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Ca2þ is a universal second messenger in eukaryotic cells transmit-
ting information through sequences of concentration spikes. A
prominent mechanism to generate these spikes involves Ca2þ re-
lease from the endoplasmic reticulum Ca2þ store via inositol 1,4,5-
trisphosphate (IP3)-sensitive channels. Puffs are elemental events
of IP3-induced Ca2þ release through single clusters of channels. In-
tracellular Ca2þ dynamics are a stochastic system, but a complete
stochastic theory has not been developed yet. We formulate the
theory in terms of interpuff interval and puff duration distributions
because, unlike the properties of individual channels, they can be
measured in vivo. Our theory reproduces the typical spectrum
of Ca2þ signals like puffs, spiking, and bursting in analytically
treatable test cases as well as in more realistic simulations. We find
conditions for spiking and calculate interspike interval (ISI) distri-
butions. Signal form, average ISI and ISI distributions depend
sensitively on the details of cluster properties and their spatial ar-
rangement. In contrast to that, the relation between the average
and the standard deviation of ISIs does not depend on cluster prop-
erties and cluster arrangement and is robust with respect to cell
variability. It is controlled by the global feedback processes in the
Ca2þ signaling pathway (e.g., via IP3-3-kinase or endoplasmic reti-
culum depletion). That relation is essential for pathway function
because it ensures frequency encoding despite the randomness of
ISIs and determines the maximal spike train information content.
Hence, we find a division of tasks between global feedbacks and
local cluster properties that guarantees robustness of function
while maintaining sensitivity of control of the average ISI.
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The calcium ion Ca2þ is an important second messenger that
transmits information from the plasma membrane to cytosolic

targets in eukaryotic cells. Most Ca2þ signals appear as repeated
short-lived increases in the cytosolic Ca2þ concentration, [Ca2þ],
referred to as Ca2þ spikes. An important class of Ca2þ signals
requires binding of inositol 1,4,5-trisphosphate (IP3) to its recep-
tor (IP3R), which acts as a channel that releases Ca2þ from the
endoplasmic reticulum into the cytosol. The open probability of
the IP3R increases with a moderate rise of the cytosolic [Ca2þ]
[Ca2þ-induced Ca2þ release (CICR)] (1–4). IP3Rs involved in
Ca2þ signaling exist in clusters. Recent experiments indicate that
IP3 can induce clustering of IP3Rs and that in most cases a cluster
consists of 4 to 10 IP3Rs (5, 6). Fluorescence imaging studies and
model simulations reveal a cascade of events leading to a Ca2þ
spike: Openings of single Ca2þ channels (blips) are followed by
collective openings of channels in a cluster (puffs). Ca2þ from a
puff diffusing to neighboring clusters can activate them by CICR,
eventually leading to a global Ca2þ spike (7–10). Channels within
a cluster are strongly coupled by Ca2þ diffusion, whereas coupling
between clusters is weak because of steep concentration gradients
(11, 12). Inmany cell types, the number of pacemaker clusters that
induce cellular Ca2þ spikes is limited to fewer than 10 (13, 14).

Detailed analysis of interspike intervals (ISIs) in different cell
types has shown that Ca2þ signals are stochastic spike sequences
(15, 16). The stochasticity arises from fluctuations in the state of
individual channels and does not average out, because channel
clusters are only weakly coupled. It is generally assumed that
the transmitted signal is frequency encoded (17–19). However,
stochastic signals do not exhibit a well-defined frequency, so that
information is rather encoded in the statistical properties of ISIs
determined by their distribution (15, 20).

The elemental events of cellular Ca2þ signals are Ca2þ puffs.
Consequently, we formulate the model directly in terms of the
puff properties (see Fig. 1). That is the basic idea of the modeling
concept that we are presenting here. The puff properties are
given as distribution functions of puff duration and interpuff
intervals (IPIs), which can be directly measured. The description
in terms of distributions requires the formulation of the master
equations as integro-differential equations. This approach cir-
cumvents state space explosion, in contrast to master equation
formulations based on transition rates between individual chan-
nel states. We use the model to investigate conditions for spiking,
robustness of pathway function, and the possible biological ad-
vantages of a stochastic mechanism over a deterministic one.

Results
Ca2þ spikes have been extensively investigated, but the relation
between puff characteristics and cellular signals has not been
established yet. What are the conditions for spiking in terms
of puff characteristics and spatial cluster arrangement? Are typi-
cal spiking patterns, average ISI and the cell-type specific signal-
ing determined by channel and cluster properties, or are they the
result of emergent behavior of the complete pathway? We inves-
tigate what modeling can contribute to answering these questions
in this section.

ISI Distributions Depend on the Details of Cluster Dynamics, Cluster
Arrangement, and Concentration Dynamics.There is no clear separa-
tion between a cellular spike and local events. Nonetheless, in
order to obtain a criterion for the occurrence of a global spike,
we have chosen to call a release event a spike of cellular signaling
if more than three-fourths of all clusters are open at the same
time. Opening of fewer clusters defines a local event. Each spike
starts with a puff. It can cause a global spike, if the probability
that more clusters open before it closes is sufficiently large. The
Ca2þ released by open clusters increases the propensity of other
clusters to open. Fig. 2A shows a schematic representation of this
spike generation mechanism for the example of a tetrahedral
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cluster geometry (compareMaterials and Methods). The probabil-
ity to open early increases with the number of open clusters No
(Fig. 2B). This characterizes the properties of CICR.

The probability to open early increases also with [IP3] (Fig. 2B).
The signal types puffs, spikes, bursting, and overstimulation
shown in Fig. 2C were obtained by varying [IP3] (other para-
meters are given in Table 1). At low [IP3], only puffs occur. Spikes
can be found with slightly higher [IP3]. Increasing [IP3] further
causes longer more frequent spikes and finally steady release
at overstimulation. This spectrum of signal types and their
sequence with increasing [IP3] is in good agreement with experi-
mental observations (4). Our model only considers puff proper-
ties characterized by duration and IPI distributions and spatial
coupling mediated by Ca2þ diffusion. This means that the proper-
ties of these distribution functions are sufficient to generate a
wide range of Ca2þ signals.

We are interested, in particular, in spike trains because of their
function in signaling. Their average ISI Tav depends on the para-
meters of channel state dynamics and spatial coupling. Fig. 2D
shows four dependencies. Tav decreases with increasing number
of channels per cluster Nch and [IP3], because the cluster open
probability is proportional to Nch, and it also increases with [IP3].
Another important parameter for the cluster dynamics is the chan-
nel closing rate γ. The larger γ, the sooner a cluster closes, and the
less likely a second cluster opens before closing of the first cluster.
Therefore, Tav increases with γ. Tav depends also on the buffer
concentration, the channel current, and the sarco/endoplasmic re-
ticulum Ca2þATPase (SERCA) density (10). The IP3-dependency
and buffer dependency are experimentally verified (4, 15). The
other parameters are difficult to measure, but the Tav dependen-
cies comply with current ideas on IP3R regulation by Ca2þ and IP3

(3). Tav and the standard deviation of ISIs σ can also be modu-
lated by changing the spatial arrangement of clusters (21).

With these sensitive dependencies of Tav on so many details
and the usually observed cell variability even within one cell type,
how can cells actually maintain the ability of spiking and fre-
quency encoding at all? Many control processes converge on
Ca2þ signaling (1–3). Why does their combined action not destroy
the ability to spike rather than controlling it? These parameter
dependencies also pose questions for typical properties: With
Tav and signal forms depending so sensitively on parameters that
vary greatly among cells of a single cell type, which features of
Ca2þ spiking could actually characterize a pathway or cell type?
We will see below that a property of the system, which we call
functional robustness, suggests answers to these questions and
that the relation between Tav and σ is pathway specific.

Conditions for Spiking and Bursting. Global spikes are initiated
by puffs. With the De Young–Keizer model at resting [Ca2þ]
c0, puffs are generated by a process well described by a single puff
rate λ0 ¼ λ0ð½IP3�;Nch;c0Þ. The average IPI of the cell is then
T0 ¼ ðNclλ0Þ−1. The average ISI is proportional to T0; i.e.,
Tav ¼ ~TavT0, and ~Tav does not depend on λ0.

The transition between spiking and bursting is continuous, and
we cannot define a sharp criterion separating spiking from burst-
ing. Therefore, we consider a boundary for spiking toward large
Tav and a boundary of bursting toward vanishing Tav; i.e., toward
overstimulation. Because we are dealing with a stochastic system,
short sojourns in the rest state happen even with overstimulation,
and we define that regime by the condition Tav < 0.01Tsl, with Tsl
being the average spike length. We limit spiking toward long Tav
by a maximal average number of local events in-between two
spikes, which should be a few tens. We choose ~Tav < 50.

Ca2þ spikes result from a cascade of single cluster opening
events, where, by Ca2þ diffusion, each open cluster enhances the
opening probability of those still closed. This suggests spatial
coupling to be a good indicator for spiking. In order to quantify
spatial coupling, we define its strength as the probability C12 that
the first open cluster opens another one (see also Eq. 3). To
obtain a value relating to coupling, we have to subtract the prob-
ability C∞

12 that two uncoupled clusters very far apart open inci-
dentally at the same time: C12–C∞

12. The channel closing rate γ is
the most important parameter determining Tsl, rendering it also a
good spike regime indicator.

The ranges of γ and C12–C∞
12 for which spiking occurs are

shown in Fig. 3. We investigated spiking conditions with four
clusters on a tetrahedron and eight clusters on a cube. The red
symbols in Fig. 3 show the critical values for the long-Tav criterion
Cl, and the black symbols show the values for the short-Tav cri-
terion Cs. The Cl values with four and eight clusters are all quite
close to each other. Spiking disappears for four clusters, eight
clusters, and a large range of γ-values within a narrow range
of coupling. It is so narrow because Tav increases steeply there
with decreasing C12–C∞

12.
The short-Tav criterion entails different Cs values for the four-

and eight-cluster systems. Cs is smaller for eight clusters than for
four clusters. The essential dependence on the number of clusters
Ncl is exponential because the Nclth root of the critical values
Cs

1∕Ncl is very similar for four and eight clusters (Fig. 3B). The
experimentally relevant γ-values are about 60 s−1 (6). Hence,
about 0.8 is the short-Tav critical value for Cs

1∕Ncl , and about
0.18 is the long-Tav critical value Cl. Note that these values do

Fig. 1. Summary of the modeling concept and com-
parison with traditional concepts. The stochastic hier-
archic model takes advantage of the structural and
functional hierarchy formed by channels, channel clus-
ters, and the cell. It subsumes the dynamics of the low-
er structural level into waiting time distributions on
the next higher one. Channels cause the IPI distribution
ψo and puff duration distributions ψc of clusters, and
clusters generate the ISI and spike length (SL) distribu-
tions on cell level. The waiting time distributions on
cluster level can be measured in vivo. That circumvents
the problems arising from using parameter values
from in vitro experiments for cell simulations, as deter-
ministic rate equation models usually do. The involve-
ment of many channels is required for the validity of
rate equation models, such that average deterministic
dynamics apply. Therefore, they are based on the as-
sumption of continuous channel densities neglecting
channel clustering. The additional assumption of fast
Ca2þ diffusion entails neglecting spatial gradients
and a mathematical description of cell behavior by or-
dinary differential equations. But this is in contradic-
tion to the steep concentration gradients occurring
during Ca2þ release. See SI Text for details.
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not depend on how we change coupling. They are very similar
whether we change the value of C12–C∞

12 via [IP3] or cluster dis-
tance. For γ > 1 s−1, which includes the range of realistic values
around 60 s−1, we obtain very similar critical values even for dif-

ferent numbers of channels per clusterNch (SI Text). In this sense,
Cs

1∕Ncl and Cl are universal for the systems investigated here. We
assume that this universality applies beyond these systems; how
far has to be elucidated by future research.

Cell Type and Pathway-Related Properties: Relation Between Mo-
ments of ISI Distributions.Because we are dealing with a stochastic
system, it is not sufficient to consider average values only. We
need to include higher moments of the ISI distribution in the de-
scription. The average ISI decreases upon stimulation. But the
standard deviation also needs to decrease in order for a typical
frequency to exist. That is warranted for Ca2þ spiking by the ex-
istence of a relation between the average ISI Tav and the standard
deviation σ and its course from large σ and Tav to small σ and Tav.
That relation is a property of the Ca2þ spiking mechanism. It does
not exist for all spike-generating systems (see also SI Text).

Because the Ca2þ spike sequences are random, we also need to
consider the conditions for their ability to transmit information.
The maximal information content of a given spike sequence is
a measure for how statistically different it is from the “most
random sequence”; i.e., a pure Poisson process. If the maximal
information content is larger than 0, downstream parts of the
Ca2þ pathway have, in principle, the possibility to distinguish
the given sequence from a Poisson process. That information con-
tent depends essentially only on the slope of the σ–Tav relation
(20). The information content is larger than 0 for slopes smaller
than 1 (20). Cells exhibiting stimulated spike trains have a smaller
slope and larger maximal information content than sponta-
neously spiking cells (15, 20).

Hence, the existence of a σ–Tav relation, its course, and its
slope are all essential for the function of Ca2þ spiking, and we
will investigate them in detail below.

The σ–Tav relation has more useful properties. It also indicates
the existence of feedbacks. As we will see below, a slope smaller
than 1 results from negative feedback. Hence, simple spike train
measurements with a group of cells can provide information on
the pathway properties. Last but not least, the σ–Tav relation is a
useful representation of experimental results with groups of cells
of the same cell type. Typically, the spread of Tav values obtained
from one sample of cells in a single experiment is large (15) be-
cause Tav depends on the details of cluster size, dynamics, and
arrangement (Fig. 2D). The same applies to the relation between
stimulation strength and spiking frequency. Both characteristics

[ ] :

A

B

C

D

Fig. 2. Various patterns of Ca2þ signals can be inferred from properties of
single clusters. (A) Configurations of open clusters (red) in the tetrahedral
geometry. (B) Left: Waiting time distribution for the opening of a cluster
in the rest state (0) and with No ¼ 1, 2, or 3 clusters open. The probability
to open early increases with No (number at lines). Because No determines
[Ca2þ], this corresponds to CICR. Right: Probability to open the second cluster
at [IP3] as indicated. It is very unlikely that the second cluster opens before the
first one closes with small [IP3]. (C) Stochastic simulations reveal different
types of Ca2þ signals at various [IP3]: only puffs (Upper Left), spiking (Upper
Right), bursting (Lower Left), and overstimulation (Lower Right). The colors
indicate [IP3] as in B, p ¼ 3.85 s−1. (D) The average ISI Tav depends on many
different parameters. Here, we show (Left) its dependence on the number of
channels per cluster Nch (black dots) and the cluster distance a (blue trian-
gles), and (Right) its dependence on [IP3] (black dots) and the channel closing
rate γ (blue triangles). Parameter values not mentioned in this legend are
given in Table 1.

Table 1. Standard parameter values

Parameter Symbol Value Unit

Cluster distance a 0.5–5 μm
Channels per cluster Nch 5 —
IP3 concentration [IP3] 1.0 μm
Base-level [Ca2þ] c0 0.03 μm
Puff rate λ0 0.00755 s−1

Channel closing rate γ 5–100 s−1

Ca2þ diffusion constant D 220 μm2 s−1

Release current of the IP3R ρ 0.2 pA
SERCA pumping rate p 80 s−1

A B

Fig. 3. Conditions for spiking. (A) Spiking occurs for values of the coupling
C12–C∞

12 and the channel closing rate γ between the red and black symbols.
They show the long-Tav criterion for spiking Cl (red) and the short-Tav criter-
ion Cs (black), respectively (see Conditions for Spiking and Bursting). Coupling
values smaller than Cl entail essentially only local puffs, and coupling values
larger than Cs cause the regime of overstimulation. The spike range increases
with γ. We investigated both the four-cluster model (squares) and the eight-
cluster model (circles). Cl values are similar for both models, whereas Cs va-
lues depend on the number of clusters Ncl. The spike range becomes smaller
for a larger number of clusters involved in spike nucleation. Each pair of
squares and circles indicates the critical (γ;C12–C∞

12) at the standard para-
meters (Table 1), whereas coupling was changed by varying cluster distance
(values range from 0.5 μm to∞). The triangles show the critical values for the
four-cluster model obtained when we varied C12–C∞

12 by changing [IP3]. That
leads to very similar results. (B) The Nclth root of the short-Tav criterion Cs is
shown. It suggests that Cs depends essentially exponentially on Ncl, because
the Nclth root of Cs is similar for the four-cluster model (squares) and the
eight-cluster model (circles).
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are strongly affected by cell variability, and therefore they are
sample-specific to some degree. The σ–Tav relation does not have
that drawback.

Clusters Determine Tav and σ but Do Not Shape the σ–Tav Relation.
We calculated the σ–Tav relation analytically and by stochastic
simulations, as described in SI Text. The σ–Tav relation is almost
linear (Fig. 4A), as expected because of experimental observa-
tions (15). The minimal ISI Tmin was determined as the smallest
Tav observed in a set of simulations, which is a method close to
the way Tmin is obtained from experimental records. It is in the
range of the average IPI of about 10 s for strong coupling at
cluster distance a ¼ 1.5 μm and about 80 s for weak coupling
at a ¼ 5 μm (Fig. 4B). This range is similar to values measured
in astrocytes, microglia, processed lipoaspirate cells and HEK
cells (15), SH-SY5Y cells (14), pancreatic acinar cells, and airway
smooth muscle cells (22). Remarkably, we observe a Tmin larger
than 0 despite the fact that the theoretical ISI distributions do
not exhibit absolute refractoriness.

Apart from a small range at small Tav, the slope of the σ–Tav
relation is always 1 in the calculations presented until now. The
model describes the properties of individual clusters and their
coupling in its current state. It generates a slope equal to 1 for
all parameter values in the spiking regime; i.e., the slope is robust
with respect to changes of the values of the parameters. However,
it was shown experimentally that the slope can be smaller than 1
even for large values of Tav (15).

Measured ISI distributions have been successfully described by
the ansatz of a delayed exponential distribution (15, 20). It intro-
duces a process of recovery from a global negative feedback upon
a spike. The feedback is imposed on all clusters in contrast to
coupling between clusters by Ca2þ diffusion, the spatial range
of which is much shorter than the cell size. The global feedback
might be depletion of the endoplasmic reticulum, a negative feed-
back from Ca2þ to [IP3] via the Ca2þ-dependence of IP3-3-kinase
(2, 23), or other feedbacks (24, 25) decreasing puff probability or
amplitude. In order to be consistent with these experimental stu-
dies, we use the same description of recovery from global negative
feedbacks here. We introduce it in our model as a slow rise of the
opening probability for the first cluster opening from 0 just after a
global spike to an asymptotic value λ0 (see also SI Text):

λðt − tspÞ ¼ λ0ð1 − e−ξðt−tspÞÞ; [1]

with tsp denoting the time of the last spike and ξ denoting the
recovery rate. Fig. 4A shows that the slope of the σ–Tav relation
decreases for decreasing values of ξ and that the nonlinear beha-

vior at small Tav is more pronounced. We conclude that global
negative feedback can change the slope of the σ–Tav relation,
whereas properties of individual clusters and their coupling can-
not. Slopes smaller than 1 are a result of emergent behavior; in
other words, a property of the whole pathway but not a conse-
quence of properties of individual clusters.

The σ–Tav relation is robust against a wide range of changes of
the values of parameters describing the properties of clusters,
their spatial arrangement, and the coupling strength, like γ, λ0,
cluster distance, position of clusters, number of clusters, number
of channels per cluster, and buffer concentration (see Fig. 4 and
ref. 21). These parameters do not determine the relation. Varying
their values does not change the curve describing the dependence
of σ on Tav. But they determine Tav, as we have seen above.
Hence, they determine the position of a cell on the σ–Tav relation
and can be used to control the average spiking frequency.

If the position on the σ–Tav relation of the cell without stimu-
lation is at large or infinitely large Tav, it can move to smaller
Tav by stimulation or by other means like rearranging channels
and clusters. Indeed, clustering in cells is a dynamic process
(5, 26–28). During this control of spiking, the positive slope of
the σ–Tav relation and the existence of the minimal ISI guarantee
that faster spiking is also more regular despite the stochastic char-
acter of spike generation.

The minimal ISI Tmin is another property of the σ–Tav relation
affected by the global recovery process (Fig. 4B). It increases with
decreasing recovery rate ξ.

Discussion
We have developed a theory that is able to calculate the charac-
teristics of cellular Ca2þ signals from puff property distribution
functions, cluster arrangement, and—if it applies—an additional
description of a global feedback process. We find that the path-
way function of frequency encoding and information transmission
is robust with respect to cell variability despite the sensitivity of
ISIs to all cellular details. That robustness of function arises from
the robustness of the relation between moments of ISI distribu-
tions; i.e., is specific to stochastic systems. This strongly suggests
that one of the biological functions of stochasticity is to render
Ca2þ signaling functionally robust. The functional robustness is
closely related to the convergence of control by many biological
parameters onto a few distribution parameters, and both can be
imagined as arising from the time scale separation between IPIs
and ISIs (see below).

The robustness of function is compatible with control of
signaling, because Tav and the signal type depend sensitively
on channel properties, cluster arrangement, buffering conditions,
and other details. Control is possible because it is not specific
values of the average ISI but pathway function that is robust
against cell variability. Control of Tav shifts the cell’s position
on the σ–Tav relation. Because it obeys that relation, stimulated
spike trains will be as regular as possible and will exhibit a typical
frequency. And as long as a slope smaller than 1 is maintained,
spike trains can transmit information by frequency encoding (20).
Therefore, robustness of the σ–Tav relation biologically means
robustness of these two functionally important properties. Thus,
the pathway meets the requirement of robustness against cell
variability and component tolerances necessary for biological
networks (29). This functional robustness is not the result of
feedback and control, but it is a property of the stochastic spike
generation mechanism.

In mathematical terms, functional robustness is independence
of the σ–Tav relation from parameters, which vary between indi-
vidual cells of the same cell type. Which mathematical structure
causes this independence? By the calculations presented here
and in experiments (15), we found that ISI distributions can
be described by two or three parameters; e.g., PISIðTav;ξÞ. The
few distribution parameters are controlled by many biological

A B

Fig. 4. Characteristics of the relation between average (Tav) and standard
deviation (σ) of ISIs. The slope of the σ–Tav relation with constant rate for
the first puff λ0 is always 1. (A) Modification of the σ–Tav relation by the de-
layed puff rate given by Eq. 1. For moderate values of Tav, the slope of the
σ–Tav relation decreases with ξ (upper triangles, ξ ¼ 0.1 s−1; lower triangles,
ξ ¼ 10−3 s−1). The relations are identical for the four-cluster model (black),
the eight-cluster model (red), and the eight-cluster model with randomly
shifted vertex positions (pink). (B) Theminimal ISI Tmin increases with decreas-
ing ξ. Tmin sets the deterministic part of the ISI, which accounts for the regular
oscillations often observed in experiments with high stimulation (4, 15). Here,
we show that Tmin naturally occurs in a stochastic model. The four-cluster
model has longer Tmins than the eight-cluster model. Tmin has been identified
with the smallest observed Tav in simulations.
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parameters like [IP3], cluster distance, channel state transition
rates, etc. That is an enormous reduction of complexity, because
all biological feedbacks and control circuits converge on only two
distribution parameters.

Our findings imply that the cluster parameters do not control
the recovery rate ξ. Consequently, the relation σðTav;ξÞ does not
depend on the cluster parameters, because the recovery rate ξ
does not depend on them. It is robust against changes of these
parameters. We established robustness with respect to buffer
concentration and stimulation also experimentally (15, 20). Our
calculations here and simulations (21) suggest that σðTav;ξÞ is also
robust with respect to changes of the number of channels per
cluster, the channel closing rate, the spatial arrangement of clus-
ters, and the pump rate. They change Tav and σ, but they do not
change the relation between them. These theoretical results are
strongly supported by a comparison of the experimentally deter-
mined individual relation with the population relation. The indivi-
dual relation is obtained by analyzing two different experiments
with the same cell, and the population relation from data from
many cells. The slope of the individual σ–Tav relation is essentially
the same as the slope of the population relation within one cell type
(20), whereas the same group of cells exhibits a wide range of aver-
age ISIs. The differences between individual cells of the same cell
type affect Tav but not the relation σðTav;ξÞ (see also SI Text).

The slope of the relation, and therefore the maximal informa-
tion content of spike sequences, is determined by the global
recovery rate ξ. There is a variety of Ca2þ signaling pathways.
They differ in the feedback upon a Ca2þ spike (i.e., with respect
to the value of ξ), which agrees with the experimental finding that
the recovery rate ξ is cell-type specific (15). The feedback could
be store depletion, degradation of IP3, phosphorylation of the
IP3R, etc. (see refs. 24 and 25 for reviews). Because the pathways
determine the feedback and the recovery process, they also
determine how much information can be transmitted by the
ISI sequence. Hence, cells can tune spiking to the intracellular
target of the Ca2þ signal by adjusting negative feedback. Pathways
including it can control targets requiring more regular spiking;
pathways without negative feedback are more eligible for targets
with weak frequency dependency. In this study, we describe
recovery from negative feedback in its most simple form only.
We expect nonlinear recovery dynamics to lead to qualitatively
similar σ–Tav relations (30).

We gain a mechanistic understanding of functional robustness
by considering time scales. The ISI distribution is determined by
the probability for a puff to set off a wave. Because not every puff
starts a wave, IPIs are shorter than ISIs. Cluster properties and
the whole complexity of channel state dynamics determine the
IPI and the time course of a puff, but only the statistics of the
occurrence of many puffs on longer time scales shape the ISI
distribution and the σ–Tav relation. Distributions generated that
way are often simple; i.e., are described by a few parameters only
(31). That is also illustrated by examples from other signaling
systems, cell mechanics, or gradient and quorum sensing (32–37).
Because ISIs are the sum of several IPIs, the simplicity of the ISI
distribution may arise from the central limit theorem. If one of
the distribution parameters does not depend on some biological
parameters, relationsbetweenmomentsof thedistributionare func-
tionally robust with respect to this group of biological parameters.

Our theory is formulated in terms of measurable quantities.
The cluster closing time distribution has been measured in vivo
(6). The dependence of the IPI distributions on [Ca2þ] and [IP3]
has not been measured yet, but when this has been done, model-
ing will no longer need to rely on channel state models derived
from patch clamp records for cellular models. That paves the
road to realistic models of Ca2þ signaling pathways, which rely
on in vivo data.

In addition to the experiments in refs. 15 and 20, the robust-
ness of the σ–Tav relation can be tested pharmacologically by

modifying elements of the local cluster dynamics like the activity
of SERCA pumps or the phosphorylation state of the IP3R. Our
conclusion that the σ–Tav relation is sensitive to global feedbacks
is supported by the experimental finding that the slope is cell-type
specific (15). That could be further substantiated by experiments
manipulating one of the many reported feedbacks from Ca2þ to
IP3R activity; e.g., via protein kinase C (25). Our findings also
suggest investigating in detail how the Ca2þ signal is read by
downstream parts of the pathway. Fluctuations of ISIs might
be substantial in the range of frequencies relevant for Ca2þ-con-
trolled gene expression (15, 17, 38, 39). Because studies on fre-
quency decoding used artificial regular signals (17, 38, 39), it is
not known how frequency-sensitive processes respond to random
sequences. In that context, it would be particularly interesting to
investigate how the σ–Tav relation, the frequency sensitivity of the
downstream parts of the pathway, and the decoding mode relate
to each other.

What could be the reasons for a cell to prefer a stochastic
mechanism for Ca2þ spiking over a deterministic one? A deter-
ministic mechanism requires sufficient synchronization and large
molecule numbers. The minimal error of such a mechanism
decreases only with the quartic root of signaling events for arbi-
trarily complex feedback regulation (40). Is it worth the effort?
The linear and robust σ–Tav relation of the stochastic mechanism
(Fig. 4) implies a signal-to-noise ratio that is equal to or larger
than the inverse of its slope, independent of the input signal
(the IP3 concentration). The signal-to-noise ratio can be con-
trolled by a simple negative feedback. Such a well-defined and
adaptive signal-to-noise ratio could be as effective as a more reg-
ular “deterministic”mechanism, but at much lower costs in terms
of copy numbers of proteins; and the mechanism is robust with
respect to cell variability. It seems that it suffices to be random.

Materials and Methods
The probability distribution densities for IPI ψo and puff duration ψ c of indi-
vidual clusters and a description of coupling of clusters by Ca2þ diffusion are
the data input specifying the Ca2þ handling system of a cell. Changes in ψo by
a [Ca2þ] rise due to open clusters describe coupling. We call this modeling
concept hierarchic stochastic model, because the random state transitions
on one structural level specify the probability distributions for transitions
on the next higher level (see Fig. 1) (41). We explain here only the basic
assumptions entering the modeling concept. The complete theory can be
found in SI Text.

Transition Probabilities. Ca2þ channels form internally strongly coupled clus-
ters. Each cluster has many states even if it comprises only a few channels.
However, it is only relevant for the Ca2þ concentration dynamics whether
a cluster releases Ca2þ or not. Therefore, we consider lumped cluster states.
We lump all cluster states with at least one open channel into the stateO and
all the other states into C. The lumped state O corresponds to a puff. While
the cluster is in O, it switches between individual open states including
changes of the number of open channels. Similarly, it explores all its indivi-
dual closed states while in C. The dynamics of the lumped states O and C can
be described by the probability densities for the first transition to the other
state; i.e., ψoðc;t − τÞ for opening and ψ cðt − τÞ for closing. They depend on
the time t − τ elapsed since the transition into the actual state at time τ. ψo

also depends on [Ca2þ] c at the cluster site; i.e., also on Ca2þ diffusing from
open clusters toward other clusters. That provides for the spatial coupling.
We compute the opening probability distribution ψoðc;t − τÞ from the De
Young–Keizer model, which is one of the standard models in the field (42,
43) (see SI Text for details). The closing time distribution can be derived from
experimental results by Smith and Parker (6): They indicate that the indivi-
dual channels in a cluster close independently with closing rate γ, which
does not depend on [Ca2þ]. Therefore, the cluster closing time distribution
ψ cðt − τÞ is (31):

ψ cðt − τÞ ¼ Nchγe−γðt−τÞð1 − e−γðt−τÞÞNch−1: [2]

Ca2þ Diffusion. The dynamics of the Ca2þ concentration can be described by
a diffusion equation with point sources at the locations of open clusters,
because clusters are small compared to the cell volume. Ca2þ pumps transport

Thurley and Falcke PNAS ∣ January 4, 2011 ∣ vol. 108 ∣ no. 1 ∣ 431

SY
ST

EM
S
BI
O
LO

G
Y

A
PP

LI
ED

PH
YS

IC
A
L

SC
IE
N
CE

S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1008435108/-/DCSupplemental/pnas.1008435108_SI.pdf?targetid=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1008435108/-/DCSupplemental/pnas.1008435108_SI.pdf?targetid=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1008435108/-/DCSupplemental/pnas.1008435108_SI.pdf?targetid=STXT


Ca2þ ions out of the cytosol into the endoplasmic reticulum with rate p
(Table 1). Their spatial density is continuous. An open cluster causes a con-
centration rise in its vicinity and concentrations between 20 and 200 μM
at the cluster itself. They decrease with gradients of two to three orders
of magnitude per micrometer distance from the cluster (11, 12). The large
local concentrations at the open cluster feed back to the channel state
dynamics. They fluctuate with the number of open channels in the cluster.
These fluctuations are large at the open cluster itself. But they are much smal-
ler in a typical distance to a neighboring cluster, because they are smoothed
by diffusion (SI Text). They do not follow the fluctuations of the number of
open channels in detail. Therefore, the concentration rise caused by open
clusters at neighboring clusters can be well approximated by a constant rise
lasting as long as the cluster is open. We describe it by the stationary spatial
concentration profile corresponding to the average current ρ (Table 1)
through an open cluster. An analytic expression for the diffusion profile is
given in SI Text.

Spatial Coupling and Cluster Arrangement. We defined the strength of spatial
coupling by the probability for a transition from one to two open clusters in
Results (this definition is further discussed in SI Text). That transition is gov-
erned by the probability C12 that upon opening of the first cluster, a second
cluster opens before the first cluster closes:

C12 ¼
Z

∞

0 ∑
Ncl

m¼2

ψoðcm;θÞ
�
1 −

Z
θ

0

ψcðt0Þdt0
�

×
YNcl

n¼2
n≠m

�
1 −

Z
θ

0

ψoðcn;t0Þdt0
�
dθ; [3]

where the cm, m > 1 are computed with only the first cluster open. The
factors after the product sign assure that none of the other clusters opens
before clustermwhen calculating the opening probability of themth cluster.
C12 can be measured directly by the pairwise correlation of puffs. However,
although there are plenty of published examples of puff sequences (7, 14,
44), the systematic measurements of puff correlations are still missing. The
spatial coupling depends on the geometrical arrangement of clusters and
the diffusion characteristics of the cytosol. We use spatial arrangements
of clusters on the vertices of a tetrahedron or cube. Our major reason for
the choice of regular arrangements are their symmetries (see Fig. 2A), which
allow for the analytic calculations shown in SI Text. We also simulated some
irregular arrangements of eight clusters. The small numbers of clusters we
are using here are justified in small cells like SH-SY5Y neuroblastoma cells,
where on average four clusters participate in a Ca2þ signal (14). They may
also apply to pacemaker sites in other cells fromwhich global signals nucleate
and spread through the cell. As shown in Fig. 4, crucial results do not depend
on the spatial arrangement of clusters because of the robustness properties
of the σ–Tav relation, and simulations with more clusters and irregular
arrangements produce very similar results (21).

We show in SI Text how a non-Markovian master equation for the
probability of a configuration of open channels describing the cell state
can be derived from these mathematical formulations of cluster properties.
We obtain the ISI distribution of cellular signals, its moments, and parameter
regions for signal types from these probabilities. We describe a fast stochastic
simulation algorithm, and we derive the results analytically for regular clus-
ter configurations.
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