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Abstract

The evolutionary history of a set of species is usually described by a rooted phylogenetic tree. Although it is generally

undisputed that bifurcating speciation events and descent with modifications are major forces of evolution, there is

a growing belief that reticulate events also have a role to play. Phylogenetic networks provide an alternative to phylogenetic

trees and may be more suitable for data sets where evolution involves significant amounts of reticulate events, such as

hybridization, horizontal gene transfer, or recombination. In this article, we give an introduction to the topic of phylogenetic

networks, very briefly describing the fundamental concepts and summarizing some of the most important combinatorial
methods that are available for their computation.
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Introduction

Phylogenetic analysis aims at uncovering the evolutionary

relationships between different species or taxa in order to

obtain an understanding of the evolution of life on Earth.

‘‘Phylogenetic trees’’ are widely used to address this task

and are usually computed from molecular sequences. By

definition, phylogenetic trees are well suited to represent

evolutionary histories in which the main events are specia-

tions (at the internal nodes of the tree) and descent with

modification (along the edges of the tree).

However, these trees are less suited to model mecha-

nisms of ‘‘reticulate evolution’’ (Sneath 1975), such as hor-

izontal gene transfer, hybridization, recombination, or
reassortment. Moreover, mechanisms such as incomplete

lineage sorting or complicated patterns of gene duplication

and loss can lead to incompatibilities that cannot be repre-

sented on a tree. Although the analysis of individual genes

or short stretches of genomic sequences often supports

a single phylogenetic tree, different genes, or sequence seg-

ments usually support different trees.

‘‘Phylogenetic networks’’ provide an alternative to phylo-
genetic trees when analyzing data sets whose evolution in-

volves significant amounts of reticulate events (Sneath

1975; Syvanen 1985; Delwiche and Palmer 1996; Griffiths

and Marjoram 1996; Rieseberg 1997; Doolittle 1999).

Moreover, even for a set of taxa that have evolved according
to a tree-based model of evolution, phylogenetic networks

can be usefully employed to explicitly represent conflicts in

a data set that may be caused by mechanisms such as in-

complete lineage sorting or by the inadequacies of an as-

sumed evolutionary model (Huson and Bryant 2006).

Although rooted phylogenetic networks can, in theory,

be used to explicitly describe evolution in the presence of

reticulate events, their calculation is difficult and computa-
tional methods for doing so have not yet matured into prac-

tical and widely used tools (Hein 1993; Gusfield et al. 2003;

Huson et al. 2005; Song et al. 2005; Bordewich et al. 2007;

Tofigh et al. 2010). In contrast, a number of established tools

for computing unrooted phylogenetic networks can be used

to visualize incompatible evolutionary scenarios in phylog-

eny and phylogeography (Bandelt and Dress 1992; Bandelt

et al. 1995, 1999; Huson 1998; Clement et al. 2000; Bryant
and Moulton 2004; Huson and Bryant 2006).

In this paper, we give an introduction to the topic of phy-

logenetic networks, very briefly describing the fundamental

concepts and summarizing some of the most important

methods that are available for the computation of phyloge-

netic networks. In practice, most currently available algo-

rithms for computing phylogenetic networks are based

on combinatorics, so we focus on these approaches. Some
approaches developed within a maximum parsimony or
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maximum likelihood framework can be found, for example,

in Hein (1993); Jin et al. (2006a, 2006b, 2007); Dessimoz

et al. (2008). Figure 1 shows the relationships between some

of the concepts mentioned in this paper. For ease of expo-

sition, some of the more technical terms in this survey are
defined in table 1.

The purpose of this paper is to give a short survey of the

combinatorial methods used to infer phylogenetic net-

works. More details on the concepts and algorithms intro-

duced in this paper as well as biological examples of their

applications can be found in (Huson et al. 2011).

What is a Phylogenetic Network?

In the literature, the term phylogenetic network is defined

and used in a number of different ways, usually focusing on
the specific type of network that an author happens to be

interested in (Bandelt 1994; Gusfield et al. 2003; Linder and

Rieseberg 2004). We propose the following general

definition:

DEFINITION 1 (Phylogenetic network) A phylogenetic net-

work is any graph used to represent evolutionary relation-

ships (either ‘‘abstractly’’ or ‘‘explicitly’’; see below)

between a set of taxa that label some of its nodes (usually
the leaves).

Phylogenetic networks can be computed from a wide

range of data, including multiple sequence alignments, dis-

tance matrices, set of trees, clusters, splits, rooted triplets, or

unrooted quartets. As with phylogenetic trees, a first major

distinction is between ‘‘unrooted’’ and ‘‘rooted’’ phyloge-

netic networks:

DEFINITION 2 (Unrooted phylogenetic network) Let X be
a set of taxa. An ‘‘unrooted phylogenetic network’’ N on

X is any undirected graph whose leaves are bijectively la-

beled by the taxa in X.

A number of different types of unrooted phylogenetic

networks are in use. In this paper, we mainly focus on

the important class of ‘‘split networks’’ (Bandelt and Dress

1992). A second important class of unrooted phylogenetic

networks are ‘‘quasi-median networks,’’ which can be

viewed as a generalization of split networks.

A ‘‘rooted Direct Acyclic Graph (DAG)’’ is a directed graph

that is free of directed cycles and that contains precisely one
node without ancestors, called the ‘‘root.’’ Rooted phyloge-

netic networks generalize rooted phylogenetic trees:

DEFINITION 3 (Rooted phylogenetic network). Let X be a set

of taxa. A ‘‘rooted phylogenetic network’’ N on X is a rooted

DAG where the set of leaves is bijectively labeled by the taxa

in X.

For an example of unrooted and rooted phylogenetic net-

works, see figure 2.
The envisioned role of rooted phylogenetic networks in

biology is to describe the evolution of life in a way that ex-

plicitly includes reticulate events. Ultimately, the main goal is

to work out the details of a rooted phylogenetic network of

life, such as popularized by Doolittle (1999).

Phylogenetic networks can be used in two different ways.

The first use is as a tool for visualizing incompatible data sets

in a helpful manner, in which case we speak of an ‘‘abstract’’
phylogenetic network. The second type of usage is as a rep-

resentation of a putative evolutionary history involving

reticulate events, in which case, the network is called

‘‘explicit.’’

By definition, most (if not all) types of unrooted phyloge-

netic networks are abstract networks, as evolution is inher-

ently rooted (and thus any unrooted phylogenetic tree is also

abstract, in this sense). However, rooted phylogenetic

FIG. 1.—Overview of the main concepts mentioned in this paper. First, we distinguish between unrooted (on the left) and rooted networks (on the

right). Although all phylogenetic networks mentioned on the left generalize unrooted phylogenetic trees, all those mentioned on the right generalize

rooted trees. Second, we distinguish between explicit networks (shown below the node labeled Explicit on the right) and abstract ones (all others).

a

abb c c

d(a) (b)

FIG. 2.—(a) An unrooted phylogenetic network on X 5 {a, b, c}

d and (b) a rooted phylogenetic network on X 5 {a, b, c} in which the

top node is the root.
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networks can be either abstract or explicit, depending on

how they are constructed and interpreted.
The necessity of distinguishing between abstract and ex-

plicit networks was pointed out in Morrison (2005). They are

called implicit and explicit in Huson (2007). In Morrison

(2010), abstract and explicit networks are named ‘‘data-

display’’ networks and ‘‘evolutionary’’ networks, respectively.

In the literature, perhaps as many as 20 different names

have been defined for different types of phylogenetic net-

works. A closer look reveals that some networks are named
by the algorithms that compute them or by mathematical

properties that define them, such as ‘‘neighbor-nets’’ or

‘‘median networks.’’ Others are named by topological con-

straints that are imposed on them for computational

reasons, such as ‘‘galled trees,’’ ‘‘galled networks,’’ or

‘‘level-k networks.’’ Yet others are named by the types

of evolutionary events which they model, such as ‘‘hybrid-

ization networks,’’ ‘‘recombination networks,’’ or ‘‘duplica-
tion-loss-transfer (DLT) networks.’’

Unrooted Phylogenetic Networks

A number of special types of unrooted phylogenetic net-

works are used in practice, the most important of which

we consider in detail in this paper.

Split Networks

The foundation for split networks was laid in Bandelt and

Dress (1992). Let X be a set of taxa and assume that we

are given a set of ‘‘splits’’ S on X, usually with a ‘‘weighting’’

that assigns a nonnegative weight to each split, which may

represent character changes or distances or may also have

a more abstract interpretation. If the set of splits S is ‘‘com-

patible,’’ then it can be represented by an unrooted phyloge-
netic tree, and each edge in the tree corresponds to exactly

one of the splits (Buneman 1971). More generally, S can

always be represented by a ‘‘split network,’’ which is an un-

rooted phylogenetic network with the property that every

split S in S is represented by an array of parallel edges in N.

An example is shown in figure 3, where the three central

edges highlighted in bold represent the split that separates

the outgroups from the Branchiopoda. Indeed, the removal
of these edges produces precisely two subtrees, one which

has leaves that are labeled by Branchiopoda species and the

other with leaves that are labeled by outgroup species.

Two methods for constructing split networks from

weighted splits are the ‘‘convex hull algorithm’’ and the ‘‘cir-

cular network algorithm.’’ The convex hull algorithm can be

applied to any set of splits S and computes a split network

representing S that contains an exponential number of no-
des and edges in the worst case (Bandelt et al. 1995). It is

also used to compute median networks, as described below.

The circular network algorithm can be applied to any set of

‘‘circular splits’’ and produces an ‘‘outer-labeled planar’’ net-

work with only a quadratic number of nodes and edges

(Dress and Huson 2004).

In many cases, direct application of the convex hull algo-

rithm leads toanovercomplicatednetwork. Inpractice, ause-

ful heuristic is first to choose an order of the taxa such that

a large subset of the given set of splits is circular. This subset of

splits is then processed using the circular network algorithm

to obtain an outer-labeled planar network. The remaining

splits are then processed using the convex hull algorithm,

which will add some nonplanar parts to the network.
A split network N can be obtained from a number of dif-

ferent types of data. To be more precise, the algorithms men-

tioned below do not compute a split network directly; rather,

they all compute a set of weighted splits S. A split networkN
is then computed fromS as described above. All splits-based

algorithms discussed in this article are implemented in the

program SplitsTree4 (Huson and Bryant 2006).

Table 1

Terms Used in the Text without Definition

Biconnected component A graph that consists of only one node or of two nodes joined by a single edge or that has more than

two nodes and any two nodes v, w are connected by at least two different paths that are node disjoint

(except at v and w).

Circular split set A set of splits that can be represented by an outer-labeled planar split network.

Compatible split set A set of splits that can be represented by an unrooted phylogenetic tree.

Condensed version of M A multiple sequence alignment �M obtained from M by deleting sequences and columns such that no

two sequences are identical, no two columns induce the same partitioning, and no constant columns

are present.

Cluster A proper subset of a set of taxa.

Outer-labeled planar graph A graph that can be drawn in the plane such that no two edges intersect and all labeled nodes lie on

the outside of the graph.

Quasi-median of three

sequences a, b, c of length L

The set qm (a, b, c) of all sequences d 5 d1 . . . dL that have the property that the state di occurs in the

set {ai, bi, ci} at least as many times as any other state, for each position i 5 1, . . . , L.

Taxon A taxonomic unit that represents a group of organisms.

Split A bipartition of a set of taxa, for example, induced by an edge of an unrooted phylogenetic tree.
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Split Networks from Distances

A number of methods exist for computing a set of weighted

splits for a given distance matrix D on X. The two most im-

portant are split decomposition (Bandelt and Dress 1992)
and ‘‘Neighbor-Net’’ (Bryant and Moulton 2004).

‘‘Split decomposition’’ takes a distance matrix D on X as

input and produces a set of weighted splits S on X that is

‘‘weakly compatible,’’ a property that ensures that the cor-

responding split network will not be too complicated. In-

deed, in practice, the resulting split networks are often

quite close to being outer-labeled planar, as they usually

have only a few edges crossing over each other and do
not contain any ‘‘high-dimensional cubes,’’ which may occur

for completely unrestricted sets of splits. In practice, split de-

composition is a very conservative method, in the sense that

a split will only be present in the output if there is global

support for it in the given data set. For large or diverse data

sets, the method tends to exhibit very low resolution

and thus its use is limited to small data sets of less than

100 taxa, say.
Neighbor-Net takes a distance matrix D on X as input

and produces a set of weighted splits S on X that is circular

and can be represented by a outer-planar split network

using the circular network algorithm. Neighbor-Net is

more popular than split decomposition because it is less

conservative and so does not lose resolution on larger data

sets. Moreover, the fact that the output of the method

can always be represented by a outer-planar split net-
work and is thus easy to visualize adds to its attraction;

see figure 3.

Both network methods have the attractive property that

they produce the set of splits corresponding to the correct

tree when given a tree-like matrix.

Split Networks from Trees

Let T 5 (T1, . . . , Tk) be a collection of unrooted phylogenetic

trees on X. These might be different gene trees, trees for the

same gene computed using different methods, or a set of

trees obtained in a Bayesian analysis, for example. Split net-

works can be used to visualize conflicting signals present
in T .

The set of majority-consensus splits is defined as the set of

all splits that are present in more than 50% of the input

trees. By lowering the threshold to a proportion p of

50% or less, one obtains a set of splits Sp(T ) that will

not necessarily be compatible. The split network N associ-

ated with Sp(T ) is called a ‘‘consensus split network’’ and

can be used to visualize conflicting signals in a set of trees
(Holland and Moulton 2003).

FIG. 3.—A split network on 25 species of Branchiopoda and outgroups, computed from 18S rDNA sequences using Neighbor-Net, as reported in

Wagele and Mayer (2007). The authors compare this network with a maximum parsimony tree for the same data set and discuss how the network

exhibits conflicting signals that are not represented in the tree. Reprinted from BMC Evolutionary Biology 7:147 (2007) under the Creative Commons

Attribution License.

S. cerevisiae

S. paradoxus

S. kluyveri

C. albicans

S. castelli
S. bayanusS. kudriavzevii

S. mikatae

FIG. 4.—For a set T of 106 phylogenetic trees on eight yeast

species reported in Rokas et al. (2003), we show the consensus split

network representing all splits that occur in more than 30% of the trees.
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One of the first published applications of this method was

to a collection of 106 different unrooted phylogenetic trees

involving eight different yeast species (Holland et al. [2004],

gene trees from Rokas et al. [2003]).

Figure 4 shows clearly that the gene trees disagree some-

what as to where the outgroup taxon Candida albicans at-

taches to the phylogeny. Moreover, they also disagree on

whether Saccharomyces kudriavzevii and Saccharomyces
bayanus are sister taxa.

In practice, in a collection of gene trees, the set of taxa

that occurs in each tree will often differ between trees, sim-

ply because some gene sequences may not be available for

all taxa. To address this, methods have been developed to

compute a ‘‘super split network’’ for a given set of unrooted

phylogenetic trees T on overlapping but nonidentical taxon

sets using the ‘‘Z-closure’’ algorithm (Huson et al. 2004;
Whitfield et al. 2008).

Split Networks from Sequences

Assume that we are given a multiple sequence alignment

M on X.

A first approach to obtaining a split network for M is to

compute a set of splits that represents M using the ‘‘parsi-

mony-splits’’ method (Bandelt and Dress 1993). This method

takes a multiple alignment M on X as input and produces

a set of weakly compatible splits S on X using a simple mod-

ification of the split decomposition algorithm. The parsi-

mony-splits method has not been used much in the

literature, probably because the resulting set of splits is usu-
ally very similar to the one obtained by the more widely

known split decomposition.

Another way of computing a split network from M is first

to restrict M to obtain a matrix M̂ containing only the col-

umns in M that contain exactly two different character

states and then focus on the ‘‘condensed version’’ of M̂,

say �M. Then, any column of �M defines a different split of

the taxon set, and the set of splits Sð �MÞ obtainable in this
way can be represented by a split network N. If we label

each edge of the networkN by the columns in the alignment
�M that correspond to the split represented by the edge, then

the resulting split network is called a median network

(Bandelt et al. 1995). This construction is suitable for data

sets that have very few differences in them. Hence, median

FIG. 5.—(a) The median network for eight specimens of Callicebus lugens, based on cytochrome b sequences (data from Casado et al. [2007]).

Specimens from the right bank of Rio Negro are shown in plain font and those from the left bank are shown in bold font. (b) The reduced median

network obtained by postulating a parallel mutation at position 737.

FIG. 6.—(a) A multiple condensed sequence alignment M. The quasi-median closure of M consists of the sequences depicted in (a) and (b). (c) The

corresponding quasi-median network N.
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networks are mainly used in phylogeography and popula-
tion studies. Because parallel mutations can lead to compli-

cated structures in such a network, the concept of

a ‘‘reduced’’ median network was also introduced (Bandelt

et al. 1995), in which one attempts to simplify the network

by postulating appropriate parallel mutation events.

An example of a median network is shown in figure 5. In

Casado et al. (2007), the distribution of Callicebus lugens
(Platyrrhini, Primates) at the Rio Negr, in Brazil, is reported.
The study focuses on eight specimens, one group of four

taken from the left bank of the river and another group

of four taken from the right bank. It is based on a multiple

alignment M of cytochrome b DNA sequences of length

1,140. A median-network analysis shows a clear separation

of the two groups. Note that only 35 columns are retained in

the condensed version of M (the ones labeling the edges).

Split Networks from Quartets

Mathematicians are interested in developing methods that

infer a phylogenetic tree or network from basic building

blocks. In the computation of an unrooted tree or split net-

work, these are phylogenetic trees on sets of four taxa,

sometimes called ‘‘quartet trees.’’ One such method is

the ‘‘quartet-net’’ method, or ‘‘QNet,’’ for short (Grünewald
et al. 2007). This algorithm takes a set Q of weighted quartet

topologies on X as input and, using a modification of Neigh-

bor-Net, produces a set of weighted splits S on X that is cir-

cular, and thus can be represented by an outer-planar split

network. Because compatible splits are always circular, it fol-

lows that the QNet method (combined with the circular net-

work algorithm) always computes the correct phylogenetic

tree when given an input set that corresponds to a tree.

Quasi-Median Networks

As we mentioned in the previous section, a median network

can be used to visualize a set of binary characters on a set of
taxa X. The concept of a quasi-median network is a gener-

alization of the concept of a median network that was in-

troduced to represent multistate characters. Note that,

unlike median networks, quasi-median networks are not

split networks. A quasi-median network is defined as a phy-

logenetic network, the node set of which is given by the

quasi-median closure of the condensed version of M and

in which any two nodes are joined by an edge if and only
if the sequences associated with the nodes differ in exactly

one position. The quasi-median closure is defined as the set

of all sequences that can be obtained by repeatedly taking

the ‘‘quasi-median of any three sequences’’ in the set and

then adding the result to the set (see fig. 6).

In general, the quasi-median closure consists of a huge

set of sequences and hence the quasi-median network

for a multiple sequence alignment M of DNA sequences
on X is usually too large and too complicated to be of prac-

tical interest. At the other extreme, a ‘‘minimum spanning

network’’ (Excoffier and Smouse 1994; Bandelt et al. 1999)

can be used to represent the differences between the se-

quences in M. This type of network is also often of limited

interest because it contains one node per taxon and no

additional nodes.
The ‘‘median-joining’’ algorithm (Bandelt et al. 1999)

constructs an informative subnetwork of the full quasi-

median network, repeatedly using the concept of a (relaxed)

minimum spanning network and repeatedly employing

the quasi-median calculation. Although the former con-

struction, on its own, will produce too few nodes to be use-

ful, the latter construction alone will produce too many

nodes. By using both together, the median-joining method
attempts to provide a useful network of intermediate size.

The median-joining method is best suited for closely related

sequences that have evolved without recombinations and is

widely used in phylogeography and population studies, usu-

ally based on mtDNA or the Y chromosome. An application

is shown in figure 7, where the cluster containing all non-

African sequences attaches to only one of the clusters of

African lineages. This network is thus consistent with the
out-of-Africa model of human origins, suggesting that all

non-African populations are derived from one African

lineage.

Implementations of the median network and median-

joining algorithms are provided by the programs Network

(http://www.fluxus-engineering.com) and SplitsTree4.

Other Types

A number of other types of unrooted phylogenetic networks

are in use. We briefly describe two of them.

Haplotype Networks

A haplotype network is an unrooted phylogenetic network

in which the nodes represent different haplotypes within

a group of (usually very closely related) taxa and the edges

FIG. 7.—A median-joining network on human populations com-

puted from mtDNA (adapted from Kivisild et al. [1999]; Disotell [2003]).

Each disk in the tree represents a cluster of human mitochondrial types,

and its diameter is proportional to the number of sequences

represented. For African sequences, edges between individual types

are collapsed and not shown. The cluster containing all non-African

sequences is shown here in a noncollapsed view.
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join those sequences or haplotypes that are very similar. The

edges are usually labeled by the positions at which the
joined haplotypes differ.

Both the median network computation and the median-

joining algorithm can be used to compute a haplotype net-

work. Another popular approach is the ‘‘TCS approach’’

(Templeton et al. 1992). It is based on the concept of statis-

tical parsimony and aims at producing a haplotype network

in which two haplotypes are joined by an edge if and only if

a quantity called the ‘‘probability of parsimony’’ (defined in

Templeton et al. [1992], eqs. 6–8) exceeds 95% for the

edge. The TCS method is similar to the (quasi-)median net-

work method in that it attempts to place sequences onto the

nodes of a network, infer additional nodes and label edges

by the number of differences between different sequences.

An implementation is available from: http://darwin.uvigo.es/

software/tcs.html.

Reticulograms

A reticulogram is an unrooted phylogenetic tree to which

a set of auxiliary edges has been added. A reticulogram is

obtained from a distance matrix D on X using the T-Rex

software, which first computes a phylogenetic tree on X
(using a method such as neighbor-joining) and then repeat-

edly adds shortcut edges to the graph until the distances

between the taxa in the graph show a good fit to the

distances in the original input matrix D (Makarenkov

2001). An implementation is available from: http://www.

trex.uqam.ca.

Unfortunately, it is easy to construct a reticulogram R onX
such that the T-Rex algorithm will fail to reconstruct R from
the distance matrix DR (see fig. 8).

Rooted Phylogenetic Networks

Let X be a set of taxa and N a rooted phylogenetic network
on X. Any node of indegree �2 is called a ‘‘reticulate’’ node

and all others are called ‘‘tree’’ nodes. Any edge leading to

a reticulate node is called a reticulate edge and all others are

called tree edges. Definition 3 is very general and additional

requirements can be made. For example, the network can

be described as ‘‘bicombining,’’ that is, that all reticulate no-

des have indegree 2.

How do we interpret such a rooted phylogenetic network

mathematically? Perhaps the most important feature of

a rooted phylogenetic tree or network is the set of ‘‘clusters’’

that the network represents, as clusters suggest putative

monophyletic groups and thus provide hypotheses about

the evolutionary relatedness of the taxa under consider-
ation. Hence, in this paper, we treat the calculation of rooted

phylogenetic networks in a ‘‘cluster-centric’’ manner and

usually interpret rooted phylogenetic networks as represen-

tations of sets of clusters.

Clusters and Networks

Exactly which clusters does a rooted phylogenetic networkN
on X represent? This question has two different answers.

Let N be a rooted phylogenetic network on X. We use the
term ‘‘hardwired clusters’’ to refer to the set of all clusters

Chard(N) that are obtainable from a rooted phylogenetic net-

work N in the following way: each tree edge e in N repr-

esents precisely one cluster c(e), which is given by the set

of all taxa that appear as labels of nodes below e, that is,

all labels of nodes that are descendants of the target node

of e.

An alternative way to define the set of clusters repre-
sented by N is to use the set of all clusters obtainable from

the set of trees T(N) represented by N. We refer to this as the

set Csoft(N) of clusters represented by N in the ‘‘softwired’’

sense. To obtain these clusters directly from the network

N, one must treat the in-edges leading to each reticulation

r as a set of alternatives, one of which is ‘‘on’’ if and only if all

others are ‘‘off.’’ A softwired cluster C is then obtained di-

rectly from the network by first deciding, for each reticula-
tion, which reticulation edge is on and which is off, and then

collecting all taxa that are reachable below some fixed tree

edge e without using any reticulation edge that is off.

To understand the relationship between Chard(N) and

Csoft(N), consider figure 9.

Note that given a rooted phylogenetic network N, the set

of hardwired clusters of N contains one cluster per tree edge

FIG. 8.—(a) A reticulogram R on X 5 {a, . . . , e} with edges labeled

by their lengths. (b) The distance matrix DR on X that is defined by R. (c)

The reticulogram RTRexðDRÞ obtained by applying the T-Rex algorithm to

DR. Solid lines represent the initial unrooted phylogenetic tree, and

a dashed line indicates the added shortcut edge.

a fedcb

e

FIG. 9.—A rooted phylogenetic network N in which the edge e

represents the cluster {a, b, c} in the hardwired sense and the two

clusters {a, b} and {a, b, c} in the softwired sense. Note that N does not

represent the cluster {a, b} in the hardwired sense.
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of N, whereas the number of softwired clusters represented
by N is exponential in the number of reticulations contained

in N, in the worst case. Note also that given a phylogenetic

tree T, it holds that Chard(T) 5 Csoft(T).

Hardwired Networks

Assume that we are given a set of clusters C on X. A ‘‘cluster

network’’ N for C is a rooted phylogenetic network that rep-

resents the set of clusters on X in the hardwired sense and it

can be computed efficiently using the ‘‘cluster-popping’’ al-

gorithm (Huson and Rupp 2008). The number of edges that

it contains is, at most, quadratic in the number of given clus-

ters. A cluster network is an abstract phylogenetic network

that can be used, for example, to provide a combined visu-
alization of a whole set of rooted phylogenetic trees. Indeed,

it has recently been shown (Huson et al. 2011) that a cluster

network N that represents all clusters of a given set of trees

also contains all the trees themselves, if they are bifurcating;

otherwise it contains resolutions of them (for an example,

see fig. 10d).

However, in practice, the resulting network may some-

times be too large and messy to be of real use. As discussed
above for the consensus (super) split networks, one way to

address this problem is to represent only those clusters that

occur in at least p percent of the input trees, where p is

a user-defined parameter. The resulting network will then

no longer represent all trees in their full resolution, as some

of them will occur only in a contracted form.

Softwired Networks

A number of new methods aim at constructing a rooted

phylogenetic network N that represents a set of clusters

in the softwired sense, motivated by the assumption that

the set of clusters that a network represents is its most im-
portant feature, as argued above.

Unfortunately, in general, rooted phylogenetic networks

interpreted in the softwired sense are computationally hard

to work with. Indeed, even just determining whether a given

rooted phylogenetic network N contains some given cluster

C on X (in the softwired sense) is NP-complete (Kanj et al.
2008). To avoid these computational problems, we restrict

our attention to topologically constrained classes of net-

works. The concepts of a galled tree (Wang et al. 2000;

Gusfield et al. 2003), a galled network (Huson et al.

2009), and a level-k network (Choy et al. 2005) all put con-

straints on how tangled the undirected cycles in a rooted

phylogenetic network may be. The algorithm presented

in van Iersel et al. (2010), which aims at computing level-
k networks, shows particular promise of becoming a general

tool for computing rooted phylogenetic networks from dif-

ferent types of data.

Note that a rooted phylogenetic network that is inter-

preted in the softwired sense usually requires fewer edges

to represent a set of clusters than a hardwired one because

individual tree edges can represent more than one cluster.

An example of this behavior is shown in figure 10. This im-
plies that a rooted phylogenetic network representing all

the clusters of some trees may fail to represent the trees

themselves.

All cluster-based methods mentioned in this paper are im-

plemented in the program Dendroscope2 (Huson and

Scornavacca 2011).

Hybridization Networks

Assume that we are given a set of taxa X that have evolved
under a model of evolution that includes both speciation

events and descent with modification, as usual, and, in ad-

dition, hybridization events. The evolutionary history of the

taxa in X can then be represented by a rooted phylogenetic

network N on X where the tree nodes correspond to speci-

ation events and the reticulate nodes correspond to putative

hybridization events (Maddison 1997; Linder and Rieseberg

2004). A rooted phylogenetic network that is interpreted in
this way is called a hybridization network.

We may attempt to determine such a hybridization net-

work computationally when given two or more gene trees

on X, the topologies of which differ significantly and we sus-

pect that these differences are created by hybridization

FIG. 10.—Three rooted phylogenetic trees shown in (a), (b), and (c) supported by 76%, 11%, and 11%, respectively, of all genes studied in

Ebersberger et al. (2007). In (d), we show the cluster network and in (e) a (multicombining) galled tree, both representing all clusters contained in the

three rooted phylogenetic trees. The line width of each edge is proportional to the number of trees that contain it. Adapted from Huson and Rupp

(2008).
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events. The corresponding computational problem can be

formulated as follows. Given a set T of two or more rooted
phylogenetic trees on X, determine a rooted phylogenetic

network N that contains all trees in T and has a ‘‘minimum’’

number of reticulate nodes. This is known to be a computa-

tionally hard problem (Bordewich and Semple 2007).

Algorithms relevant to this problem, when the input con-

sists of two bifurcating trees, can be found in Baroni et al.

(2006); Bordewich et al. (2007); Whidden et al. (2010).

In practice, these algorithms appear to run reasonably
fast in many cases. No comparable algorithm exists at pres-

ent for solving the problem on more than two input trees.

An application is shown in figure 11, where we display

two trees, T1 and T2, computed for 14 different species

of grass (Poaceae), based on the phyB and waxy genes, re-

spectively; see Grass Phylogeny Working Group (2001).

Both the two networks shown in figure 11c and d contain

both trees and have the minimum number of reticulate no-
des with this property, namely three. If we assume that dif-

ferences in the topology of the two trees T1 and T2 are

a result of hybridization events, then, for example, the net-

work in (c) suggests that P. glyceria is a hybrid of the lineages

leading to P. melica and P. triticium. In the case of the two

other putative hybrid species, P. lygeum and P. chusquea,

their evolution requires the postulation of additional line-

ages to resolve the fact that they appear to be hybrids of
recent and less recent lineages. We emphasize that neither

network ‘‘proves’’ that hybridization is the cause of the in-

congruence between trees T1 and T2, and additional biolog-

ical evidence is required to support suspected cases of

speciation by hybridization.

Recombination Networks

Assume that we are given a set of taxa X that have evolved

under a model of evolution that includes, as usual, both spe-

ciation events and descent with modification and also re-

combination events. The evolutionary history of the taxa

in X can then be represented by a rooted phylogenetic net-

work N on X where the tree nodes correspond to speciation
events and the reticulate nodes correspond to recombina-

tion events. In addition, we require that the following two

labelings are given (Griffiths and Marjoram 1996; Gusfield
et al. 2003; Huson and Klöpper 2005; Song and Hein 2005):

1. a labeling of all nodes by sequences, and
2. a labeling of all tree edges by the positions in the

sequences at which mutations occur.

These labels must be compatible in the sense that the se-
quences assigned to tree nodes of the network differ exactly

by the indicated mutations, whereas the sequences as-

signed to reticulate nodes must be obtainable from the se-

quences assigned to the parent nodes by a crossover. A

rooted phylogenetic network that is augmented and inter-

preted in this way is called a recombination network.

An early approach to the problem of computing a recom-

bination network (Hein 1993) is based on the idea of assign-
ing a rooted phylogenetic tree to each position of a given

multiple sequence alignmentM on X in a most parsimonious

way and then combining all the trees into a suitable rooted

phylogenetic network N. When doing this, a trade-off must

be made between the number of incompatibilities between

a character and its associated local tree on the one hand,

and, on the other, the ‘‘recombination cost’’ of switching

from one tree topology to a different one when going from
position i to i þ 1.

Although the approach has to solve two NP-hard prob-

lems and is not practical, it is conceptually appealing be-

cause it explicitly addresses the ‘‘mosaic’’ nature of

aligned sequences: A long multiple sequence alignment

consists of stretches of sequence that have evolved along

a common rooted phylogenetic tree, and these stretches

are separated by crossover positions at which recombina-
tions have occurred.

More recently, Gusfield et al. (2003) have established

a different approach. To obtain a problem that is computa-

tionally tractable, they restrict their attention to recombina-

tion networks that have the galled tree property. A rooted

phylogenetic network N is called a galled tree if every retic-

ulation edge contained in a nontrivial ‘‘biconnected compo-

nent’’ of N leads to the same reticulation node r. This
approach finds a recombination network that is a galled
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FIG. 11.—Two rooted phylogenetic trees (a) T1 and (b) T2, on 14 grasses, based on the phyB gene and waxy gene (Grass Phylogeny Working

Group 2001). The two rooted phylogenetic networks shown in (c) and (d) both contain T1 and T2, each using a minimum number (three) of reticulate

nodes. Each network displays a set of putative hybridization events that may explain the differences between two trees.
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tree, if any exists, in polynomial time. An application is

shown in figure 12.
Gusfield’s initial papers on galled trees (Gusfield et al.

2003; Gusfield 2005) generated a lot of interest in this topic.

Other papers in this area include Gusfield and Bansal (2005);

Huson et al. (2005); Huson and Klöpper (2005); Song

(2006); Gusfield et al. (2007). By developing and improving

the lower and upper bounds for the number of recombina-

tions required by a data set, Song et al. (2005) have devel-

oped a new approach that can be used (in theory) to
compute a minimal recombination network. A new ap-

proach aimed at a computing a putative recombination his-

tory in practice is presented in Parida et al. (2008).

Work on recombination in the context of population ge-

netics by Hein and his colleagues goes far beyond the one

approach that we described briefly above. For example, un-

der the ‘‘coalescent-with-recombination’’ model of popula-

tion genetics, a description of the history of n-sampled
sequences going backward in time gives rise to a graph that

is called an ‘‘ancestral recombination graph’’ (Griffiths and

Marjoram 1997; Hein et al. 2005; Song and Hein 2005). This

graph is used to perform statistical analyses of the inheri-

tance and prevalence of genes in populations, and the spe-

cific topology is often treated as a nuisance variable and

integrated out.

DLT Networks

Assume that we are given a set of taxa X that have evolved

under a model of evolution that includes, as usual, both

speciation events and descent with modification as well

as gene duplication, loss, and horizontal gene transfer

events (Delwiche and Palmer 1996; Planet et al. 2003).

The associated computational problem can be formu-

lated as follows: Given a gene tree T and a corresponding

species tree Tsp, reconcile all differences between the two
trees by postulating an appropriate DLTscenario. Such a sce-

nario provides a mapping of the gene tree onto the species

tree that implies certain duplication, loss, and transfer

events. Because the presence of horizontal gene transfer

events, this DTL scenario can be seen as a network. An ex-

ample is shown in figure 13.

Recently, two fast algorithms for a inferring most parsi-

monious DLT scenario have been proposed. The one de-
scribed in Tofigh et al. (2010) may propose scenarios that

are not time consistent (because of lateral gene transfer

events) and considers losses only a posteriori, whereas

the other (Doyon et al. 2010) needs the species tree to

be dated so as to avoid time-inconsistent scenarios.

Other Types

A number of other types of rooted phylogenetic networks

have been developed. We now briefly discuss three of them.

Reassortment Networks

Many viruses are organized into segments of sequence and

evolve both by descent with modification and also by reas-

sortment, a process by which viruses that have coinfected

a host exchange segments of their genomes. Reassortment

is an important mechanism. For example, a possible route to
infection of humans by avian strains of influenza A is for

swine to be coinfected by avian and human viruses, which

reassort to produce a new virus carrying both avian- and hu-

man-adapted genes (Castrucci et al. 1993).

A reassortment network is a directed graph in which the

nodes represent viral isolates and the edges represent the

evolutionary history of the viruses, including reassortment

events. Edge weights reflect the edit costs of reassortment
and mutation events. Such a graph is organized in layers

that correspond to evolutionary stages, such as the seasons

in which the viruses were isolated (Bokhari and Janies 2008).

A

B

FIG. 12.—A recombination network N computed for a multiple

sequence alignment of TRI101 sequences (data from O’Donnell et al.

[2000]). This network suggests that the sequence of taxon 28721 arose

by recombination of the lineages labeled A and B. Sequences are not

placed at the nodes of the network because of their length.

C DA B

FIG. 13.—An evolution scenario for a gene tree G (plain lines)

along a species tree S (dotted tubes), where the symbol s represents

a loss. Adapted from Doyon et al. (2010).
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Networks from Multilabeled Trees

Gene duplication is a common event in evolution and so

many genes are present in multiple copies in a genome.

When some taxa are represented by multiple copies of

a gene in a phylogenetic tree, then the tree is called ‘‘multi-

labeled.’’ To analyze the duplication history of a gene, it may
be helpful to map such a multilabeled phylogenetic tree

onto a single-labeled rooted phylogenetic network so as

to see which parts of the tree are similar and which are dif-

ferent (Huber et al. 2006). Algorithms for constructing such

a network are discussed in Huson et al. (2011) and are im-

plemented in the program Dendroscope2 (Huson and

Scornavacca 2011).

Networks from Rooted Triples

As already mentioned, mathematicians are interested in de-

veloping methods that infer a phylogenetic tree or network

from basic building blocks. In the computation of a rooted
tree or network, these are rooted phylogenetic trees on

three taxa, which are sometimes called ‘‘rooted triples.’’

In this context, the input is a set R of rooted triples on X,

and the goal is to compute a rooted phylogenetic network

N that contains all the rooted triples in R and is optimal in

some sense. One possible optimality criterion is to minimize

the ‘‘level’’ of the network N, which is defined as the max-

imum number of reticulation nodes contained in any bicon-
nected component of the network in (Jansson et al. 2006).

In To and Habib (2009), the authors describe an algorithm

that can compute the level-k network with minimum num-

ber of reticulations (if such a network exists), for every fixed

k in polynomial time.

Conclusions

For unrooted phylogenetic networks, most of the methods

mentioned here are routinely used in phylogenetic analysis
or phylogeography, particularly Neighbor-Net, consensus

split (super) networks and median-joining, given distances,

trees, or sequences, respectively.

This is not the case for rooted phylogenetic networks. Al-

though a number of algorithms have been described for

computing rooted phylogenetic networks, some problems

must be overcome. First, many of the algorithms have only

proof-of-concept implementations that are not designed to
be used as tools in real studies. Second, the computational

problems are often hard, and the algorithms have imprac-

tical running times. Third, the calculation of rooted phylo-

genetic networks must be more closely linked to detailed

biological models of reticulate evolution so as to produce

more plausible results.

At present, none of the existing methods for computing

a rooted phylogenetic method is widely or routinely used as
a tool to help understand the evolutionary history of a given

set of taxa in terms of mutations, speciations, and specific

types of reticulate events. Although rooted phylogenetic
networks are conceptually very appealing, the develop-

ment of suitable methods for their computation remains

a formidable challenge.
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Huson DH, Dezulian T, Klöpper T, Steel MA. 2004. Phylogenetic super-

networks from partial trees. IEEE/ACM Trans Comput Biol Bioinform.

1(4):151–158.
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