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Abstract
Phosphorylation of the cyclin-dependent kinase inhibitor p27 by upstream mitogenic signaling
pathways regulates its stability, localization and biological function. In human cancers, loss of the
antiproliferative action of p27 can arise through reduced protein levels and/or cytoplasmic
mislocalization leading to increased cell proliferation and/or cell migration, respectively. Reduced
p27 expression levels and p27 mislocalization have potential prognostic and therapeutic
implications in various types of human cancers. This review highlights mechanisms of functional
deregulation of p27 by oncogenic signaling that provide an important molecular rationale for
pathway targeting in cancer treatment.
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Part I – Background
p27 function and subcellular localization

Cell cycle progression is driven by cyclins and their associated cyclin-dependent kinases
(CDKs). p27 was discovered as an inhibitor of cyclin E-CDK2 (1–3), but has since been
shown to play dual roles to both promote and inhibit cell cycle progression. In G0, p27
translation and protein stability are maximal as it binds and inactivates nuclear cyclin E-
CDK2. In early G1, p27 also promotes assembly and nuclear import of D-type cyclin-CDKS
(4,5). The progressive decrease of p27 in G1 permits cyclin E-CDK2 and cyclin A-CDK2 to
activate the G1-S transition (6). Mice lacking p27 display multi-organ hyperplasia, increased
body size and susceptibility to carcinogen-induced tumors, suggesting that p27 acts as a
tumor suppressor to control both tissue expansion and cell proliferation (7–9).
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p27 is regulated at transcriptional, translational and post-translational levels(10). p27 mRNA
levels usually show little cell cycle periodicity, but may be repressed in a PI3K/AKT-
dependent manner (11). In normal cells, p27 protein levels are largely controlled by
ubiquitin-dependent proteolysis (6). In early G1, mitogens promote p27 phosphorylation at
serine 10 (S10) to facilitate nuclear export (12,13); this simultaneously relieves cyclin E-
CDK2 inhibition and permits KPC -mediated proteolysis of cytoplasmic p27 (14). Tyrosine
phosphorylation of p27 by BCR-ABL (Y74, Y88, Y89) or Src family kinases (Y88 and
Y74) impairs the CDK2 inhibitory action of p27. This facilitates subsequent cyclin E-
CDK2-dependent T187 phosphorylation of p27, that, in turn, allows it to be targeted by
SCFSKP2 for degradation (see Figure 1) (15,16). Tyrosine phosphorylation of p27 is also
required for the catalytic activation of p27-cyclin D1-CDK4 complexes (17,18).

Finally, p27 localization appears to be finely tuned during G1 progression. In early G1, as
p27 translation falls, nuclear export of p27 may be needed not only to relieve CDK2
inhibition, but also to promote p27-D type-cyclin-CDK assembly. Transient cytoplasmic
retention of newly synthesized p27 is also facilitated in early G1 by PI3K effectors that
phosphorylate p27 on T157 and/or T198 to both impair p27 import and promote cyclin D1-
CDK4-p27 complex assembly (4).

Oncogenic signaling pathways that disrupt p27 function
In contrast to other tumor suppressors, p27 mutation or deletion is rare in human cancers.
Deregulated receptor tyrosine kinases (RTKs) activate Src/BCR-ABL and Ras/MEK/
MAPK, or PI3K/AKT signaling which contribute to oncogenesis by inducing p27 loss or
mislocalization, respectively (4,6).

Cell cycle inhibition is a nuclear p27 function. In many cancers, not only is p27 reduced in
the nucleus, but tumors also exhibit different degrees of cytoplasmic p27 mislocalization
(19). Cytoplasmic p27 appears to acquire a cell cycle-independent oncogenic function to
promote cancer cell invasion. TAT-p27 protein transduction was shown to increase Rac-
dependent cell motility (20). p27−/− mouse embryonic fibroblasts (MEFs) show reduced
motility compared to wild type MEFs that is rescued by re-expression of wild type p27 or
mutant p27 that cannot bind cyclins and CDKs (p27CK-) (21). Thus, the pro-motility effects
of p27 appear to be independent of its cyclin-CDK regulatory functions. In the cytoplasm,
p27 binds RhoA to inhibit RhoA-ROCK mediated actomyosin stabilization (21). Moreover,
knock-in of p27CK- increases progenitor cell self-renewal and lung tumor development
(22). In malignant lines, overexpression of cytoplasmic p27 increases tumor metastasis in
murine models (23,24) and promotes glioma cell invasion (25). Thus, while nuclear p27
inhibits CDK2 to restrain cell cycle, excessive cytoplasmic p27 can have a pro-oncogenic
effect to promote cancer invasion and metastasis.

PI3K is oncogenically activated in many human cancers (26) and not only regulates cell
survival, but also modulates cyclin D1, CDK2, p21 and p27 levels and action (27). AKT
stabilizes cyclin D1 by inactivating GSK-3β (28). At least three PI3K effectors (AKT, SGK
and RSK) contribute to T157 and T198 phosphorylation of p27 (27,29–31), which impairs
import of monomeric p27 and increases p27-cyclin D-CDK4 assembly (17).
Phosphorylation at T198 stabilizes p27 (32,33), increases its cytoplasmic localization and
mediates p27-RhoA binding and a p27-dependent increase in cell motility (34). Importantly,
PI3K/AKT activation is highly correlated with cytoplasmic p27 localization in breast, renal
and thyroid cancers and in certain leukemias (29,35–37).

The mammalian target of rapamycin (mTOR) integrates nutrient sensing and mitogenic
signals to regulate protein synthesis, cell growth, proliferation and motility (38). mTOR
signaling is linked to that of PI3K (see Figure 1). AKT-mediated inactivation of the tuberous

Wander et al. Page 2

Clin Cancer Res. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



sclerosis complex (TSC1 and TSC2 proteins) activates mTOR complex 1 (mTORC1,
mTOR/Raptor) to upregulate protein biosynthesis required for cell proliferation (38). AKT
requires two activating phosphorylations, one via PI3K/PDK1, the second via mTORC2
(mTOR/Rictor) (38). Both mTOR complexes may activate SGK (39,40). Thus, mTOR-
mediated AKT and SGK activation promote p27 phosphorylation at T157/T198, impairing
p27 nuclear import and driving cellular proliferation and migration.

Oncogenic RTK and Ras trigger MEK/MAPK activation (41) to mediate either p27 loss or
inactivation (42–44). In epithelial cells, transfected oncogenic Ras mislocalized p27 to the
cytoplasm and increased p27-cyclin D-CDK4/6 complexes (45). This likely reflects
constitutive Ras-mediated PI3K activity. Furthermore, Ras-dependent lung tumorigenesis is
associated with increased cytoplasmic localization of p27 (46). Constitutively active N-Ras
can also mislocalize p27 via the Ral-GEF pathway (47). In fibroblasts, MEK1
overexpression increased p27 degradation and a MEK1 inhibitor increased p27 stability in
one study (48) but led to sequestration of p27 in cyclin D-CDK4 complexes in another (44).
In breast cancer cells, p27 proteolysis is activated by HER2 and epidermal growth factor
receptor in a MEK/MAPK dependent manner (42,49).

Many human cancers have increased Src levels or activity (50), which would increase
tyrosine phosphorylation p27 to promote SCFSKP2-mediated p27 proteolysis. In primary
human breast cancers, Src activation is associated with reduced p27 protein (15). Similarly,
the Src-family kinase, Lyn, and BCR-ABL phosphorylate p27 at Y88 and this is blocked by
the ABL kinase inhibitor drug, imatinib (16). To further complicate matters, BCR-ABL was
recently reported to promote AKT-mediated phosphorylation of p27 at T157 in chronic
myeloid leukemia progenitors leading to increased cytoplasmic p27 (51). Thus, therapeutic
interruption of BCR-ABL may not only increase p27 levels, but also restore its nuclear
localization.

Constitutive activation of these different oncogenic pathways may contribute to loss of
nuclear p27 and increased cytoplasmic p27, both of which drive tumor growth and
progression. Reversal of these effects and restoration of the cell cycle inhibitory action of
p27 by targeted inhibition of these oncogenic pathways may contribute importantly to the
efficacy of targeted therapies for cancer.

Part II – Clinical-Translational Advances
Loss of nuclear p27 during tumor progression

Given the central roles of p27 in cellular proliferation and migration, it is no surprise that
reduced or mislocalized p27, documented by immunohistochemical analysis in primary
tumors, is associated with poor clinical outcome in a diverse variety of human malignancies
(6). Progressive p27 loss has been observed during the histopathological progression of
neoplasia from benign to in situ and invasive cancers of the breast (52,53). One study
showed that, relative to normal breast duct epithelia where 95% of cells show high nuclear
p27, pre-malignant atypical ductal hyperplasia shows modest p27 loss (85%), while ductal
carcinoma in situ (40%) and invasive cancer (34%) show greater p27 loss (53). In ovarian
cancer, lesions of low malignant potential showed intermediate p27 levels compared to high
levels in normal epithelia, while highly aggressive cancers showed very low nuclear p27
(54,55).

Immunohistochemical analysis of p27 for prognostication of human cancers
Reduced nuclear p27 is associated with adverse patient outcome in malignancies of
epithelial, hematopoietic, and mesenchymal origin (6). To date, the application of p27 as a
clinical prognostic tool has been encumbered by the lack of uniformity in
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immunohistochemical (IHC) staining protocols. Most IHC studies of p27 have evaluated
only nuclear p27 and there is currently no accepted guideline for scoring cutoff values for
“low” versus “high.” Despite these limitations, multiple studies demonstrate a correlation
between reduced nuclear p27 and poor prognosis. This has been observed in lung (56–58)
and prostate cancers (59–63) and more comprehensively in breast cancer, where most
analyses show reduced p27 is an independent prognostic indicator of disease relapse or
death (52,64–70).

While far fewer studies have evaluated the prognostic potential of cytoplasmic p27, this is
also correlated with adverse outcome in prostate cancer (71), gliomas (72) and high-grade
astrocytomas (73). In breast cancer, cytoplasmic p27 staining correlated with AKT
activation (29–31) and predicted poor patient prognosis in univariate analysis (29). To date,
however, none of these analyses have quantitated both nuclear p27 levels and cytoplasmic
p27 mislocalization. An understanding of the potential prognostic and predictive value of
p27 (see below) may await this type of study, since reduced nuclear p27 increases
proliferation and cytoplasmic p27 would drive tumor cell invasion.

Targeting critical signal transduction cascades upstream of p27
As reviewed above, diverse oncogenic signaling cascades regulate p27 proteolysis,
subcellular localization, and function (see Figure 1) (4). The informed use of targeted
therapies to attenuate deregulated signaling holds tremendous promise for cancer therapy.
Several molecular targeting drugs impact p27 by inhibiting upstream signaling. In chronic
myelogenous leukemia driven by the BCR-ABL kinase, reduced p27 levels result from its
constitutive tyrosine phosphorylation and accelerated proteolysis (16). Treatment of CML
cells with imatinib restores p27 levels and inhibits proliferation (16). In many other pre-
clinical models, pathways driving p27 proteolysis were reversed by targeted therapies: in
Her2-overexpressing breast cancer, p27 proteolysis is attenuated by treatment with
trastuzumab (74); the same is true of EGFR-overexpressing lung cancers treated with
gefitinib (75). In a recent study, treatment of breast cancer cells with the EGFR/ErbB-2
inhibitor lapatinib increased p27 and reduced tumor proliferation (76). In melanoma models,
MEK inhibition increased p27 to induce growth arrest (77,78). Similar results were obtained
using a MEK inhibitor in human pancreatic cancer lines driven by activated Ras (79).

The placement of p27 downstream of various AGC kinases (SGK, RSK, AKT) highlights
the tremendous potential for PI3K/mTOR inhibitors to restore normal p27 function.
Hyperactivation of PI3K/mTOR signaling, through C-terminal phosphorylation of p27 at
T157 and T198, promotes cytoplasmic p27 mislocalization, increased invasiveness, and may
underlie progression in a variety of cancers (4). Early clinical trials with rapamycin and its
analogs (rapalogs) met with limited success. This may be due, in part, to incomplete
blockade of mTORC1 by rapamycin (80). Furthermore, inhibition of mTORC1 turns on
feedback loops leading to PI3K activation (81,82). This feedback PI3K/AKT activation
would promote cytoplasmic p27 sequestration and p27-dependent tumor cell migration and
metastasis. Pure mTOR catalytic site inhibitors or dual PI3K/mTOR kinase inhibitors have
shown great potential in pre-clinical models and early clinical trials (83). These new
compounds inhibit both mTORC1 and mTORC2, effectively attenuating activation of AGC
kinases involved in growth, evasion of apoptosis, cell cycle and motility (84).

Joint targeting of ER and oncogenic Src signaling
In estrogen-responsive tumors, estrogen binding to the estrogen receptor (ER) promotes p27
proteolysis and cyclin E-CDK2 activation, driving cell cycle progression (85,86). In
sensitive ER positive breast cancers, ER blocking drugs (tamoxifen and fulvestrant) and
aromatase inhibitors oppose estrogen signaling and stabilize p27 to inhibit proliferation and
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growth. Both pre-clinical studies (85,87,88) and analysis of p27 in breast cancers of patients
in clinical trials indicate that high nuclear p27 may predict responsiveness to hormonal
therapy (67,70).

Unfortunately, both de novo and acquired resistance limit the efficacy of hormonal
therapies. Oncogenic activation of EGFR family receptors and IFG-1R may underlie
antiestrogen resistance, potentially via the Src kinase. Src activation by liganded estrogen
receptor or by oncogenic receptor tyrosine kinases in breast cancer (89) would facilitate p27
degradation (16,90) and oppose growth arrest by antiestrogens. Recent pre-clinical studies
suggest that combined targeting of both estrogen:ER and Src may prevent the emergence of
resistance to antiestrogens (87,88,91). Combined use of an aromatase inhibitor (anastrozole)
with a Src inhibitor (saracatinib) in vitro resulted in higher p27 levels and greater G1 arrest,
reduced xenograft tumor growth in vivo and delayed emergence of drug resistance compared
to that observed with either drug alone (87). Similar results were obtained using combined
saracatinib and fulvestrant (88). Currently, clinical trials are underway to test the potential
efficacy of combined Src and aromatase inhibition in post-menopausal ER positive breast
cancer (M. Pegram and JMS, unpublished). Src activation and/or reduced p27 levels may
correlate with de-novo lack of responsiveness to ER blockade or aromatase inhibition and a
post-treatment increase in nuclear p27 may predict response to combined therapy as
observed in pre-clinical models. There appears to be great potential for targeting both Src
and ER and a number of Src inhibitor drugs are either approved for clinical use or in clinical
development. Furthermore, our knowledge of pathways that disrupt p27 function provides a
strong rationale for testing other potential therapeutic combinations. For example, combined
ER/MEK blockade or ER/mTOR blockade may both be of clinical value since they would
restore p27 function and check tumor proliferation.

p27 as predictor of therapeutic efficacy
Prognostic studies of tumor biomarkers are valuable as they assist in disease stratification
and prompt molecular mechanistic studies that shed light upon the pathways driving tumor
progression. However, the most valuable biomarkers are those that reliably indicate response
to treatment, acting as predictive markers. In certain contexts, p27 may serve just this
purpose. For example, in stage III/IV ovarian cancers, reduced p27 predicted improved
patient response to adjuvant platinum-based therapy after surgery (92). This likely reflects
the efficacy of cell cycle-active chemotherapies in tumors with high proliferation due to low
p27. Other studies demonstrated the opposite result, with reduced p27 associated with
impaired therapeutic response (55,93). These latter results may reflect the genetic plasticity
of rapidly growing tumors giving rise to chemo-resistant clones.

One can envision several scenarios in which aberrant p27 staining in a pre-treatment biopsy
might guide treatment decisions. Cancers with low nuclear p27 due to enhanced proteolytic
degradation may be ideal candidates for Src or MEK inhibitors. In responsive tumors,
clinical benefit may correlate with restoration of nuclear p27 staining and reduced tumor
proliferation in post-treatment biopsies. Alternately, a pre-treatment biopsy showing
increased cytoplasmic p27 (with or without low nuclear levels), may herald intratumoral
PI3K/mTOR activation and identify tumors most likely to respond to inhibitors of this
pathway. PI3K/mTOR inhibitor drugs should shift p27 from cytoplasmic to nuclear
localization. A post-treatment increase in nuclear p27 levels (MEK or Src inhibitors) or a
shift of p27 from cytoplasm to nucleus (PI3K/mTOR or pure mTOR inhibitors) may prove
to be valuable predictors of response to these novel agents. Evaluation of p27 by IHC in pre-
treatment tumor samples and re-assessment of p27 levels and localization in a post-treatment
biopsy may prove useful in the initial clinical trials of these new agents. Successful
attenuation of PI3K/mTOR signaling with the resulting shift from cytoplasmic to nuclear
p27 may translate into substantial clinical benefit, due to reduced cellular invasiveness and
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metastatic potential, while restoration of nuclear p27 action would inhibit tumor
proliferation. Establishing reliable predictors of therapeutic response in real-time will
dramatically enhance the clinician’s ability to diagnose and treat formerly intractable
cancers.
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Figure 1. p27 plays multi-faceted roles in the regulation of cell proliferation and cell migration
This schematic representation depicts p27 regulation and function as it relates to the
protein’s subcellular localization. While in the nucleus, p27 binds to and inhibits cyclin E-
CDK2, preventing G1-S transit. Following SRC/ABL-mediated tyrosine phosphorylation
and cyclin E-CDK2-mediated T187 phosphorylation, nuclear p27 is targeted for SCFSKP2-
dependent degradation, allowing cell cycle progression. S10 phosphorylation promotes
nuclear export; while in the cytoplasm p27 may play several roles. Oncogenic signal
transduction via PI3K/PDK1 or Ras/MAPK results in the hyperactivation of several AGC
family kinases (including AKT, SGK, and RSK), that all mediate C-terminal
phosphorylation of p27 at T157 and T198. These phosphorylation events cooperate to
sequester and stabilize p27 within the cytoplasm, where it promotes cell proliferation (via
cyclin D-CDK4 assembly) and cell motility (via inhibition of RhoA/ROCK signaling).
Potential sites of targeted therapeutic intervention are highlighted in the figure.
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