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Abstract
Genome-wide association studies (GWAS) have replicably identified multiple loci associated with
population-based plasma lipid concentrations1-5. Common genetic variants at these loci together
explain <10% of the total variation of each lipid trait4,5. Rare variants of individually large effect
may contribute additionally to the “missing heritability” of lipid traits6,7, however it remains to be
shown to what extent rare variants will affect lipid phenotypes. Here, we demonstrate a significant
accumulation of rare variants in GWAS-identified genes in patients with an extreme phenotype of
abnormal plasma triglyceride (TG) metabolism. A GWAS of hypertriglyceridemia (HTG) patients
revealed that common variants in APOA5, GCKR, LPL and APOB genes were associated with the
HTG phenotype at genome-wide significance. We subsequently resequenced protein coding
regions of these genes and found a significant burden of 154 rare missense or nonsense variants in
438 HTG patients, in contrast to 53 variants in 327 controls (P=6.2X10-8); this corresponds to a
carrier frequency of 28.1% of HTG patients and 15.3% of controls (P=2.6X10-5). Many rare
variants were predicted in silico to have compromised function; additionally some had previously
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demonstrated dysfunctionality in vitro. Rare variants in these 4 genes explained 1.1% of total
variation in HTG diagnoses. Our study demonstrates a marked mutation skew that likely
contributes to disease pathophysiology in patients with HTG.

Genome-wide association studies (GWAS) have replicably identified novel and known loci
associated with population-based plasma lipid concentrations1-5. Despite the robustness of
these associations, the proportion of variability explained by GWAS-identified loci is
relatively modest, <10% in most studies4,5. While vastly expanded study sample sizes
continue to reveal new associations, each newly associated variant has an incrementally
smaller effect size and contributes only marginally to the cumulative variation of each lipid
phenotype6. This suggests that GWAS of population-based subjects may be reaching their
limits to explain genetic variation of complex traits. A question that has arisen is whether
additional forms of genetic variation, such as rare variants of individually large effect, could
contribute to the “missing heritability” of complex traits such as plasma lipid
concentrations6,7. While the mechanistic basis for the association between lipid traits and
most common variants discovered in GWAS is still largely unknown, it remains possible
that rare variants in GWAS-identified genes may contribute significantly to lipid
phenotypes.

Studying subjects at the extremes of a quantitative phenotype distribution has proven useful
to identify functional rare variants8-12. Using missense-accumulation analysis in genes
defined a priori as likely to contain rare variants, a burden of mutations can be quantified
statistically in subjects with severe phenotypes, prior to functional assessment of each
variant. Primary hypertriglyceridemia (HTG) is one such complex polygenic disease broadly
defined by fasting plasma TG concentrations >95th percentile13. Resequencing of TG-
modulating candidate genes has implicated both common and rare variants in HTG disease
pathophysiology9,14-16, however the majority of phenotypic variation underlying severe
HTG remains unattributed17. Our objectives were: 1) to perform a non-biased GWAS of
patients with HTG to identify common variants associated with HTG; and 2) to resequence
coding regions of candidate genes in loci reaching genome-wide significance to evaluate the
burden of rare variants in HTG patients compared with controls. Here, we demonstrate that
loci found to be associated with HTG by GWAS using common variants also harbour a
significant excess of rare variants.

In total, 555 HTG patients and 1319 controls were included in two cohorts of the study: the
GWAS cohort included 463 HTG patients and 1197 controls and the sequencing cohort
included 438 HTG patients and 327 controls. HTG patients were unrelated subjects
diagnosed with Fredrickson hyperlipoproteinemia (HLP) phenotypes 2B (MIM 144250), 3
(MIM 107741), 4 (MIM 144600) or 5 (MIM 144650), ascertained primarily from a single
tertiary referral lipid clinic. The mean plasma TG concentration of HTG patients was 14.3
mmol/L. Controls had maximum recorded fasting plasma TG concentrations <2.3 mmol/L to
exclude undiagnosed HTG. All study subjects were of self-declared European ancestry;
subjects deviating from European ancestry as determined by multi-dimensional scaling
using whole-genome SNP data were removed from sequencing analysis (Supplemental Fig.
1). As expected, clinical characteristics of HTG patients were less favorable than controls,
with worse lipid profiles and an increased prevalence of type 2 diabetes (Table 1).

The HTG phenotype was tested for association with >2.1 million single nucleotide
polymorphisms (SNPs) using an additive multivariate logistic regression model
(Supplemental Fig. 2). This model appropriately adjusted for sex, body mass index, diabetes
status and 10 principal components of ancestry (Supplemental Fig. 3). Four loci were
significantly associated with HTG at genome-wide significance: APOA5, GCKR, LPL and
APOB (Table 2). Most associations with HTG were mediated by the same genomic loci
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associated with fasting plasma TG concentration in population-based GWAS5: APOA5 and
GCKR were associated at the same lead SNP, and LPL was associated with the same
haplotype block. Conversely, the HTG-associated SNPs in APOB were ~123-kb upstream of
the gene, perhaps consistent with the involvement of regulatory elements in the over-
expression of TG-rich lipoproteins in HTG pathophysiology. Investigation of sub-threshold
association signals did not provide any additional insight into novel HTG-associated genes.

Subsequently, we tested the hypothesis that common genetic variants in remaining known
TG-associated loci are similarly associated with HTG5. Only three loci were replicated at a
Bonferroni-corrected significance threshold of P<0.005: MLXIPL, TRIB1, and ANGPTL3
(Table 2). Positive replication of these TG-associated loci, combined with trends towards
significance at FADS (P=0.05) and NCAN (P=0.07), suggest that additional TG-modulating
loci may also be involved in HTG pathophysiology, however smaller effect sizes likely limit
their detection.

We next hypothesized that HTG-associated genes would harbour rare variants related to
HTG disease causation. The protein-coding sequences of APOA5, GCKR, LPL and exons 26
and 29 (67.8%) of APOB were resequenced in individual subjects as regions most likely to
harbour protein-compromising mutations. Across the 4 genes, 80 distinct rare variants were
identified with minor allele frequencies <1% in controls (Fig. 1, Supplemental Table 1). A
significant accumulation of rare variants was identified in HTG patients (Table 3), including
154 total variants in 438 HTG diploid genomes compared to 53 total variants in 327 control
diploid genomes (P=6.2×10-8), corresponding to a significantly increased carrier frequency
of 28.1% in HTG patients versus 15.3% in controls (P=2.6×10-5). A more restricted analysis
of rare variants found exclusively in either HTG patients or controls, deliberately removing
all reported variants without demonstrated functional compromise, similarly revealed a
significant burden of 47 variants in HTG patients compared to 9 variants in controls
(P=2.4×10-5); this corresponds to a significantly increased carrier frequency of 10.3% in
HTG patients compared to 2.8% in controls (P=4.4×10-5). HTG carriers’ fasting plasma TG
concentrations ranged from 3.10–88.5 mmol/L, whereas control carriers’ fasting plasma TG
concentrations ranged from 0.45–1.93 mmol/L. No discernable patterns were observed
between such attributes as the gene, mutation type or mutation position with plasma TG
concentration or HTG phenotype.

The strength of association between HTG and genomic loci did not predict the mutation
accumulation observed in the resequenced genes. LPL harboured the largest relative
proportion of rare variants, followed by GCKR, APOB and APOA5, with 30.9, 10.7, 9.3, and
4.5 rare variants per kilobase of coding sequence in HTG patients, whereas the same genes
harboured 5.6, 2.7, 4.3 and 0.9 rare variants per kilobase of coding sequence in controls. The
burden of rare variants found in HTG patients is highly suggestive of phenotype causation,
supported by several truncation mutations, in silico predictions of deleterious effects, and
bonafide characterized deleterious mutations (Supplemental Table 1). The majority of
subjects carried only 1 rare variant, however subjects with multiple rare variants were also
significantly over-represented in HTG patients (6.6% HTG carriers versus 0.9% control
carriers; P=3.7×10-5). Not all rare variants in HTG patients are necessarily sufficient to
cause HTG, however they likely contribute to the biochemical heterogeneity observed
between patients. For instance, the APOB R3500W variant causes hypercholesterolemia18,
but was found in a HTG patient with Fredrickson HLP phenotype 2B, defined by both
plasma TG and total cholesterol in excess of the 95th percentile. For this individual case,
APOB R3500W is more likely contributing to the elevated total cholesterol phenotype, but
the mutation is part of the genetic background of this patient that led to his ascertainment
through the lipid clinic. This patient exemplifies our working model that both common and
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rare genetic determinants in TG-associated genes together contribute to the phenotypic
heterogeneity underlying HTG.

Finally, we assessed the contribution of genetic and clinical variables to the total variation in
HTG diagnosis, in subjects common between GWAS and sequencing cohorts. A
comprehensive logistic regression model including clinical variables and both common and
rare genetic variants explained 41.6% of total variation in HTG diagnosis: clinical variables
explained 19.7%, common genetic variants in 7 HTG-associated loci explained 20.8% and
rare genetic variants in 4 HTG-associated loci explained 1.1%. These data suggest that rare
variants found in 4 GWAS-identified genes incrementally contribute to the unexplained
variation underlying HTG pathophysiology.

In summary, we performed a GWAS and resequencing of HTG-associated genes and found
a significant accumulation of missense and nonsense mutations that contribute to the
unexplained genetic component of HTG. Our results suggest that a complex genetic
architecture of both common and rare variants in a spectrum of TG-associated genes is
responsible for HTG. Future studies using high-throughput next generation sequencing are
required to determine whether these associations extend to additional HTG-associated genes,
including MLXIPL, TRIB1, and ANGPTL3, and TG-associated genes identified by
epidemiological-scale GWAS of population-based samples. It also remains possible that rare
variants in TG-modulating genes that have not yielded signals on GWAS, such as GPIHBP1
or LMF1, will further contribute to HTG phenotypes19,20. Functional analyses may more
accurately define the extent of dysfunction of rare variants identified in HTG patients and
their role in disease causation, while higher level analyses including gene-gene and gene-
environment interactions will determine the combined impact of multiple genetic variants on
plasma TG concentration in patients with HTG. Our study demonstrates that an
accumulation of rare variants is present in GWAS-identified genes and that these contribute
to the missing heritability of complex traits among individuals at the extreme of a lipid
phenotype.

Methods Summary
Study Subjects

HTG patients were ascertained through tertiary referral lipid clinics. Controls were obtained
from population-based studies including the Study of Health Assessment and Risk in Ethnic
Groups21 and the Myocardial Infarction Genetics Consortium22 (Supplemental Methods).
Biochemical analyses were conducted separately in each cohort, as previously
described14,21,22.

GWAS
All subjects were genotyped using Affymetrix Genome-Wide Human SNP Array 6.0
(Affymetrix, Santa Clara, CA) according to protocols of the London Regional Genomics
Centre (www.lrgc.ca) or the Broad Institute (http://www.broadinstitute.org/). Imputation
was conducted using HapMap CEU phased haplotypes in MACH23. All genotypes were
filtered for minor allele frequency >1%, Hardy Weinberg P>0.0001, and 95% call rate or
imputation quality r2>0.4. Identity-by-state calculations, multi-dimensional scaling, and
association testing were conducted in PLINK24. Genome-wide significance was pre-
specified as P<5X10-7; nominal significance for replication of known TG-associated SNPs
was a Bonferroni-corrected threshold P<0.005. Covariates entered into all analyses included
sex, body mass index, diabetes status and 10 principal components of ancestry as generated
by Eigenstrat25,26.
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Sequencing and Mutation Accumulation
All genes were bidirectionally sequenced in individual samples using an ABI 3730
Automated DNA Sequencer and called using automated software (Applied Biosystems,
Foster City, CA). Rare variants were manually curated, confirmed by repeat analysis, and
annotated in silico for functional effects using Polyphen
(http://genetics.bwh.harvard.edu/pph/). Only rare variants <1% in controls causing missense
or nonsense mutations were counted towards mutation accumulation. Rare variant
accumulation was compared between HTG patients and controls using Fisher's exact test,
defining nominal significance as a 2-sided P<0.05 (Supplemental Methods).

Explained Variation
Total explained variation was calculated from the residuals of multivariate logistic
regression model including age, sex, body mass index, diabetes status, and HTG-associated
common and rare variants as independent variables, using a SAS v9.2 (SAS Institute, Cary,
NJ) macro written for this purpose27 (Supplemental Methods).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Rare variants identified by resequencing GWAS-identified genes in HTG patients and
controls
Variants above gene maps were identified in HTG patients and variants below gene maps
were identified in controls. Rare variants are coloured according to their identification in
control subjects or previous identification in subjects of unknown clinical status (black),
exclusivity to HTG patients or controls (blue), or proven biological dysfunction or
truncation (red). Nomenclature refers to functional protein sequences. Only exons 26 and 29
were resequenced in APOB. Gene maps are roughly to scale, although differ in scale
between genes. GWAS, genome-wide association study; HTG, hypertriglyceridemia; TG,
triglyceride.
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Table 1

Baseline clinical attributes of the study sample.

GWAS cohort Resequencing cohort

HTG Controls HTG Controls

Number 463 1197 438 327

Female 30.7% 40.4% 33.2% 50.5%

Diabetes 25.7% 0.4% 28.1% 4.1%

Age (years) 50.9 ± 13.0 47.8 ± 11.1 51.3 ± 13.1 49.9 ± 15.1

Body mass index (kg/m2) 29.9 ± 4.9 26.4 ± 4.6 30.0 ± 4.9 26.8 ± 4.5

Plasma total cholesterol (mmol/L) 8.2 ± 3.9 5.3 ± 1.3 8.7 ± 4.3 4.9 ± 0.8

Plasma HDL cholesterol (mmol/L) 0.9 ± 0.3 1.4 ± 0.4 0.9 ± 0.3 1.3 ± 0.4

Plasma LDL cholesterol (mmol/L) - 3.4 ± 1.2 - 3.2 ± 0.9

Plasma triglycerides (mmol/L) 14.3 ± 19.8 1.1 ± 0.7 14.2 ± 19.0 1.2 ± 0.4

GWAS, genome-wide association study; HDL, high-density lipoprotein; HTG, hypertriglyceridemia; LDL, low-density lipoprotein. There are 346
HTG patients and 205 low triglyceride controls common between both cohorts. Lipid measurements were conducted after a 12-h fasting period.
Values are mean ± standard deviation. LDL cholesterol is not accurately calculated using the Friedewald equation for HTG patients when plasma
triglyceride concentration exceeds 4.5 mmol/L.

Nat Genet. Author manuscript; available in PMC 2011 January 7.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Johansen et al. Page 9

Ta
bl

e 
2

G
en

et
ic

 lo
ci

 a
ss

oc
ia

te
d 

w
ith

 H
TG

.

L
oc

us
SN

P
C

H
R

Po
si

tio
n

M
in

or
 A

lle
le

H
T

G
 M

A
F

C
on

tr
ol

 M
A

F
O

R
 (9

5%
 C

I)
P-

va
lu

e

AP
O

A5
rs

96
41

84
11

11
6.

2
G

0.
33

0.
14

3.
28

 (2
.6

1-
4.

14
)

5.
4 

× 
10

-2
4

G
C

K
R

rs
12

60
32

6
2

2.
8

T
0.

52
0.

41
1.

75
 (1

.4
5-

2.
12

)
6.

5 
× 

10
-9

LP
L

rs
70

16
88

0
8

19
.9

C
0.

03
0.

10
0.

32
 (0

.2
1-

0.
49

)
2.

0 
× 

10
-7

AP
O

B
rs

46
35

55
4

2
21

.2
G

0.
39

0.
31

1.
67

 (1
.3

8-
2.

02
)

2.
0 

× 
10

-7

M
LX

IP
L

rs
71

40
52

7
72

.5
G

0.
07

0.
13

0.
44

 (0
.3

1-
0.

62
)

0.
00

00
03

TR
IB

1
rs

29
54

02
9

8
12

6.
6

T
0.

37
0.

46
0.

71
 (0

.5
9-

0.
86

)
0.

00
04

AN
G

PT
L3

rs
10

88
93

53
1

62
.9

C
0.

27
0.

32
0.

73
 (0

.5
9-

0.
89

)
0.

00
2

N
C

AN
rs

17
21

65
25

19
19

.5
T

0.
07

0.
09

0.
71

 (0
.5

0-
1.

00
)

0.
05

FA
D

S
rs

17
45

47
11

61
.3

C
0.

40
0.

33
1.

20
 (0

.9
9-

1.
44

)
0.

07

XK
R6

rs
78

19
41

2
8

11
.1

G
0.

46
0.

50
0.

87
 (0

.7
2-

1.
05

)
0.

14

PL
TP

rs
76

79
20

44
.0

C
0.

20
0.

19
1.

17
 (0

.9
4-

1.
47

)
0.

16

C
H

R
, c

hr
om

os
om

e;
 C

I, 
co

nf
id

en
ce

 in
te

rv
al

; H
TG

, h
yp

er
tri

gl
yc

er
id

em
ia

; M
A

F,
 m

in
or

 a
lle

le
 fr

eq
ue

nc
y;

 O
R

, o
dd

s r
at

io
; S

N
P,

 si
ng

le
 n

uc
le

ot
id

e 
po

ly
m

or
ph

is
m

. A
ss

oc
ia

tio
n 

w
as

 te
st

ed
 u

si
ng

 a
n 

ad
di

tiv
e

m
ul

tiv
ar

ia
te

 lo
gi

st
ic

 re
gr

es
si

on
 m

od
el

, e
nt

er
in

g 
se

x,
 b

od
y 

m
as

s i
nd

ex
, d

ia
be

te
s s

ta
tu

s, 
an

d 
10

 p
rin

ci
pa

l c
om

po
ne

nt
s o

f a
nc

es
try

 a
s c

ov
ar

ia
te

s. 
Th

e 
to

p 
fo

ur
 lo

ci
 su

rp
as

se
d 

a 
pr

e-
sp

ec
ifi

ed
 th

re
sh

ol
d 

fo
r

ge
no

m
e-

w
id

e 
si

gn
ifi

ca
nc

e 
of

 P
<5

×1
0-

7 .
 R

em
ai

ni
ng

 lo
ci

 w
er

e 
re

pl
ic

at
ed

 fr
om

 G
W

A
S 

m
et

a-
an

al
ys

is
 o

f p
op

ul
at

io
n-

ba
se

d 
TG

 c
on

ce
nt

ra
tio

ns
5 ,

 u
si

ng
 a

 B
on

fe
rr

on
i c

or
re

ct
ed

 si
gn

ifi
ca

nc
e 

th
re

sh
ol

d 
of

P<
0.

00
5.

Nat Genet. Author manuscript; available in PMC 2011 January 7.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Johansen et al. Page 10

Ta
bl

e 
3

R
ar

e 
va

ria
nt

 a
cc

um
ul

at
io

n 
id

en
tif

ie
d 

by
 re

se
qu

en
ci

ng
 G

W
A

S-
id

en
tif

ie
d 

ge
ne

s i
n 

H
TG

 p
at

ie
nt

s a
nd

 c
on

tro
ls

.

A
ll 

m
ut

at
io

ns
M

is
se

ns
e/

In
de

ls
N

on
se

ns
e

H
T

G
C

on
tr

ol
s

H
T

G
C

on
tr

ol
s

H
T

G
C

on
tr

ol
s

T
ot

al
 a

lle
le

s
87

6
65

4
87

6
65

4
87

6
65

4

A
ll 

V
ar

ia
nt

s
AP

O
A5

5
1

3
1

2
0

G
C

K
R

20
5

14
4

6
1

LP
L

44
8

43
8

1
0

AP
O

B
85

39
84

39
1

0

To
ta

l
15

4
53

14
6

52
9

1

P 
= 

6.
2 

× 
10

-8
P 

= 
3.

2 
× 

10
-7

P 
= 

0.
05

1

Ex
cl

us
iv

e 
V

ar
ia

nt
s

AP
O

A5
4

0
2

0
2

0

G
C

K
R

9
0

7
0

2
0

LP
L

19
2

18
2

1
0

AP
O

B
15

7
14

7
1

0

To
ta

l
47

9
42

9
5

0

P 
= 

2.
4 

× 
10

-5
P 

= 
1.

4 
× 

10
-4

P 
= 

0.
07

5

G
W

A
S,

 g
en

om
e-

w
id

e 
as

so
ci

at
io

n 
st

ud
y;

 H
TG

, h
yp

er
tri

gl
yc

er
id

em
ia

. E
xc

lu
si

ve
 v

ar
ia

nt
s r

ef
er

 to
 ra

re
 v

ar
ia

nt
s f

ou
nd

 e
xc

lu
si

ve
ly

 in
 H

TG
 c

as
es

 o
r l

ow
 tr

ig
ly

ce
rid

e 
co

nt
ro

ls
; p

re
vi

ou
sl

y 
re

po
rte

d 
va

ria
nt

s
w

ith
ou

t c
ha

ra
ct

er
iz

ed
 fu

nc
tio

na
l c

om
pr

om
is

e 
ar

e 
de

lib
er

at
el

y 
ex

cl
ud

ed
. F

is
he

r's
 e

xa
ct

 te
st

 w
as

 u
se

d 
to

 c
al

cu
la

te
 th

e 
si

gn
ifi

ca
nc

e 
of

 ra
re

 v
ar

ia
nt

 a
cc

um
ul

at
io

n 
in

 H
TG

 p
at

ie
nt

s, 
de

fin
in

g 
no

m
in

al
 st

at
is

tic
al

si
gn

ifi
ca

nc
e 

as
 a

 tw
o-

si
de

d 
P 

< 
0.

05
. M

ut
at

io
n 

co
un

ts
 a

nd
 a

nn
ot

at
io

ns
 a

re
 fo

un
d 

in
 S

up
pl

em
en

ta
l T

ab
le

 1
.

Nat Genet. Author manuscript; available in PMC 2011 January 7.


