bossaerts P, O’Doherty JP (2008) Neural correlates of mentalizing-
related computations during strategic interactions in humans. Proc Natl Acad Sci USA
105:6741–6746.

44. O’Doherty J, Kringelbach ML, Rolls ET, Hornak J, Andrews C (2001) Abstract reward
and punishment representations in the human orbitofrontal cortex. Nat Neurosci 4:
95–102.

45. O’Doherty J, Rolls ET, Francis S, Bowtell R, McGlone F (2001) Representation of
pleasant and aversive taste in the human brain. J Neurophysiol 85:1315–1321.

46. Knutson B, Fong GW, Adams CM, Varner JL, Hommer D (2001) Dissociation of reward
anticipation and outcome with event-related fMRI. Neuroreport 12:3683–3687.

47. Aharon I, et al. (2001) Beautiful faces have variable reward value: fMRI and
behavioral evidence. Neuron 32:537–551.

48. Anderson AK, et al. (2003) Dissociated neural representations of intensity and valence
in human olfaction. Nat Neurosci 6:196–202.

49. Small DM, et al. (2003) Dissociation of neural representation of intensity and affective
valuation in human gustation. Neuron 39:701–711.

50. Zink CF, Pagnoni G, Martin-Skurski ME, Chappelow JC, Berns GS (2004) Human striatal
responses to monetary reward depend on saliency. Neuron 42:509–517.

51. Spitzer M, Fischbacher U, Herrnberger B, Grön G, Fehr E (2007) The neural signature
of social norm compliance. Neuron 56(1):185–196.

52. Delgado MR, Gillis MM, Phelps EA (2008) Regulating the expectation of reward via
cognitive strategies. Nat Neurosci 11:880–881.

53. McClure SM, Laibson DI, Loewenstein G, Cohen JD (2004) Separate neural systems
value immediate and delayed monetary rewards. Science 306:503–507.

54. Sanfey AG, Rilling JK, Aronson JA, Nystrom LE, Cohen JD (2003) The neural basis of
economic decision-making in the Ultimatum Game. Science 300:1755–1758.

55. Gläscher J, Daw N, Dayan P, O’Doherty JP (2010) States versus rewards: Dissociable
neural prediction error signals underlying model-based and model-free reinforce-
ment learning. Neuron 66:585–595.

60 | www.pnas.org/cgi/doi/10.1073/pnas.1014938108 Li et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1014938108/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1014938108/-/DCSupplemental/sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1014938108

