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Trinucleotide expansions cause disease by both protein- and RNA-
mediated mechanisms. Unexpectedly, we discovered that CAG
expansion constructs express homopolymeric polyglutamine, pol-
yalanine, and polyserine proteins in the absence of an ATG start
codon. This repeat-associated non-ATG translation (RAN trans-
lation) occurs across long, hairpin-forming repeats in transfected
cells or when expansion constructs are integrated into the genome
in lentiviral-transduced cells and brains. Additionally, we show
that RAN translation across human spinocerebellar ataxia type 8
(SCA8) and myotonic dystrophy type 1 (DM1) CAG expansion tran-
scripts results in the accumulation of SCA8 polyalanine and DM1
polyglutamine expansion proteins in previously established SCA8
and DM1 mouse models and human tissue. These results have
implications for understanding fundamental mechanisms of gene
expression. Moreover, these toxic, unexpected, homopolymeric
proteins now should be considered in pathogenic models of
microsatellite disorders.
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Translation of mRNA into protein is an exquisitely regulated,
almost error-free process. Well-established rules of transla-

tional initiation have been used as a cornerstone in biology to
understand gene expression and to predict the consequences of
disease-causing mutations (1). For microsatellite expansion dis-
orders, mutations within or outside ATG-initiated ORFs are
thought to cause disease either by protein gain-of-function, protein
loss-of-function, or RNA gain-of-function mechanisms (2, 3).
Microsatellite expansion mutations that express polyglutamine

(polyGln) expansion proteins include Huntington disease (Hun-
tingtin, HD), spinal bulbar muscular atrophy, and spinocerebellar
ataxia types 1, 2, 3, 6, 7, and 17. Since the discovery of these
CAG·CTG expansion mutations, efforts to understand disease
mechanisms have focused on elucidating the molecular effects of
the polyGln proteins expressed from these loci. Although these
polyGln expansion proteins bear no similarity to each other apart
from the polyGln tract, a hallmark of these diseases is protein
accumulation and aggregation in nuclear or cytoplasmic inclu-
sions. Surprisingly, although the polyGln expansion proteins are
widely expressed in the CNS and other tissues, only restricted
populations of neurons are vulnerable in each disease (3).
Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are the

best-characterized examples of RNA-mediated expansion dis-
orders (2). The mutation causing DM1 is a CTG-repeat expan-
sion located in the 3′ UTR of the dystrophia myotonica-protein
kinase (DMPK) gene. Although DM1 can be clinically more
severe than DM2, the discovery of the DM2 mutation and sev-
eral mouse models provide strong support that many features
of these diseases result from RNA gain-of-function effects in
which the dysregulation of RNA-binding proteins is mediated by
the expression of CUG and CCUG transcripts (4). Additionally,

RNA gain-of-function effects have been reported for CGG and
CAG expansion RNAs (5, 6).
Both RNA and protein mechanisms appear to operate in

spinocerebellar ataxia type 8 (SCA8) because the CTG·CAG
expansion mutation is expressed in both the CUG (ataxin 8 op-
posite strand, AXN8OS) and CAG (ataxin 8, ATXN8) directions.
ATXN8 expansion transcripts express polyGln protein from an
ATG-initiated ORF, and both polyGln protein (7) and AXN8OS
CUGEXP transcripts (8) accumulate in affected cells.

Results
To understand the role of the ATXN8 polyGln protein in SCA8,
we mutated the only ATG initiation codon located 5′of the CAG
expansion on an ATXN8 (A8) minigene. Unexpectedly, we found
this mutation did not prevent expression of the polyGln expan-
sion protein in transfected cells (Fig. 1A). Sequence analysis
showed that neither full-length nor spliced transcripts, which are
expressed at approximately equal ratios from the (−)ATG min-
igene, are predicted to contain an AUG initiation codon (Fig.
S1A). To test if non-ATG translation also could occur in other
frames, a triply-tagged A8 minigene, A8(*KKQEXP)-3Tf1, was
generated by inserting a 6X STOP codon cassette (two stops in
each frame) upstream of the CAGEXP and three different C-
terminal tags to monitor protein expression in all frames [i.e.,
CAG glutamine (Gln); AGC serine (Ser); and GCA alanine
(Ala)] (Fig. 1B). Surprisingly, although transcripts generated
from this tagged construct were confirmed to lack initiator AUG
codons (Fig. S1B) by RT-PCR, tagged polyGln, polyAla, and
polySer proteins were expressed (Fig. 1B) in transfected cells.
The polyGln expansion proteins migrated at one or more

discrete molecular weights, polyAla as a high molecular weight
smear with a faint laddering pattern seen on light exposures, and
polySer at the top of polyacrylamide gels in SDS (Fig. 1B) or 8 M
urea (Fig. S2A). As expected, these proteins were degraded by
proteinase K, were not affected by RNase I or DNase I, and were
not detected with addition of cycloheximide (Fig. 1B). The rel-
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ative levels of polyGln expressed with and without an ATG co-
don are similar (Fig 1 A and B). To compare the relative levels of
the polyGln, polyAla, and polySer, each was tagged with the
same HA epitope. The protein blot shown in Fig. 1C indicates
that polyAla is expressed at the highest levels, followed by pol-
yGln and then polySer. Immunofluorescence (IF) shows these
proteins can be expressed simultaneously in a single cell and that

relative levels in individual cells can vary dramatically (Fig. 1D
and Fig. S2B). Consistent with previous reports, the polyGln
protein is localized primarily within the nuclear aggregates (3),
the polyAla protein is primarily diffuse when in the cytoplasm
and aggregated when nuclear (9, 10), and the polySer protein
forms both nuclear and cytoplasmic aggregates (9). Additionally,
an ATG start codon in the polyGln frame variably resulted in
an additional higher molecular weight band, suggesting that
translational initiation occurs at the ATG and one or more ad-
ditional sites in some sequence contexts [compare polyGln for
A8(*KMQEXP)-endo and A8(*KMQEXP)-3Tf1 (Fig. 1 A and B)].
To determine if this repeat-associated non-ATG (RAN)

translation is affected by sequence context, we modified the A8
(*KKQEXP)-3Tf1 construct by removing 90 bp of the ATXN8
sequence so that the 6X STOP cassette was almost adjacent to
the CAGEXP and by adding a seventh STOP immediately up-
stream of the polyGln, polyAla, or polySer frames (Fig. S3).
These constructs also expressed polyGln and polyAla but only
low levels of polySer, with the exception that a TAG stop im-
mediately preceding the glutamine frame prevented translation
of polyGln but not of polyAla or polySer.
Because these results were completely unexpected, we used

several approaches to establish the identity of these homopoly-
meric proteins. First, each protein was detected with one or more
C-terminal epitope tags (myc, His, and HA for Gln; HA for Ala;
and HA and Flag for Ser), and the polyGln protein was detected
with a monoclonal antibody (1C2) specific to polyGln expansion
tracts (Fig. 1) (11). Second, [3H]-Gln, [3H]-Ala, and [3H]-Ser were
preferentially incorporated into proteins immunoprecipitated
with tags in the polyGln, polyAla, and polySer frames, respectively
(Fig. 2A). HEK293T cells transfected with triple-tagged constructs
containing the HA-tag in the Ala [A8(*KKQEXP)-3Tf1], Gln [A8
(*KKQEXP)-3Tf2], or Ser [A8(*KKQEXP)-3Tf3] frames were
grown with [3H]-Gln, [3H]-Ala, or [3H]-Ser amino acids, re-
spectively. Immunoprecipitations were performed using α-HA
antibody, separated by PAGE on duplicate gels and detected by
either immunoblot or fluorography. Fig. 2A Upper shows that all
three proteins in each set were pulled down by immunoprecipi-
tation, and the corresponding fluorograph (Fig. 2A Lower) shows
that [3H]-Gln was preferentially incorporated into the ∼40-kDa
proteins with theHA tag in the polyGln frame. Similarly, [3H]-Ala,
and [3H]-Ser were preferentially incorporated into proteins
immunoprecipitated with tags in the polyAla and polySer reading
frames, respectively.
Third, we used MS to confirm that RAN translation results in

the expression of a polyAla expansion protein. PolyAla was se-
lected for MS because (i) polyAla-specific antibodies are not
available, and (ii) the putative polyAla protein is expressed at
sufficiently high levels required for MS in transfected cells. An
arginine residue was introduced into the recombinant protein
so that trypsin digestion of the N terminus would generate
smaller peptide fragments of suitable size for MS (Fig. 2B). IntR
(GCAEXP)-3T lysates were separated by PAGE, and MS was
performed on proteins isolated from gel slices A1–A7 (Fig. 2C).
Associated mass spectra were submitted for database searching
against a human protein database and a list of all possible pol-
yAla proteins in which translation could begin before or within
the repeat and for which initiation would allow the possible in-
clusion of an N-terminal methionine residue. MS/MS identified
a series of N-terminal peptides with varying numbers of alanines
[(A)9–17R and AAADLEITR] (Fig. 2 D and E). No peptides
containing N-terminal methionine were detected, suggesting
that translation initiation in cells occurs without incorporating
an N-terminal methionine or that it is removed rapidly by me-
thionine aminopeptidase or endopeptidase activity (12). Addi-
tionally, the predicted C-terminal digestion fragment (TTTT-
SSYPYDVPDYA) was identified (Fig. S4). In summary, these
results demonstrate that RAN translation results in polyAla ex-
pression in transfected cells and that these proteins run as
a broad smear on SDS-PAGE.
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To test if transcripts undergoing RAN translation are modified
or edited, resulting in the introduction of AUG initiation codons,
we isolated and characterized mRNA from actively translating
polyribosomes isolated from cells transfected with (CAGEXP)-3T
constructs with or without an ATG initiation codon (Fig. 3A).
Northern analysis showed that transcripts expressed from both the
(+)ATG and (−)ATG constructs migrated at the predicted size
(∼700 nt) and cosedimented with light polyribosomal fractions
(Fig. 3B). Further characterization of ribosome-bound CAGEXP

transcripts from fraction six by 5′RACEandRT-PCRshow that (i)
transcription initiated within a few bp of the predicted transcrip-
tion start site and (ii) the sequence predicted by the DNA was
found in the corresponding transcripts and that no upstreamAUG
initiation codons were introduced by RNA splicing or editing
among 140 independently isolated clones (Fig. 3C). To rule out
independently the possibility that +ATG transcripts might be
generated from these plasmids by a cryptic promoter or alternative
splicing,RNAtransfectionswere performed.We transcribedRNA
in vitro from the ATT(CAGEXP) construct and two additional
linearizednon-ATGconstructs and transfected theRNAinto cells.
Consistent with previous results, RAN translation of polyGln
protein also occurred with cell-free–generated RNA (Fig. 3D).
To test if RAN translation depends on repeat length, con-

structs containing 15–107 CAGs were examined. Constructs with
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42–107 CAGs express polyGln by RAN translation, but con-
structs with 15 or 20 CAGs did not (Fig. 4A and Fig. S5 A and B).
PolyAla was robustly expressed with 105 and 107 CAGs, mod-
erately with 73 and 78 CAGs, and not with 42 and 58 CAGs.
PolySer was detected with 58–107 repeats but not with 42 repeats
(Fig. 4A). Thus, RAN translation is length dependent, and lon-
ger repeat tracts are associated with the simultaneous expression
of multiple proteins.
Because both repeat length and secondary hairpin structures are

associated with CAG and several other disease-causing micro-
satellite expansions, we compared RAN translation of polyGln
expansion proteins expressed from constructs containing hairpin-
forming CAG and non–hairpin-forming CAA repeats. Cells
transfected with CAG expansion constructs with or without ATG
start codons expressed polyGln (Fig. 4B). In contrast, polyGln was
expressed only from the CAA expansion constructs with an ATG
start codon, suggesting that hairpin formation is required forRAN
translation.All constructs were confirmed to express transcripts by
RT-PCR (Fig. S5C). Because CUGEXP transcripts also form
hairpin structures, we tested CTGEXP constructs and show that
RAN translation also occurs in all three frames (polyleucine,
polyAla, and polycystine) (Fig. S5D).
Next, we addressed if RAN-translation products trigger apo-

ptosis and therefore could be implicated in disease pathogen-

esis. Murine neuroblastoma (N2a) cells transfected with ATT
(CAG105)-3T and ATG(CAG105)-3T, which express polyGln,
polyAla, and polySer, showed significant increases in annexin-V
staining (13), compared with control cells (Fig. 4C and Fig. S5E).
These results indicate that the products of RAN translation can
cause apoptosis.
Becausemost disease-causing CAG·CTGexpansions are found

in larger polyGln ORFs, we tested if RAN translation in the pol-
yAla and polySer frames would still occur in the presence of
an ATG-initiated polyGln ORF (Fig. 5 A and B). PolyAla and
polySer proteins were expressed irrespective of the polyGln ORF.
The absence of the V5-tag on the polyGln from the (−)ATG V5
construct demonstrates RAN translation of polyGln initiated
downstream of the V5 tag and close to, or within, the repeat. Im-
munoprecipitation using antibodies to 3′epitopes followed by
immunoblot with α-V5 showed only a small fraction of polyAla
protein has undergone frame shifting from the ATG-initiated V5-
polyGln frame (Fig. 5C). Although previously frame shifting has
been suggested to result in hybrid polyGln-polyAla and polyGln-
polySer proteins in spinocerebellar ataxia type 3 (SCA3) and
Huntington disease (14, 15), our data demonstrate that frame
shifting is rare, and an out-of-frame ATG initiation codon is not
required for polyAla or polySer expression.
The potential for RAN translation in other disease-relevant

sequence contexts was investigated using constructs with 20 bp of
5′ flanking sequence upstream of the CAG repeat from the HD,
Huntingtin-like 2 (HDL2), SCA3, or DM1 loci (Fig. S6A). These
constructs showed robust polyGln and polyAla and variable
polySer expression with the highest non-ATG polySer translation
for A8(*KKQEXP) and HDL2 (Fig. S6B). RT-PCR confirmed
that each construct expressed unspliced transcripts with ATG-
initiated ORFs only in the glutamine and serine frames for A8
(*KMQEXP) and DM1 constructs, respectively.
To understand better the conditions required for expression of

these homopolymeric expansion proteins, we performed lentiviral
transductions of HEK293T cells and mouse brain. Similar to the
transfections described above, RAN translation of polyGln and
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polyAla also occurs in lentiviral-transduced cells and intact mouse
brain (Fig. S6 C–E). Taken together, these data demonstrate that
RANtranslation canoccurwhen the transgene is integrated into the
genome and that CAG expansions located in a variety of sequence
contexts and under a variety of conditions can express homopoly-
meric expansion proteins in the absence of an ATG-start codon.
Next, rabbit reticulocyte lysates (RRLs) were used to test if

non-ATG translation also occurs in a cell-free system. In contrast
to cells, RAN translation in RRLs was limited. Only HDL2
produced polyGln without an ATG, none of the constructs
generated detectable polyAla, and the highest levels of non-
ATG–initiated polySer were from the HD and SCA3 constructs
(Fig. S7A). Moreover, RAN translation in RRLs, but not in cells,
is substantially affected by mutating previously reported alter-
native initiation codons (ATT and ATC) (16, 17) (Fig. S7 B–D),
indicating that sequence requirements for RAN translation in
RRLs are less permissive than in cells. Next, we used constructs
that undergo non-ATG translation in RRLs to test if N-terminal
methionine incorporation still occurs in the absence of an AUG
initiation codon. We showed that polyGln expressed from con-
structs lacking initiator and internal methionine codons in-
corporated S35-methionine (Fig. S7E). Additionally, in vitro
translation using S35-labelled Met-tRNAi

Met indicates that in
RRLs non-ATG translation is initiated with a tRNAi

Met (Fig.
S7F). The incorporation of an N-terminal methionine in RRLs
in vitro is not surprising, because previously documented alter-
native initiation codons (ATT, ATC) are used. However, RAN
translation in cells may use a different initiation mechanism,

because we were not able to detect N-terminal methionine for
any of the polyAla proteins using MS.
To determine if novel homopolymeric proteins are expressed

in vivo, we developed peptide antibodies to putative RAN-
translated SCA8-polyAla (SCA8GCA-Ala) and DM1 polyGln
(DM1CAG-Gln) proteins (Fig. 6 A and E). The specificity of both
the α-SCA8GCA-Ala and α-DM1CAG-Gln antibodies was demon-
strated by Western blot and IF detection in cells expressing re-
combinant SCA8GCA-Ala and DM1CAG-Gln proteins but not in con-
trol cells (Fig. 6 B and F). Consistent with the possible role for
RAN-translated proteins in SCA8, we detected α-SCA8GCA-Ala
immunostaining in Purkinje cell soma and dendrites throughout
the cerebellum in an established SCA8mouse model (7) (Fig. 6C).
Similarly, α-SCA8GCA-Ala staining was found reproducibly in the
remaining cerebellar Purkinje cells of postmortem samples from
two patients with SCA8 (e.g., Fig 6D). For myotonic dystrophy, IF
staining of DM1 mice (18) which express CUGEXP (Fig. S8A) and
CAGEXP transcripts (Fig. S8 B and C) show rare (2.32 ± 2.04%)
but reproducible α-DM1CAG-Gln nuclear aggregates in cardiac
myocytes (Fig. 6G and Fig. S9 A and B) and more frequent
α-DM1CAG-Gln staining in leukocytes (10.68 ± 3.66%) (Fig. S9C).
The DM1 polyGln aggregates colocalize with caspase-8 (Fig.
S9D), which is an early indicator of polyGln-induced apoptosis
(19). Immunohistochemical staining of paraffin-embedded tissue
with the polyGln-specific 1C2 antibody confirms staining in leu-
kocytes in cardiac tissue frommice containing a CTG expansion of
55 repeats but not in control mice with 20 CTG repeats (Fig. S9E).
In samples from patients with myotonic dystrophy, α-DM1CAG-Gln
inclusions were found at low frequency in myoblasts (50–70
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CTG·CAG repeats) (Fig. 6H) and skeletal muscle and at higher
frequency in blood (Fig. S10).

Discussion
Our understanding of the molecular basis of disease has been
built on studying the expected effects of mutations on the func-
tions of their corresponding genes. For microsatellite expansion
disorders, cell culture and animal models have been developed to
test specific hypotheses based on the prediction that CAGEXP
mutations located in polyGln ORFs express protein only in the
polyGln frame and that expansions located in noncoding regions
do not encode proteins (2, 3). We demonstrate that these ca-
nonical rules of translation do not apply for CAG·CTG expan-
sions and that in the absence of an ATG codon expanded CAG
and CTG trinucleotide repeats often express homopolymeric
expansion proteins in all three frames. RAN translation occurs in
transfected and transduced HEK293T and N2a cells. In contrast,
non-ATG translation is less frequent in RRLs, suggesting that
RRLs may not recapitulate what is happening inside cells. The
production of polyGln protein after RNA transfections in cells
indicates that cellular factors and not promoter issues affect RAN
translation.
While initiation at specific alternative codons has been repor-

ted previously (16, 20), our findings show translational initiation
at CAG·CTG expansion sites in cells is highly permissive. Data
showing that hairpin-forming CAG and CUG repeats undergo
RAN translation are consistent with previous reports that hairpin
structures affect translational initiation (20). Hairpin structures
are thought to allow translational initiation at suboptimal sites by
delaying the 40S ribosomal subunit long enough to allow efficient
interaction between the Met-tRNAi anticodon and the AUG or
non-AUG start site (21). Additionally, hairpins can recruit initi-
ation factors and ribosomal subunits to internal ribosome entry
sites (IRESs) (1). Some IRESs, such as the one in the cricket
paralysis virus, can facilitate translation initiation without eIFs or
tRNAi

Met (1). These IRES hairpins function as a tRNAi
Met to

initiate translation at non-AUG codons including GCA (22). This
function could explain why translation in the polyAla (GCA)
frame appears to initiate at multiple sites within the repeat. IRES
hairpins form and are stabilized with the help of IRES trans-
lation-associated factors (ITAFs) (1), and at least one ITAF
(CUGBP1) is known to bind to CAG and CUG repeats (23). The
apparent requirement for hairpins, the initiation from non-AUG
codons, and the association of repeat transcripts with a known

ITAF suggests that RAN translation may involve an IRES-like
mechanism. Differences in repeat length required for the accu-
mulation of polyGln, polyAla, and polySer proteins may reflect
differences in protein stability and/or repeat length required for
efficient initiation in each frame.
The discovery of RAN translation raises the possibility that

polyAla and polySer proteins contribute to the pathogenesis of
some of CAG polyGln diseases and that homopolymeric proteins
contribute to diseases previously thought to involve primarily
RNA gain of function (e.g., DM1). In SCA8, specific staining
for the SCA8GCA-Ala expansion protein is found in cerebellar
Purkinje cells. In DM1, staining for the DM1CAG-Gln expansion
protein is found in heart, skeletal muscle, and myoblasts. Further
investigation will be required to determine which microsatellite
expansions undergo RAN translation and which RAN-translated
proteins contribute to disease. Our results indicate polyAla
and polySer proteins are more likely to be expressed from
CAG·CTG expansions exceeding 70 repeats, suggesting the
possibility that RAN-translated proteins may contribute to the
anticipation, the earlier onset, and increased disease severity
associated with longer repeat lengths.
Recently, much of the genome (24) and a growing number of

expansion mutations (25) have been shown to be transcribed
bidirectionally. Given that CAGEXP and CUGEXP transcripts can
express proteins without an ATG, and that both expansion
transcripts are reported to cause RNA gain-of-function effects
(6, 25), the molecular pathology of microsatellite disorders may
be far more complex than currently appreciated. Additionally,
these results raise the possibility that other repetitive sequences
in the genome also undergo RAN translation and contribute to
proteome diversity.

Materials and Methods
Details of cloning, custom antibodies, and molecular techniques are available
in SI Materials and Methods.
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