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Abstract
We present a general statistical modeling framework to characterize continental-level influenza
dynamics in the United States for the purposes of examining state-level epidemiological sources
and sinks. The methods we describe depend directly on state-level influenza data that are prepared
on a weekly basis by Google Flu Trends. The Google Flu Trends team has provided a powerful
new approach to collecting and reporting epidemiological data and, when used in conjunction with
sophisticated statistical models, can allow for the identification and quantification of the flow of
influenza across the continental United States. Our proposed methods, when conditioned on such a
comprehensive search query product, can provide unprecedented scientific learning about large-
scale pathways and barriers to disease transmission which can ultimately be helpful for policy,
remediation, and response efforts.
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1 INTRODUCTION
1.1 Motivation

With the recent outbreaks of the H5N1 and H1N1 strains of the influenza virus, there is an
increasing need for sophisticated methods of characterizing the spatio-temporal dynamics of
these epidemic processes. New statistical models have been developed that allow
researchers to intuitively represent dynamic behavior in epidemiological processes and are
capable of identifying both barriers and corridors to the spread of disease over large spatial
extents (e.g., Lawson and Zhou, 2005; Waller et al., 2007; Wheeler and Waller, 2008;
Hooten and Wikle, 2010). Additionally, advances in search engine and data mining
technology have allowed for the collection and reporting of continental-scale
epidemiological data at a high temporal resolution (Ginsberg et al., 2009).

The transmission of disease can be complicated at the small-scale (Altizer et al., 2006),
however, important features of large-scale transmission may become apparent if a model can
be specified that is able to partition the dynamics into scientifically meaningful and
identifiable components that can be estimated using available data. Resulting statistical
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inference can then provide information about past, current, and future states and
mechanisms of the epidemiological process.

More specifically, in what follows we present a general spatio-temporal modeling
framework that is specified in terms of intuitive small scale (i.e., fine scale) dynamics and
allows us to learn about commonly studied, but unobserved, epidemiologic features of the
population in addition to both pathways and barriers to the spread of influenza in the
continental United States. Moreover, we are able to link the spread of influenza to various
environmental and anthropogenic covariates in an effort to determine whether certain states
function as epidemiological sources or sinks and how susceptible states are to both intrastate
and interstate transmission of influenza-like illness (ILI).

1.2 Agent-Based Statistical Models
Numerous modeling frameworks for statistically characterizing spreading phenomena have
appeared in the literature in the past decade. Many of these adopt a hierarchical structure so
that multiple sources of uncertainty can be accounted for explicitly in each of the model
levels (Cressie et al., 2009). The Bayesian hierarchical modeling framework (Berliner, 1996)
has proven to be a powerful method for solving large complex problems by breaking them
up into smaller tractable conditional problems. Such models often involve three levels,
commonly referred to as the data model, process model, and parameter model. Specifically,
Wikle (2003) and Hooten and Wikle (2008) let the middle level (i.e., the process) be
motivated by spatio-temporal partial differential equations, whereas, Hooten et al. (2007)
use a discrete matrix model to characterize the dynamics and forecast the spread of invasive
species on continental scales. Other approaches involving generalized linear models (for
non-Gaussian data) and Markov random fields have also proven to be effective for
describing dynamic spatio-temporal processes (Royle and Dorazio, 2008; Zhu et al., 2005).

Another form of model that has successfully been utilized for mimicking the spatiotemporal
behavior of epidemics is sometimes referred to as an agent-based model (e.g., Grimm et al.,
2005; Grimm and Railsback, 2005). These models are often called individual-based models
when implemented in the literal sense, where an individual organism’s behavior is modeled
directly. In the broader context, agent-based models can be constructed with the focus on a
reporting unit as an “agent,” rather than an individual organism. In this sense, the models are
scalable and could operate at the molecular level or, as in our case, at a much larger spatial
level. Smith et al. (2002) implemented such a model, which is based on a simple set of rules
governing fine (i.e., between agent) behavior that leads to complicated large-scale evolution,
to describe the dynamic behavior of a rabies epidemic in raccoon populations in
Connecticut. A full statistical implementation of this type of model is presented by Hooten
and Wikle (2010) and allows for the estimation of important types of epidemic behavior
such as: persistence, anisotropic and non-stationary transmission, and long-distance
transmission. A critical feature of the models presented by Hooten and Wikle (2010) links
transmission probability to the change in covariates, rather than to the covariates themselves.
In this way, they are able to focus the movement of the disease on the dynamic nature of the
heterogeneous cellular landscape rather than the static covariates themselves. That is, having
modeled persistence (a cell-based epidemic process) in other model components, they rely
on the change in landscape to identify neighborhood-based movement probabilities. A
complication in the models of Hooten and Wikle (2010) is that they are working strictly with
binary data and thus must use discrete probability distributions to properly accommodate the
support of the response variable.

In the mathematical literature, the difference between “top-down” versus “bottom-up”
dynamic model specifications is referred to as Lagrangian versus Eulerian (Turchin, 1998).
An example of the Eulerian approach occurs in cases where the process level of a
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hierarchical model is formulated in terms of a partial differential equation (PDE, e.g., Wikle,
2003). In these settings, the mathematical form of the PDE dictates the overarching dynamic
behavior inherent in the model. By contrast, the Lagrangian approach relies on rules
governing the small scale dynamics that are then scaled up to exhibit large-scale behavior.
Turchin (1998) shows that certain Lagrangian models, when scaled up and approximated,
take an Eulerian form; in these cases, the mathematical approximation implies that the
Lagrangian models are more general. The statistical crux then, is in the estimation aspects
when considering these models from an inverse perspective (i.e., learning about underlying
mechanisms given observed data).

In other recent work, Wheeler and Waller (2008), use a combination of statistical methods to
identify and include important features of a heterogeneous environment (such as barriers and
pathways), into a hierarchical Bayesian model for characterizing epidemics. In their
methods, Bayesian areal Wombling is employed to detect areas of rapid change in the
underlying environment. This is similar in spirit to the use of a gradient landscape (i.e.,
directional derivatives of the covariate mean field) to connect movement of the epidemic to
the underlying environment.

1.3 SIRS Models
A common way to study epidemics at the population level is through compartment models
such as the SIR model (i.e., susceptible → infected → recovered), where the entire
population of interest can be partitioned into these three compartments at any given time.
When immunity to an infectious disease is only temporary, the SIR model is extended to
accommodate the ability of a recovered individual to become susceptible again. These are
termed SIRS models, and, are often formulated as a coupled system of ordinary differential
equations (ODE):

where, the quantities S, I, and R represent the portion of the total population (N, where N = S
+ I + R) that is either susceptible, infected, or recovered, respectively. Note that this model
depends on instantaneous quantities, but can be integrated and considered over intervals or
periods of time. In fact, most measurements of S, I, or R are recorded as integrated
quantities.

1.4 Influenza-Like Illness
The United States Centers for Disease Control and Prevention (CDC) reports spatiotemporal
influenza data, on a weekly basis, in the percentage of total physician visits that are due to
influenza-like illness (ILI). The actual description of ILI, according to the CDC, is a person
with a fever of at least 100 degrees Fahrenheit and a cough or sore throat. Also, each person
can average between 1–6 episodes of ILI per year. Clearly, not all ILI cases will actually be
influenza, but record keeping is performed in this manner for convenience and efficiency.
Recently, researchers at Google formally linked an influenza-related search query index
with the CDC ILI and began reporting both current and historical modeled ILI from June in
year 2003–Current as the number of patients (yi,t) of out of 100, 000 physician visits that
have ILI for state i and week t (Ginsberg et al., 2009).

In their paper, Ginsberg et al. (2009) claim that by simply compiling and processing their
search query data faster than the CDC, they are able to report ILI
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(http://www.google.org/flutrends/) one to two weeks ahead of the official ILI data. That is,
they are not forecasting the ILI, only predicting it using search query data. Thus, yi,t is a
noisy version of true ILIi,t, but also more readily available. Accounting for this additional
source of uncertainty is an important component of any further modeling and inference
based on these data.

The weekly ILI data themselves can be most easily viewed as a set of time series on the
same plot, where each time series represents yi,t/100, 000 (Figure 1). The spatio-temporal
dynamics of ILI can be illustrated best as a movie, however, we can also view the empirical
orthogonal functions (EOFs) of ILI by decomposing the space-time series using a principal
components approach and viewing the components (EOFs) as well as the resulting scores. In
a space-time setting, the EOFs can be visualized as maps and the scores represent the
corresponding time series indicating at which points in the temporal domain the spatial
pattern in each EOF reoccurs (Preisendorfer, 1988). In this case, the first two EOFs account
for approximately 90% of the overall spatio-temporal variability and are shown in Figure 2.
By contrasting the time series with the data in Figure 1 we can see the scores from the first
EOF correspond to the overall magnitude of ILI, where the scores from the second EOF
indicate a contrast largely between southwestern and northeastern states. In this case, the
peaks and troughs in the second set of scores provide an indication of which side of the
continental United States the annual epidemic ILI wave begins on. For example, notice that
the first wave starts in the west while the second one starts on the east.

These observed epidemic waves contain valuable information as to how ILI, as a spreading
phenomenon, propagates within and between states. The model we present in the next
section partitions this spreading behavior into multiple components that allow us to make
conclusions about the components of ILI transmission in the continental United States.

2 METHODS
In constructing a model for continental influenza, where state-level ILI data are available,
we seek to incorporate SIRS dynamics based on state-level intra- and interstate disease
transmission. In doing so, we take a hierarchical approach where we can accommodate the
discrete and integrated nature of the available data conditioned on unobserved SIRS
quantities of interest. The dynamics relating these unobserved quantities are then specified
in an intuitive fashion while using available scientific knowledge about the epidemiology of
ILI.

2.1 Data Model
Recall that Google Flu Trends reports state-level ILI data on a weekly basis in terms of yi,t, a
count out of 100, 000 physician visits in state i during week t. Thus, we begin by specifying
a stochastic model for the data. In this case, we consider the observed count (yi,t)
conditioned on an underlying ILI probability (ILIi,t) to come from a binomial distribution:
yi,t ~ Binom(100K, ILIi,t), where K ≡ 1000. Note that, for a state population of Ni, the
number of people who became infectious at time ν in state i (i.e., Ĩi(ν)) is a function of ILIi,t:

(1)

In order to connect this data model to an underlying SIRS model, we need to convert Ĩi(ν) to
the number of infectious people in state i at time t (i.e., Ii,t). This requires information about
the persistence of infectiousness. We adopt a common model used for the natural history of
influenza (e.g., Yang et al., 2009), where the duration of infectiousness extends from 1 to 7
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days with probabilities p = (1, 1, 1, 0.8, 0.6, 0.4, 0.2)′, for each of the days respectively.
Assuming ILI infection occurs uniformly throughout the week, we arrive at the following
relationship between Ii,t and Ĩi(ν):

(2)

where the latter equality obtains from substituting (1) into (2). The result in (2) now implies

the following data model: yi,t ~ Binom(100K, ). Hence, assuming that Ni is known,
we now have a likelihood such that the data depend on an unknown underlying epidemic
process (i.e., Ii,t).

2.2 Process Model
The underlying system dynamics are specified in the middle stage of the hierarchical model.
In the specific case of ILI (i.e., a set of diseases) a process model based on compartment
dynamics in which immunity is only temporary (i.e., SIRS) can be useful for studying
transmission. Given the discrete temporal nature of the data, we use a coupled set of
ordinary difference equations to represent the SIRS dynamics:

(3)

(4)

(5)

where, ηi,t ~ N(0, σ2) and the equation for the susceptible portion (3) of the population is
self-explanatory (essentially, every person that is not either infected or recovered in state i
and time t), while the other two equations, (4) and (5), are discussed in detail in the
following sections.

2.2.1 Infected Component—Note that, in (4), the model for infection contains three
main additive terms. The first, , corresponds to intrastate transmission and is a
function of state-level covariates xi. As a dynamic model, this term expresses the number of
infected people at the current time as a function of the number of infected people at the
previous time and unique state-level characteristics. The βW coefficients, then, represent the
importance of each covariate to intrastate transmission. The second term,

, is the first of two terms dealing with interstate transmission. In this
case, it is a function of the differential between state characteristics and interacts with all
contiguous states (of which there are ni) infection status at the previous time. The
differences, xj − xi, are used here to describe an underlying flow surface, similar to that
considered by Hooten and Wikle (2010), in terms of directional derivatives. The bi,j are
weights that represent the connectivity of states i and j; in this case they represent the
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proportion of shared boundary. The coefficients, βB are most easily visualized when they are
premultiplied by the covariate matrix X ≡ (x1,…, xn)′. The quantity XβB represents the flow
surface itself which can be thought of as a wavy map where ILI travels easily from high
values to low values. This surface, when estimated, provides one of the main forms of
inference allowed by the model. It should also be noted that this state to state transmission is
easily specified and the main reason why we describe this model as agent-based.

The final non-error term in (4), , accommodates interstate transmission
through air travel, a second form of connectivity between states. In this equation, the ai,j
represent the relative amount of air travel from state j to state i and the coefficient βA then
scales this as necessary to provide the contribution of long-distance transmission during
period (t − 1, t].

2.2.2 Recovered Component—Noting that the recovered portion of the population is
known when the Ii,t are known, we simply need to formally define the relationship between
Ri,t and Ii,t. In doing so, we first rewrite (5) as

(6)

where, traditionally, the coefficient c controls the amount of recovered people who become
susceptible in week t. In the latter equality, we express this temporary immunity in terms of
the random variables uj, for the jth recovered person at time t. Due to the previously
described natural history of ILI, a person who has had an ILI can become infected with
another ILI uj more times in a year, where uj ~ discunif(0, 5).

For the final term in (6), we note that, as a consequence of our specification in (2), each

week, a total of  people recover. Thus, since , we are left with 
people that were infected but are now recovered.

2.3 Parameter Model
A Bayesian approach allows us to easily accommodate the multiple sources of stochasticity
in the hierarchical model specified in the previous sections. Thus, in completing the full
hierarchical specification we need to specify probability distributions for the unknown
random parameters of interest. Given that many of the model parameters are assumed to be
fixed and known (based on descriptions in the literature), we have only to specify
distributions for the interstate transmission coefficients (βW, βB, and βA) and the variance
component (σ2). Specifically, we used a N(0,Σβ) prior for β and a uniform on (0, γ) for the
standard deviation σ (as suggested by Gelman, 2006). Note that, in the prior specification
above, β = (β′W β′B, β′A) and Σβ = 1000· I while γ is chosen to be a very large finite value
such that the prior on σ is proper, but has minimal effect on the posterior.

2.4 Implementation
In a Bayesian framework, we are interested in the posterior distribution of the unobserved
latent process S, I, R, as well as the unknown random parameters β and σ2. Using the
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conventional square bracket notation for hierarchical Bayesian models, the posterior
distribution can be written:

(7)

The posterior distribution in (7) can be easily approximated using Markov chain Monte
Carlo (MCMC) with Metropolis-Hastings updates for non-conjugate parameters (Gelman et
al., 2004). For computational efficiency, we take an additional approximation step in the
implementation, using a normal approximation to the binomial likelihood. Given the actual
observed values of yi,t we have found this to be a very reasonable approximation that yields
conjugate full-conditional distributions for all unknown quantities and allows for the use of a
Gibbs sampler MCMC algorithm.

3 RESULTS
For covariates, we consider four spatial variables that we believe may be influential for the
spread of ILI in the United States (Figure 3):

• Size of the state (area in square miles).

• Population density in the state (population per square mile)

• Winter Temperature (mean January temperature).

• Summer Temperature (mean July temperature).

Using weekly Google Flu Trend data from June 1, 2003 to January 4, 2009, along with the
covariates depicted in Figure 3 and a large sample of airline ticket data
(http://www.transtats.bts.gov/), we fit the model discussed in the previous section to obtain
parameter and flow surface estimates. The Gibbs sampler, which was written in the R
Statistical Programming Environment (R Development Core Team, 2008), was run for 5,000
iterations (taking approximately 5 hours on an 8 processor 3 Ghz server with 28 GB of
RAM). Using 3 MCMC chains, the Gelman-Rubin convergence statistics (Gelman and
Rubin, 1992) were computed for each parameter and were all less than 1.001, indicating
acceptable MCMC convergence was achieved. For inference, the first 1,000 MCMC
samples were discarded as burn-in, and the remainder were used to approximate for the
transmission coefficients β, which are provided in Table 1. Equal tail posterior credible
intervals indicate that all of the coefficients are significantly different from zero (at the α =
0.05 level). The estimated posterior mean spatial fields (XβW and XβB) are shown in Figure
4.

Another means for illustrating the results are to view the individual state posterior
susceptibilities, both in terms of interstate (Figure 5) and intrastate susceptibility (Figure 6).
We refer to intrastate susceptibility as XβW, while interstate susceptibility corresponds to the
cumulative effect of all neighboring states on the state in question and is computed as:

, where the sum is over all neighbors of state i.

In addition to the full model discussed above, we also fit two additional reduced models: one
omitting the between-state transmission (i.e., middle term on the right hand side of (4)), and
another omitting the air travel component of transmission (i.e., second to last term in (4)).
The deviance information criterion (DIC, Gelman et al., 2004) resulting from each of these
model fits were 152615, 152569, and 152315, respectively.
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4 DISCUSSION
The results from fitting the full model suggest that all model parameters are significant in
the model, and thus, deemed important for describing ILI dynamics in the continental United
States. For example, the first column of Table 1 indicates that state area, population density
(PPSM), and average July temperature are all positively related to intrastate influenza
transmission, while average January temperature had a negative effect. These results imply
that as area, population, and summer temperature increase within a state, so do the
transmission rates; whereas, as winter temperatures get colder, interstate transmission
increases. We find the area, population, and winter temperature results to have reasonable
scientific interpretations, while the summer temperature results require more thought; it is
not immediately apparent why an increase in July temperature should lead to increased
intrastate ILI transmission. Of course, given the observational nature of this study, it is quite
likely that estimated effects are confounded with lurking variables not included in the study.
However, regardless of potential multicollinearity between any missing covariates and those
considered here, inference concerning the underlying flow surfaces can still be made. For
example, Map 2 in Figure 4 indicates (with darker shades of gray) which states are more
sensitive to intrastate transmission than others. This map implies that many of the states with
large areas in the middle of the country are more susceptible to intrastate transmission than
those in, say, in the northwest (e.g., Oregon and Washington) where January temperatures
are higher than other states at similar latitudes. State level transmission could also be viewed
as susceptibility, and Figure 6 identifies which of the continental states are most and least
susceptible to intrastate transmission. The boxplots shown in Figure 6 represent the marginal
posterior distributions of XβW given the Google Flu Trends data and available covariates.
Thus, boxplots that are significantly larger than zero indicate the most susceptible states,
while those near zero indicate a neutral intrastate susceptibility. States with negative
posterior susceptibilities (e.g., Oregon and Washington) suggest that ILI transmission is
likely due to other sources (e.g., interstate transmission).

In terms of interstate transmission, we can see from the second column of Table 1 that the
effects of the covariates on the interstate flow surface share the same sign, but differ in
magnitude, from those influencing intrastate transmission. From Table 1 it is apparent that
all coefficients except average January temperature have positive posterior mean effects,
though the role that average July temperature plays in interstate transmission is reduced.
These results imply that if a neighboring state is larger, has a higher population density, and
higher summer temperature than the state of interest, the interstate transmission increases;
the converse is true for neighboring states with higher winter temperatures, implying that ILI
spreads slower from states with warm winters to states with cold winters. Viewed as a map,
the posterior mean interstate flow surface (Map 1, Figure 4), corresponding to XβB,
illustrates where these areas of high and low interstate transmission occur. The darker
northern Great Plains states and midwest indicate a ridge on the surface. Theoretically, this
flow surface would suggest that if an ILI wave began in the northern Great Plains, it would
disperse rapidly “downhill” toward the southeastern states and west coast. We do not see
this behavior in the data however, and thus it is more likely that the ridge of higher values in
the center of the country represents a distinct barrier to cross-country transmission. That is,
an epidemic starting on the west coast will spread readily through western states, while only
slowly making its way through the center of the country toward the east. When considering
this finding in combination with that of Map 2 in Figure 4, it becomes obvious that interstate
ILI transmission in the middle of the country actually occurs relatively slowly and thus the
intrastate mechanism becomes more of a driver for the epidemiologic process in that region.
Generally, darker contiguous regions on such maps indicate barriers to disease spread, while
lighter contiguous regions suggest potential corridors for spread. Overall, the slightly larger
DIC values for the full versus reduced model (where interstate transmission is omitted)
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suggest that the component of the infection model (4) involving interstate transmission may
not be contributing much to the overall fit of the model. In computing the DIC, we found
that the effective number of parameters were about four greater in the full model than the
reduced model without the between state component. In this case, if one seeks inference
regarding interstate transmission, it may be beneficial to account for these effects even
though the DIC is slightly larger when they are included.

The interstate susceptibility can also be viewed on a state by state basis (Figure 5). The
boxplots in Figure 5 represent the approximate posterior distribution for the sum of
incoming ILI transmission from neighboring states. That is, states with posterior
susceptibilities greater than zero indicate that neighboring states are responsible for a
significant portion of ILI transmission. Based on the available data and covariate
information used in this study, Figures 5 and 6 indicate that small states with high
population densities, such as New Jersey and Rhode Island, are most susceptible to intrastate
ILI transmission, while states surrounded by larger states with high population densities act
as sinks for ILI and are quite susceptible to neighborhood-based interstate transmission. In
terms of long-distance interstate transmission, the positive posterior mean coefficient for air
travel (Table 1) indicates that air travel may play a significant role in the spread of ILI,
beyond the intrastate and neighborhood based interstate transmission. However, in this case,
the resulting DIC was lower for the reduced model omitting the air travel component than
either of the other two fitted models. Thus, despite a non-zero estimated air travel effect
when fitting the full model, the air travel component may not be helpful overall, as including
it increases the number of effective parameters by approximately fifty. In terms of modeling
the spread of human influenza, this could be welcome news, as airline information can be
difficult to obtain.

In summary, we have introduced a general hierarchical framework for utilizing the ILI data
produced by Google Flu Trends to link the dynamics and mechanisms (including both
barriers and pathways) of influenza dispersal in the continental United States. In this effort,
we have built on the previous works of Wheeler and Waller (2008) and Hooten and Wikle
(2010) and are able to avoid some of the complications arising from those earlier studies due
to the support and extent of the data. The general agent-based framework we present here
relies only specification of small scale (within and between state) dynamics and can readily
be extended to accommodate important features of continental epidemic spread such as
time-varying covariates, different disease natural histories, continental boundary conditions
(e.g., other countries), and other forms of data. Our model formulation focuses on separating
intrastate dynamics from interstate dynamics using a relevant set of environmental and
anthropogenic covariates in both static and gradient forms. Our model results provide an
indication that valuable scientific learning can result when these types of models are
combined with data arising from sophisticated search engine mining technology.
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Figure 1.
The modeled ILI data provided by Google, represented here as a set of time-series where the
year labels appear at the top of the figure and the x-axis labels represent the beginning of
each corresponding month.

Hooten et al. Page 11

Spat Spatiotemporal Epidemiol. Author manuscript; available in PMC 2011 January 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
The first two empirical orthogonal functions and associated scores corresponding to the ILI
data over the continental United States.
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Figure 3.
State-level covariates used in the SIRS process model.
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Figure 4.
Map 1 (left) represents the posterior mean flow surface (XβB) over which the least resistance
of spread is from high to low (i.e., dark to light) values. Map 2 (right) represents the
susceptibility of each state to intrastate transmission of ILI (i.e., XβW).

Hooten et al. Page 14

Spat Spatiotemporal Epidemiol. Author manuscript; available in PMC 2011 January 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Interstate susceptibility displayed as a sequence of boxplots, for all states, arranged from
west to east.
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Figure 6.
Intrastate susceptibility displayed as a sequence of boxplots, for all states, arranged from
west to east.
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Table 1

Posterior means (and 95% credible intervals) for model coefficients (βW, βB, βA), arranged in terms of their
respective covariates. The covariates were all standardized by subtracting the mean and dividing by the
standard deviation for the purposes of comparing coefficient values. The resulting 95% posterior credible
intervals for the coefficients suggest all parameters are significantly different from zero.

Intra Inter Air

Air - - 0.238 (0.23,0.24)

Area 0.078 (0.072,0.085) 0.103 (0.093,0.113) -

PPSM 0.166 (0.147,0.185) 0.114 (0.096,0.132) -

Jan. −0.163 (−0.176,−0.151) −0.168 (−0.194,−0.139) -

July 0.142 (0.131,0.153) 0.029 (0.002,0.055) -
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