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ABSTRACT

Mitochondrial-DNA diseases have no effective
treatments. Allotopic expression—synthesis of a
wild-type version of the mutated protein in the
nuclear-cytosolic compartment and its importation
into mitochondria—has been proposed as a gene-
therapy approach. Allotopic expression has been
successfully demonstrated in yeast, but in mamma-
lian mitochondria results are contradictory. The
evidence available is based on partial phenotype
rescue, not on the incorporation of a functional
protein into mitochondria. Here, we show that
reliance on partial rescue alone can lead to a
false conclusion of successful allotopic expression.
We recoded mitochondrial mt-Nd6 to the uni-
versal genetic code, and added the N-terminal
mitochondrial-targeting sequence of cytochrome ¢
oxidase VIII (C8) and the HA epitope (C8Nd6HA). The
protein apparently co-localized with mitochondria,
but a significant part of it seemed to be located
outside mitochondria. Complex | activity and
assembly was restored, suggesting successful
allotopic expression. However, careful examination
of transfected cells showed that the allotopically-
expressed protein was not internalized in
mitochondria and that the selected clones were in
fact revertants for the mi-Nd6 mutation. These
findings demonstrate the need for extreme caution
in the interpretation of functional rescue experi-
ments and for clear-cut controls to demonstrate
true rescue of mitochondrial function by allotopic
expression.

INTRODUCTION

Mitochondria originated ~1.5 billion years ago, as a
result of a symbiotic relationship between a primitive
anaerobic eukaryotic cell and an aerobic bacterial cell
(a-proteobacteria). During evolution, most of the
original bacterial genetic material was transferred to
the nucleus. Some of these DNA fragments underwent
codon mutations and acquired mitochondrial targeting
sequences that enable their correct translation on cytosolic
ribosomes and subsequent targeting to mitochondria.
More than 600 recognizable mitochondrial DNA
(mtDNA)-derived fragments have been detected in the
nuclear genome of Homo sapiens, mostly DNA fragments
that have migrated from the mitochondria (1). In eukary-
otes that have lost their mitochondria, such as
Archaeozoa, this transfer has been completed. However,
in the vast majority of eukaryotes a mitochondrial genome
has been maintained, consisting of a small set of the
original bacterial genes (2).

The mitochondrial protein synthesis system is similar to
that of prokaryotes, including specific ribosomes and
factors. In mammals, all the proteins of this system are
encoded in the nuclear genome. The significant energy
needed to maintain a second translation apparatus for
the synthesis of just 13 proteins suggests that there is
strong selection pressure to retain the genes for these
proteins in mtDNA. Various hypotheses have been
proposed to explain why this should be the case (3). It
may be that genetic code divergences preclude translation
of the mtDNA polypeptide genes by the nuclear-cytosolic
machinery (4,5). Other authors suggest that intra-
mitochondrial translation of the retained proteins is
needed to limit assembly of the oxidative phosphorylation
(OXPHOS) complexes to the inner mitochondrial
membrane, thus preventing their misallocation in other
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membranes where they could contribute to cell damage
and dysfunction through ROS generation (6,7). Finally,
the proteins encoded in mtDNA might be so hydrophobic
that they could not be imported into the organelle from
the cytosol to be assembled in the mitochondrial inner
membrane; maintenance of their synthesis inside
mitochondria would circumvent this problem (5,8).

There are currently no effective treatments for
mitochondrial-DNA associated disorders. Gene-therapy
approaches have been proposed but so far no practical
method has been developed to transfect mammalian
mitochondria with exogenous nucleic acids, even though
successful  procedures have been developed for
Saccharomyces cerevisiae and Chlamydomonas reinhardtii
(9). A proposed alternative approach is allotopic expres-
sion, in which the mtDNA-encoded gene is transferred to
the nucleus and the protein is synthesized in the cytosol
and subsequently imported into mitochondria. However,
although allotopic expression has been successfully
demonstrated in yeast (10), results obtained in human
and mouse cells are unclear. In 2002, Schon and
co-workers reported the successful allotopic expression
of human and C. reinhardtii ATPase6 subunit in human
cells (11,12). However, using the same model, Holt and
co-workers found that C. reinhardtii ATPase6 protein was
not integrated into mature complex V (13). Similar
findings were obtained with ND4, with Guy and
colleagues reporting positive results (14), followed one
year later by negative results from Moraes and colleagues
(15). An as yet unexplored cause of these contradictory
findings is the possibility that recipient mitochondria
were not devoid of functional endogenous protein in
all cases.

We have explored the application of allotopic expres-
sion in a mouse cell line with a homoplasmic KO mutation
in the mt-Nd6 gene. We show that partial rescue experi-
ments can lead to a false conclusion of successful allotopic
expression, when restored OXPHOS function is in
fact due to the artefactual selection of revertants for
the mutated gene. These findings demonstrate the need
for extreme caution in the interpretation of functional
rescue experiments and for clear-cut controls to demon-
strate true allotopic rescue of mitochondrial function.

MATERIALS AND METHODS

Cell lines and strategy for allotopic expression of recoded
mitochondrial genes

The ND6d"© cell line used in this study was generated by
random mutagenesis in the NTH3T3 mtDNA background,
as described elsewhere (16). The ND6dX® line has a
deletion of cytosine 13887 in the m-Nd6 gene, which
occurs in a run of 6 cytosines in the wild-type gene. The
mutation results in the expression of a 72 amino acid-long
truncated polypeptide instead of the 169 aa wild-type
protein (17).

All cells were grown in DMEM (GibcoBRL)
supplemented with 5% fetal bovine serum (FBS, Gibco
BRL).

C8ND6, CSND6HA and NDITHA constructs

mtNd6 and yeast mtNdil were recoded using
Backtranslation-Tool ~ v2  (Entelechon  http://www
.entelechon.com/index.php?id = tools/backtranslation
&lang=eng) to generate mouse codon-usage optimized
nuclear encoded sequences. The recoded genes were
ordered from GenScript Corporation, cloned in pUCS57.
The haemagglutinin epitope (HA tag) (YPYDVPDYA)
was added to the C-termiminus by PCR. C8Nd6 was
subcloned using Kpnl/BamHI sites in the pcDNA3.1
hygro. C8Nd6HA and NDIIHA genes were subcloned in
the lentiviral vector plS6RRLsinPPThCMVMCSpre
(from Tronolab), using Xbal/BamHI and Xbal/MIlul
sites, respectively.

Lentiviral vector production and cell infection

The 2.5 x 10° human 293T cells were plated 24 h before
co-transfection with 10pg transfer vector (C8§NDO6HA-
pl156RRLsinPPThCMVMCSpre or NDITHA-pl156RRL
sinPPThCMVMCSpre), 7.5pug of the second generation
packaging plasmid pCMVdARS8.74 and 3pug envelope
plasmid (pMD2.VSVG). Transfections were carried
out with FuGENE® 6 Transfection Reagent (Roche).
Infectious particles were collected 24 and 48 h after trans-
fection 818). Lentiviral particles were used to transduce
ND6dR© cells (80% confluent). The pool of cells ex-
pressing the gene of interest was isolated by selection in
galactose-containing medium (DMEM, 5% FBS, 4.5g/1
galactose and 110 pg/ml pyruvate).

Inmunological techniques

For immunocytochemistry, cells were incubated with
200 nM mitochondrial dye Mitotracker red (Invitrogen)
for 30 min and anti-HA primary antibody (Roche). The
secondary antibody was Alexa Fluor 488 IgG anti-rat
(Invitrogen).

For western blot, cell proteins were extracted in RIPA
buffer (Pierce). Twenty micrograms of total protein were
separated by 12.5% SDS polyacrylamide gel electrophor-
esis (SDS-PAGE), electroblotted onto PVDF membrane,
and sequentially probed with specific antibodies.
Antibodies used were anti-ND6 (which in fact recognizes
NDUFBS; Molecular Probes), anti-HA (Roche), anti-COI
(Molecular Probes), anti-Hsp60 (SIGMA), anti-TOM?20
(Santa Cruz), anti-IkB-o0 (Santa Cruz) and anti-B actin
(SIGMA).

Pulse-chase experiments: mtDNA-encoded subunit
labelling

mtDNA-encoded proteins were labelled with [>°S]-methio-
nine/cysteine (EXPRE35S35S Protein Labeling Mix;
Perkin Elmer Life Sciences) in intact cells as described
elsewhere (19,20).

Blue native electrophoresis

Mitochondria were isolated from cells according to
Schiagger (1995), with some modifications (21). Blue
Native gradient gels (5-13%) were cast as described
earlier (22) and run with 100 pug of DDM solubilized



mitochondrial protein (1.6g DDM/lg mitochondrial
protein). For 2D electrophoresis, bands from the blue
native (BN) gel corresponding to assembled mitochondrial
complexes were excised and separated by SDS-PAGE
(23).

After electrophoresis, the gels were electroblotted onto
‘Hybond-P> PVDF membranes (GE Healthcare Life
Sciences) and probed with antibodies against complex I
(anti-ND6 from Molecular Probes, which in fact recog-
nizes NDUFBS), and complex IV (anti-COI, Molecular
Probes). The secondary antibody was peroxidase-
conjugated anti-mouse (Invitrogen), and signal was
revealed with ECL® Plus (GE Healthcare Life Sciences).

In vitro reticulocyte protein expression

Nuclear NDUFB8 was amplified from mouse cDNA
using the following primers: forward, ctcgagGGAGAAG
GTGAAGATGGCTG (Xhol site indicated in lower case)
and reverse tctgagTTAAGCCTCTAGGAACGAGG
(Xbal site indicated in lower case). The PCR product
was cloned into the pCR®2.1 vector (Invitrogen) and
sequenced. The NDUFB8 CDS was released from
pCR®2.1 by digestion with Xhol and Xbal, and this
fragment was subsequently ligated into pTNT™
(Promega). In the same way, nuclear recoded Nd6 was
amplified from C8ND6-pUCS7 with the following
primers: forward, acgcgtATGAACAACTACATCTTC
GTG (Mlul site in lower case) and reverse gtcgacTTAA
TCCCTTGTGATCTCG (Sall site in lower case). The
sequence was cloned into pTNT™ (Promega). The
C8Nd6, Nd6 and Ndufb8 genes were expressed with the
TNT® T7/SP6 Coupled Reticulocyte Lysate System
(Promega) in the presence of [*°S]-methionine. The
radiolabelled proteins were run in a 12% SDS-PAGE
gel and blotted onto a ‘Hybond-P’ PVDF membrane
(Amersham).

Oxygen consumption measurement

O, consumption  determinations in  digitonin-
permeabilized cells were carried out with an oxytherm
Clark-type electrode (Hansatech) as described -earlier
(24) with small modifications (25).

RESULTS

Analysis of allotopic expression in cells containing
mutated mitochondrial DNA

To explore the potential of allotopic expression, we
recoded mit-Nd6 and expressed it in ND6d®C cells
(Figure 1). Recoded mr-Nd6 was tagged with an
N-terminal sequence encoding the entire 25-amino acid
mitochondrial targeting signal (MTS) of cytochrome c¢
oxidase subunit VIII (C8) plus the first two amino
acids of the mature COX VIII polypeptide (CSND6)
(Figure 1D, Supplementary Figure S2). The major impedi-
ment to allotopic expression is the highly hydrophobic
nature of the mitochondrial-endoced polypeptides. As a
positive control, we therefore also transformed ND6d®©
cells with a recoded version of the relatively hydrophilic
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yeast mitochondrial-encoded protein NDI1. Kyte and
Doolittle hydrophobicity profiles of ND6 and NDI1 are
shown in Figure 1E. Transformed cells were isolated by
antibiotic selection, first and were then transferred to
medium containing galactose instead of glucose for meta-
bolic selection. Growth in galactose medium severely
limits generation of ATP via glycolysis, forcing cells to
rely on oxidative phosphorylation; OXPHOS mutant
cells are therefore unable to grow in this medium. We
reasoned that only clones that correctly import C8ND6
protein into mitochondria would form a functional
complex I and survive under this metabolic restriction.
Nine cell clones were isolated from galactose cultures, of
which four (1.0, 1.1, 1.6 and 1.7) were selected for further
analysis.

Sequencing analysis confirmed that the four
ND6d¥CC8NDG6 cell clones still contained the mutation
in the mt-Nd6 gene in apparently homoplasmic form, with
no traces of the wild-type gene (Figure 2A). Moreover,
western blot analysis detected ND6 protein in all four
galactose-resistant clones, strongly suggesting that
allotopic expression had been successfully achieved
(Figure 2B).

Four clones expressing yeast NDI1 were analysed
after galactose selection (Supplementary Figure S1A).
To assay the activity of the yeast protein in mouse cells,
the respiration properties of the ND6d*°NDI1 cells were
investigated in detail (Supplementary Figure S1C).
Polarographic measurements of ND6dXONDII cells
showed that glutamate/malate driven respiration, which
usually reflects the rate-limiting activity of complex I,
was insensitive to the complex I inhibitor rotenone but
sensitive to the NDII inhibitor flavone, indicating that
this respiration was due to the function of the yeast
enzyme. Allele-specific termination of primer extension
was performed to confirm the homoplasmy of the
mt-Nd6 gene in the clones analysed (Supplementary
Figure S1B).

Is allotopically expressed ND6 protein inside the
mitochondria?

The experiments shown above strongly suggested that
allotopically expressed ND6 can be properly imported
and assembled to restore complex I activity. To confirm
this we performed a routine set of control experiments. We
first selectively labelled mtDNA-encoded OXPHOS
subunits by pulsing cells with [*>S] Met-Cys for 2h in
the presence of cycloheximide, which blocks cytosolic
protein synthesis. Cycloheximide was then removed and
the cells were cultured for a further 12 h to allow import-
ation of allotopically-expressed CEND6 and full assembly
of OXPHOS complexes. Dodecyl-maltoside (DDM)
solubilized mitochondria were then isolated and analysed
by BN-PAGE. These experiments demonstrated that
complex I assembly was impaired in ND6d*® cells
but restored in the two ND6d*°C8ND6 clones analysed
(1.0 and 1.6) (Figure 3A).

Since this procedure labels only the mtDNA-encoded
proteins (13 in wild-type cells and 12 in the mutant), we
reasoned that complex I in wild-type cells should contain
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Figure 1. Allotopic expression strategy. (A) Chromatograms showing the homoplasmic mutations found in the mt-Nd6 gene. (B) Allele-specific

termination of primer extension assay to confirm the homoplasmy of the deletion of one C in ND6

dXO cells. (C) Western blot of total protein from

control and mutant cells with the anti-ND6 antibody marketed by Molecular Probes (which in fact recognizes NDUFBS; see text and Figure 3).
Actin expression was probed as a loading control. (D) Amino acid sequence and map of C8ND6 (the mt-Nd6 gene sequence recoded to the universal
genetic code using Backtranslation software). Red letters correspond to the C8 MTS sequence plus the first two amino acids of mature COX8 (QV).
(E) Kyte and Doolittle plots illustrating the highly hydrophobic character of the mitochondrial ND6 protein, compared with the yeast protein NDII.

all seven mtDNA-encoded complex I proteins (ND1 to 6
and NDA4L), whereas the rescued ND6dXCC8ND6 cells
should contain only six (not ND6). To confirm this, we
cut the bands corresponding to isolated complex I (and
complexes V, IV and supercomplex III,+IV as controls)
from the BN gels and resolved them by 2D SDS-PAGE to
identify the individual proteins contained (Figure 3B). As
expected, all seven ND subunits observed in wild-type
cells, and all except ND6 were detected in ND6d*°
cells. However, to our surprise all seven ND subunits,
including ND6, were labelled in the two galactose-
resistant ND6d“°C8ND6 cell clones. Thus the ND6
protein in these clones is of mitochondrial origin,

bringing into question our initial interpretation of success-
ful importation of allotopically-expressed ND6 and its
functional assembly into complex I.

Moreover, immunodetection of ND6 with an antibody
from Molecular Probes revealed that the protein signal
recognized by the antibody is not the same as the one
corresponding to metabolically labelled ND6 (Figure 3C
and D). In fact, no labelled protein co-migrated with
the protein detected by the anti-ND6 antibody. After con-
tacting the antibody distributor, we suspect that the
protein targeted by the antibody might be NDUFBS,
which participates in the assembly of mitochondrial
complex I. To test this, we synthesized C8NDG6, native
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Figure 2. Analysis of galactose-resistant clones. (A) Sequence chromatograms showing conservation of the 13887 delC mutation in the mt-Nd6 gene
in four clones (1.0, 1.1, 1.6 and 1.7) obtained after galactose selection. (B) Western blot of total protein from wild-type (C), ND6d¥© cells and
galactose-resistant clones allotopically expressing C8ND6 protein. The blot was probed with the anti-ND6 from Molecular Probes, which in fact
recognizes NDUFBS (see text and Figure 3) and with anti-actin as a loading control.

ND6 (without the MTS or C8) and NDUFBS proteins in
the presence of [*°S] methionine, to analyse which protein
is recognized by the antibody. The radiolabelled proteins
were run in an SDS-PAGE gel and immunodetected with
the Molecular Probes antibody, demonstrating that the
antibody does in fact recognize NDUFBS and not ND6
(Figure 3E).

Allotopically expressed ND6 protein is not imported into
the mitochondrial inner membrane

In the absence of an antibody to detect the expression of
ND6 protein, we added the HA epitope to the carboxy
terminus of the recoded ND6 gene (C8ND6) to generate
C8ND6HA (Figure 4A). To increase transfection effi-
ciency we used lentiviral vectors to transform ND6d®©
cells with C8NDO6HA. The allotopically expressed
C8ND6HA protein was expressed and apparently
colocalized with mitochondria, but a significant amount
seemed to be located outside mitochondria (Figure 4B).

After metabolic selection in galactose containing medium,
we isolated 16 cell galactose-resistant CSND6HA clones.

Analysis of mitochondria isolated from ND6d®©
C8NDO6HA cells showed that the organelles were
enriched in CSND6HA protein as well as the outer
membrane protein TOM20, the inner membrane protein
COI, and the matrix protein HSP60, but were devoid of
IkB-a (a cytosolic protein) (Figure 4C). Treatment of
intact mitochondria with trypsin did not remove COI or
HSP60, since the enzyme cannot access these proteins
(Figure 4C, lines 4 and 5). In contrast, trypsin partially
digested TOM20 (the 6 kDa hydrophobic inner-membrane
domain of the protein is protected) (Figure 4C, lines 4
and 5). Trypsin also cut the C8ND6HA polypeptide,
changing its electrophoretic mobility from 22.5kDa to
18.7kDa (Figure 4C). The distribution of K and R
residues in CE8ND6HA is very asymmetric (Figure 4A).
Four R residues are located within the MTS sequence
(N-terminus) and a fifth R residue is located immediately
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Figure 3. Galactose-resistant ND6dXCC8ND6 clones express wild-type m-Nd6. (A) Metabolic labelling of assembled OXPHOS complexes.
Fluorogram after Blue-Native gel electrophoresis of the mitochondrial translation products of wild-type (C), mutant (ND6d®°) and two
galactose-resistant ND6dXCC8ND6 clones (1.0 and 1.6). Before protein extraction, cells were pulse-labelled with [>°S]-methionine for 1h in the
presence of cycloheximide and chased for 12h. (B). Fluorogram of mitochondrial translation products separated by 2D electrophoresis. Isolated
OXPHOS complexes obtained in the first dimension were resolved on denaturing gels and electro-transferred to PVDF membrane as indicated.
(C) Western blot of the second dimension gel with the Molecular Probes anti-ND6 antibody (complex I) and anti-CO1 (complex IV). (D).
Superposition of the fluorogram and western blot from B and C, showing that the anti-ND6 antibody does not recognize NDG6.
(E) Identification of the specificity of the anti-ND6 antibody. C8ND6, ND6 and NDUFBS, which participates in the assembly of mitochondrial
complex I, were synthesized in vitro in the presence of [°S] methionine. The left panel shows an autoradiogram of a PVDF membrane blotted from a
12% SDS—polyacrylamide gel. The right panel shows a western blot of the membrane with the Molecular Probes anti-ND6 antibody.

before the HA tag (C-terminus). Since CSND6HA protein mitochondrial membrane. The continued detection of
is immunodetected with anti-HA, and the HA tag is at the the HA tagged protein after trypsin digestion indicates
protein C-terminus, the size of the tryspin digested that the protein is partially protected, probably by

C8ND6HA protein is only compatible with exposure of location of the C-terminal portion in the inter-membrane
the N-terminus on the cytosolic side of the outer space.
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Figure 4. Allotopically expressed ND6 is not incorporated into the inner mitochondrial membrane. (A) Upper panel: map and amino acid sequence
of CEND6HA. The COX8 MTS is shown in red, the recoded mt-Nd6 sequence in blue and the HA epitope in green. Lower panel: western blot
showing expression of CSND6HA in lentivirally transformed ND6d®© cells. The blot was probed with anti-HA (Roche) and with anti-actin as a
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expressed CE8ND6HA is not internalized. Lanes (from left to right): 1, cell extract; 2, cytosol; 3, untreated isolated mitochondria; 4 and 5,
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Right panel: diagram showing the likely actions of trypsin on TOM20 and allotopically expressed CSND6HA proteins. (D) Allele-specific primer
extension termination analysis. All the clones obtained after galactose selection were revertants for the mir-Nd6 mutation, in both experiments
(C8ND6 and CENDOHA expression). P: primer; 1.0-1.9, galactose-resistant clones obtained after allotopic expression of C8ND6; 1929, mouse
cell line heteroplasmic for the 13887iC mutation in mt-ND6 (25); 2.1-2.16, galactose-resistant clones obtained after allotopic expression of
C8ND6HA; C, wild-type cells.



232 Nucleic Acids Research, 2011, Vol. 39, No. 1

More aggressive protease digestion with proteinase K is
able to digest outer-membrane proteins at low concen-
tration and even matrix proteins at higher concentration,
suggesting that it can generate holes across both
membranes. This treatment completely removed the
C8ND6HA HA signal (Figure 4C, lines 6 and 7).
Indeed, permeabilization of the outer membrane with
low doses of digitonin in the presence of low doses of
proteinase K abolished the protection of the HA epitope
without affecting the protection of the 6kDa Tom 20
fragment or the stability of matrix located proteins
(Figure 4C, lines 8 and 9). These results indicate that
although the MTS directs allotopically expressed
CSND6HA to mitochondria, the protein cannot
properly internalize to insert into the inner mitochondrial
membrane (Figure 4B and C).

Since sequencing analysis is insufficiently sensitive to
determine low levels of heteroplasmy, we used allele-
specific termination of primer extension (Figure 4D).
Using this approach we found that all the CSND6 and
C8NDOHA clones analysed were heteroplasmic for the
mt-Nd6 mutation: all of them harboured a small propor-
tion of the wild-type gene. Thus, our results show that a
low gene dose of wild-type mt-Nd6 (<10%; undetectable
by sequencing) is sufficient to drive assembly of high
levels of Complex I, as assessed by metabolic labelling
(Figure 3A). ND6 was unequivocally present in the
assembled Complex I (Figure 3B), demonstrating that,
under selective pressure, low doses of wild-type mz-Nd6
gene allow the assembly of near normal levels of
Complex 1.

DISCUSSION

In 1988, Nagley and coworkers were able to show that
the respiratory defect in yeast carrying mutations in the
mitochondrial mz-Atp8 gene could be rescued by engin-
eering a normal copy of the gene tagged with the mito-
chondrial targeting sequence of nuclear-encoded
Neurospora crassa ATPase9, and introducing this gene
into the nucleus, resulting in cytosolic translation of the
ATPase8 gene product (10).

Manfredi and colleagues showed that allotopic expres-
sion of ATPase6 can improve ATP synthesis in human
cells with a pathogenic mt-Atp6 mutation. The mitochon-
drial targeting sequence of C8 (the same used in the
present study) allowed ATPase6 to be targeted to
mitochondria and be correctly processed by the mitochon-
drial proteases (11). The same group also had success with
the nuclear-encoded Atp6 gene from C. reinhardtii, which
they expressed in human control cells to rescue the ATP
synthesis defect in human cells harbouring an mt-Atp6
mutation (12). Recently, Bokori-Brown et al. (13)
carried out similar allotopic experiments to rescue a cell
line carrying an identical mutation in mi-Atp6
(8993T > G), but with very different conclusions. The
authors optimized the import of nuclear-encoded
ATPase6 into the mitochondria of human cell lines, but
after careful analysis of assembled complexes were unable
to show integration of the imported protein into mature

functional ATP-synthase. Thus, restoration of complex V
activity in the original experiments was suggested to have
been due to random clonal variations in ATP synthesis as
a consequence of aneuploidy in the transfected cell
population.

Recently, Qi and colleagues showed that allotopic ex-
pression of a nuclear version of the mutant human
mt-Nd4 gene in mouse eyes led to optic nerve degeneration,
prompting them to propose the use of these mice to test the
effectiveness of treatments for Leber’s hereditary optic
neuropathy (LHON) disease (26). However, this
approach is limited by the inefficient mitochondrial
import of the hydrophobic ND4 protein, as reported by
Oca-Cossio et al. in 2003 (15). Therefore retinal toxicity
in this model might reflect a collapse of the mitochondrial
import machinery rather than the possible effects produced
by a mutant ND4 subunit. More recently, the same group
has evaluated the potential of allotopic expression of a
normal human m¢-Nd4 gene in the mouse visual system
(27). In their opinion, this approach appears safe, and
these authors have proposed allotopic expression of ND4
as an effective gene therapy in patients with LHON disease
(G11778A mtDNA mutation). However, our findings
indicate that the evidence for functional allotopic expres-
sion is insufficient to initiate clinical trials in humans. There
are two broad reasons for our caution. First, successful
allotopic expression is not definitively demonstrated, and
additional analyses are needed to show unequivocally that
the imported proteins are indeed integrated into fully
assembled OXPHOS complexes. These experiments are
easy to perform and will provide a clear-cut conclusion.
Second, incompatibilities between nuclear DNA and
mtDNA from different species have been repeatedly
reported to have a significant effect on complex I activity
(28-30). For example, rat mtDNA is unable to build a func-
tional respiratory chain when introduced in mouse cells
(31,32). Therefore, the use of human mtDNA sequences
in a mouse model is questionable.

Corral-Debrinski and colleagues have attempted to
optimize the allotopic expression of highly hydrophobic
mitochondrial proteins by targeting the transcript to the
outer mitochondrial membrane, with the aim of
facilitating co-translational translocation of the gene
product and thus preventing the accumulation of cytosolic
aggregates (33-36). Our results suggest that the import
process can begin, but it is aborted because the
allotopically expressed C8ND6 protein is wrongly placed
in the outer mitochondrial membrane. In addition, very
likely the C-terminus of the CSND6HA protein faces the
intermembrane space while the N-terminus the cytosolic
side of the outer membrane (Figure 4). This suggests that
despite having the C8 targeting sequence, the mitochon-
drial import apparatus interprets the CSND6HA protein
as an outer membrane protein. Thus, even targeting the
allotopically encoded mRNA to the mitochondrial surface
by a 3’-UTR sequence would not overcome the inability of
the translated protein to translocate toward the inner
mitochondrial membrane if it is processed as an outer
membrane protein (34).

Like Guy and -colleagues, Corral-Debrinski and
co-workers propose their optimized allotopic expression



as a decisive and promising treatment for patients with
LHON disease. However, their reports did not show
analysis demonstrating the assembly of the allotopically-
expressed protein into the holoenzyme.

Many groups have failed in the attempt to achieve
allotopic expression in mammalian cells because none of
them was able to show unequivocally that the allotopic
protein was responsible for the improved function in the
mutant cells tested. Several studies suggest that allotopic
expression of most mitochondrial proteins is not feasible
because of their high mesohydrophobicity, a parameter
that can be used to predict the importability of hydro-
phobic peptides (37). With few exceptions, the
13 proteins encoded in the mitochondrial genome are
conserved among all species. Although the reason of this
conservation has been the subject of speculation, the more
widely held view is that these proteins are so hydrophobic
that they are unable to be imported from the cytosol.
Interestingly, in the few cases where these genes have
transferred to the nucleus naturally, this was accompanied
by a significant reduction in hydrophobicity. This is the
case, for example, in C. reinhardtii, which expresses several
genes in the nuclear-cytosolic compartment that are gen-
erally encoded in the mitochondrial genome in other
species (COII, COIII and ATPase6). The fact that the
mitochondrial and nuclear genetic codes in C. reinhardtii
are identical might have facilitated this transfer of genes
from mitochondria to cell nucleus (38). However, even in
this case some genes apparently cannot be transferred:
cytochrome ¢ oxidase subunit I and apocytochrome b
are the two exceptions that have remained in the
mtDNA in all species, probably due to their high
mesohydrophobicity. Potential strategies to overcome
these difficulties include substituting amino acids that
reduce hydrophobicity without affecting biological
activity (39), or dividing the mitochondrial gene into two
pieces that are subsequently transferred to the nucleus, as
happened in the case of m#-Co2 (40).

The findings presented here show that the behaviour of
mitochondria in cultured cells can give a false impression
that allotopic expression of mtDNA encoded proteins is
successful. Workers in this field should be aware that the
only definitive evidence for successful allotopic expression
is the demonstration that the protein expressed in the
cytosol is assembled in the full OXPHOS complex,
restoring its activity. Fortunately, this can be easily con-
firmed or discounted by electrophoresis and determination
of complex activity. This is particularly important when
proposing a clinical trial to test the potential of allotopic
expression of mtDNA-encoded proteins for the treatment
of mtDNA-linked diseases.
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