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ABSTRACT

RNA-binding proteins (RBPs) play a major role in
many post-transcriptional processes, including
mRNA stability, alternative splicing and translation.
PCBP4, also called MCG10, is an RBP belonging to
the poly(C)-binding protein family and a target of
p53 tumor suppressor. Ectopic expression of
PCBP4 induces cell-cycle arrest in G, and apop-
tosis. To identify RNA targets regulated by PCBP4
and further decipher its function, we generated
multiple cell lines in which PCBP4 is either inducibly
over-expressed or knocked down. We found that
PCBP4 expression decreases cyclin-dependent
kinase inhibitor p21 induction in response to DNA
damage. We also provided evidence that PCBP4
regulates p21 expression independently of p53. In
addition, we showed that a deficiency in PCBP4
enhances p21 induction upon DNA damage. To
validate PCBP4 regulation of p21, we made
PCBP4-deficient mice and showed that p21 expres-
sion is markedly increased in PCBP4-deficient
primary mouse embryo fibroblasts compared to
that in wild-type counterparts. Finally, we uncovered
that PCBP4 binds to the 3'-UTR of p21 transcript
in vitro and in vivo to regulate p21 mRNA stability.
Taken together, we revealed that PCBP4 regulates
both basal and stress-induced p21 expression
through binding p21 3-UTR and modulating p21
mRNA stability.

INTRODUCTION

Poly(C)-binding proteins (PCBPs), also known as aCPs or
hnRNP Es, are ubiquitously expressed RNA-binding
proteins (RBPs) involved in many biological processes
including gene expression, mRNA stabilization and trans-
lation (1-4). The PCBP family is composed of five major

proteins: hnRNP K, PCBP1, PCBP2, PCBP3 and PCBP4
(5-9). All PCBP family members possess several hnRNP
K homology (KH) domains, which consist of 70
amino-acid motifs essential for binding to poly(C)-rich
elements in DNA or RNA targets (10,11). Indeed,
PCBPs bind pyrimidine-rich elements in the promoter of
various genes to regulate transcription. For example,
hnRNP K binds c-myc and elF4E promoters and
recruits the RNA polymerase II machinery to promote
transcription (3,12). hnRNP K also acts as co-activator
of tumor suppressor p53 to induce p53 target genes and
mediate cell-cycle arrest in response to DNA damage (13).
In addition, several PCBPs bind the mu opioid receptor
(MOR) gene promoter and can either activate (hnRNP K,
PCBP1 and PCBP2) or repress (PCBP3) MOR transcrip-
tion in neuronal cells (4,14,15). Notably, PCBPI and
PCPB2 promote the stabilization of important long-lived
transcripts, such as o-globin, collagen o 1 and tyrosine
hydroxylase through binding cytosine-rich elements in
their 3’ untranslated region (3’-UTR) (16-18). Through
mRNA binding, PCBP1, PCBP2 and hnRNP K also
regulate the translation of several cellular and viral
mRNAs, such as c-myc, 15-lipoxygenase, poliovirus and
HPV 16 L2 mRNAs (2,19-21). To this day, specific DNA
or RNA targets regulated by PCBP4 have not been
identified.

The PCBP4 gene encodes at least four variants:
MCG10, MCGIl10a, aCP-4 and oCP-4a. MCGIO0 is a
424-amino-acid protein containing two KH domains,
several proline-rich domains, a nuclear export signal and
a nuclear import signal (5). MCGIl0a is a variant of
MCGI10 lacking 55 residues in the first KH domain
due to alternative splicing in exon 4. «CP-4 is similar to
MCG10a but has 34 unique residues at the NH,-terminus,
which encode an additional KH domain (6). «CP-4a is an
alternative splice variant of aCP-4 with a shorter and
distinct COOH-terminus that lacks proline-rich domains,
nuclear export signal and nuclear import signal. The
physiological significance of each PCBP4 isoform is not
yet fully understood. Interestingly, MCG10, a target of
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tumor suppressor p53, can be induced in response to DNA
damage (5). In addition, MCG10 mediates cell-cycle arrest
in G>-M and apoptosis in lung cancer cell lines. Likewise,
MCGI10a and aCP-4 trigger cell-cycle arrest in G,-M but
aCP-4a does not (5,22,23). Notably, the PCBP4 gene is
located at 3p21, a chromosomal region highly susceptible
to alterations in lung cancers (24). Indeed, loss of aCP-4
expression is common in squamous cell carcinomas and is
associated with poorly differentiated and highly prolifera-
tive tumors (23). In view of this, PCBP4 is suggested to be
a candidate lung tumor suppressor gene and a potential
target in lung carcinogenesis.

p21 is a cyclin-dependent kinase inhibitor and a major
mediator of p53 to induce G, arrest in response to stress
signals. In addition, p21 plays a role in other cellular
processes, including cell differentiation and senescence
(25-28). Due to these important functions, p21 is tightly
regulated at transcriptional and post-transcriptional levels
(29,30). Indeed, various RBPs are implicated in p21 regu-
lation. For example, HuD, HuR and RNPCI, which
possess one or several RNA recognition motifs (RRMs),
regulate p21 mRNA stability through binding AU-rich
elements (AREs) in the 3-UTR of p2l transcript
(31-34). HuR is an important mediator of p21 stabiliza-
tion in response to UV light, gamma radiation and other
stress signals (32,33,35). Similarly, the p53 target RNPC1
is involved in maintaining the stability of basal and stress-
induced p21 transcript (36). HuR and RNPCI bind
diverse AREs on p21 3’-UTR but function cooperatively
to stabilize p21 mRNA (37). In contrast, PCBP1, PCBP2
and hnRNP K bind CU-rich elements in the p21 3-UTR
to negatively regulate p21 expression (38,39). Indeed,
co-depletion of PCBP1 and PCBP2 trigger p21 mRNA
stabilization and G, arrest (38). Instead, hnRNP K acts
through inhibiting p21 mRNA translation (39).
Interestingly, it is believed that HuR, through
antagonizing the regulation of p21 by hnRNP K,
controls the switch between neuronal cell proliferation
and differentiation (39).

In this study, we aimed to identify novel PCBP4 RNA
targets and further decipher PCBP4 physiological func-
tions. We generated multiple cell lines in which PCBP4
is either inducibly expressed or knocked down and
found that PCBP4 regulates basal and DNA damage-
induced p21 mRNA and protein levels. Consistent with
this, we showed that basal p21 mRNA and protein
levels were increased in PCBP4~/~ MEFs compared to
wild-type MEFs. Furthermore, we provided evidence
that PCBP4 binds to CU-rich regions in the 3’-UTR of
p21 transcript in vitro and in vivo. Finally, we uncovered
that PCBP4 regulates p21 mRNA stabilization. Therefore,
we suggest that PCBP4 plays a role in the regulation of
p21 mRNA stability in normal and cellular stress
conditions.

MATERIALS AND METHODS
Reagents

Anti-glyceraldehyde-3-phosphate dehydrogenase (GAPDH),
anti-p53, anti-p21 and anti-MDM2 (SMP14) were from

Santa Cruz Biotechnology (Santa Cruz, CA, USA).
Anti-hemagglutinin (HA) and anti-MDM?2 (AB-2) were
from Covance (Berkeley, CA, USA) and EMB Biosciences
(San Diego, CA, USA), respectively. Anti-PCBP4 was from
ProSci Incorporated (Poway, CA, USA). Actinomycin D
and other reagents were from Sigma (St. Louis, MO, USA).

Plasmids

To generate PCBP4 shRNA vector, oligonucleotides
(5-AGC TTT TCC AAA AAG AGC GAG CTG TTA
CGG TAT CTC TTG AAT ACC GTA ACA GCT
CGC TCT GGG-3 and 5-GAT CCC CAG AGC GAG
CTG TTA CGG TAT TCA AGA GAT ACC GTA ACA
GCT CGC TCT TTT TTG GAA A-3') were designed to
target nucleotides 643-656 (shown in boldface) of PCBP4
mRNA (GenBank accession number NM_033008.2).
Notably, this target sequence is also present in MCG10
and MCG10a. Oligonucleotides were annealed and cloned
into pTER, a Pollll promoter-driven shRNA expression
vector. The resulting plasmid was named pTER/siPCBP4.

To generate a pcDNA3 vector expressing C-terminally
HA-tagged PCBP4, a cDNA fragment encoding amino
acids 1-306 of PCBP4 was amplified using primers 355F
(5-ACA CAC TCG CAG GTC GCT GT-3') and 1704R
(5-GCA GTG ATG AGG TAC TGG GC-3'). This NH,-
terminal PCBP4 fragment was then cloned between EcoRI
and Kasl sites in the pcDNA3/MCGIOHA vector
described previously (5). The resulting plasmid was
named pcDNA3/PCBP4HA. To generate a pcDNA4
vector expressing C-terminally HA-tagged PCBP4, an
EcoRI fragment containing HA-tagged PCBP4 was
obtained from pcDNA3/PCBP4HA and cloned into a
pcDNA4 vector. The resulting plasmid was named
pcDNA4/PCBP4HA.

Cell culture

MCEF7 breast adenocarcinoma, RKO colon carcinoma
and H1299 lung carcinoma cells were obtained from
ATCC (Manassas, VA, USA) and cultured in DMEM
(Invitrogen, Carlsbad, CA, USA) supplemented with 8%
fetal bovine serum (Hyclone, Logan, UT, USA). Parental
MCF7-pTR-7, RKO-pTR-13 and H1299-pTR-8 cell lines
were generated by transfection with a pcDNAG6 vector that
expresses a tetracycline repressor as previously described
(40,41). To generate cell lines that inducibly express
PCBP4 shRNA, parental cell lines were transfected with
pTER/siPCBP4 and the pBabe vector for puromycin se-
lection. To generate cell lines that inducibly express
C-terminally HA-tagged PCBP4, parental cell lines were
transfected with pcDNA4/PCBP4HA and the pBabe
vector for puromycin selection. Individual clones were
screened for inducible knockdown or expression of
PCBP4 by Western blot analysis and two representative
clones were chosen for subsequent studies.

Generation of heterozygous PCBP4 knockout mice and
isolation of MEFs

To generate PCBP4 knockout mice, TBV-2 embryonic
stem cells (ES) containing a gene trap rFRosafgeo+1s
vector inserted into PCBP4 first intron were obtained



from the German Gene Trap Consortium (clone ID
D136D11) (42). These ES cells were microinjected into
C57BL/6 blastocysts at the UC Davis murine targeted
genomics laboratory. Resulting male chimeras were bred
to C57BL/6 females (Jackson Laboratory, Bar Harbor,
ME, USA) and agouti pups were tested for germline trans-
mission. Genotyping was performed by PCR on DNA
extracted from toe clipping samples. Mice heterozygous
for PCBP4 were bred and murine embryonic fibroblasts
(MEFs) were isolated from 13.5-day-old embryos.
Primary MEFs were cultured in DMEM supplemented
with 10% fetal bovine serum. All animals were housed
at UC Davis CLAS vivarium facility. All animal care
and use protocols were approved by the UC Davis
Institutional Animal Care and Use Committee.

Western blot analysis

Cells were washed twice with PBS, re-suspended with 2X
SDS sample buffer, incubated at 95°C for 5 min, and used
for Western blot analysis as previously described (43).

RNA isolation, RT-PCR and quantitative PCR

Total RNA was isolated using TRIzol reagent (Invitrogen,
Carlsbad, CA, USA) and cDNA was synthesized using
iScript (Biorad, Life Science Research, Hercules, CA,
USA). To determine which PCBP4 variant is predomin-
antly expressed in MCF7, RKO and H1299 cells, RT-PCR
experiments were performed using primers 355F, 885R
(5-GCA CAA AGG TCC TCA TCC AG-3'), 769F
(5-GAT CAC CAT CTC CGA GGG CT-3') and 1222R
(5-TGT GGA GTT GGG GAG CAG GT-3). To deter-
mine p21 mRNA levels and stability, quantitative
RT-PCR was performed on a Mastercycler® ep Realpex
(Eppendorf, Hauppauye, NY, USA) using a total volume
of 20 ul containing 200 nM primers and 1X Absolute’
Blue QPCR SYBR® Green Mix (ABgene, Thermo
Fisher Scientific, Rockford, IL, USA). For GAPDH amp-
lification, primers GAPDH-F (§-AGC CTC AAG ATC
ATC AGC AAT G-3) and GAPDH-R (5-ATG GAC
TGT GGT CAT GAG TCC TT-3') were used. For p21
amplification, primers p21-F (5-TGA GCC GCG ACT
GTG ATG-3) and p21-R (5-GTC TCG GTG ACA
AAG TCG AAG TT-3') were used.

To assess p21 and GAPDH transcript levels in
wild-type, PCBP4"~ and PCBP4~/~ MEFs, quantitative
RT-PCR experiments were performed. For mouse p2l
amplification, primers mp21F (5-GCC TTA GCC CTC
ACT CTG TG-3) and mp21R (5-AGC TGG CCT TAG
AGG TGA CA-3') were used. For mouse GAPDH amp-
lification, primers mGAPDHF (5-AAC TTT GGC ATT
GTG GAA GG-3') and mGAPDHR (5-ACA CAT TGG
GGG TAG GAA CA-3') were used.

RNA immunoprecipitation and RT-PCR

RNA immunoprecipitation and RT-PCR (RIP) was per-
formed as previously described (44). Briefly, cells (2 x 107)
were uninduced or induced to express PCBP4 for 24h,
collected in immunoprecipitation buffer, and then
incubated with 2 pg of anti-HA or mouse IgG antibody
at 4°C overnight. RNA-protein immunocomplexes were
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precipitated using protein A/G beads and subjected to
RT-PCR.

Luciferase assay

Dual-luciferase reporter assay was done according to the
manufacturer’s instructions (Promega, Madison, WI,
USA). Briefly, cells (4 x 10*) were plated on a 24-well
plate, untreated or treated with tetracycline for 24 h, and
then transfected with control pGL3 reporter vector or
pGL3 vector containing full-length p21 3’-UTR (200 ng)
and a Renilla luciferase vector (5ng). Luciferase activity
was measured on triplicate wells using a Turner Designs
luminometer 24 h post-transfection.

RNA electrophoretic mobility shift assay

Recombinant HA-tagged PCBP4-GST and GST proteins
expressed in E. coli BL21 were purified using glutathione
sepharose beads. Various regions in the 3-UTR of p21
transcript were PCR-amplified using primers containing
the T7 promoter. p21 RNA probes were made by
in vitro transcrigtion using T7 RNA polymerase in the
presence of o-*P-UTP. RNA electrophoretic mobility
shift assays (REMSAs) were performed by combining
indicated amounts of HA-tagged PCBP4 protein, 1 mg/
ml of yeast tRNA and 50000CPM *?P-labeled p2l
RNA probe in reaction buffer, followed by incubation
at 25°C for 20min as previously described (37). Next,
RNA-protein complexes were digested with RNaseTl
and separated on a 7% native acrylamide gel. Supershift
assays were performed by pre-incubating 3 pg of anti-HA
antibody with HA-tagged PCBP4 protein for 30 min on
ice before incubation with p21 RNA probes.

RESULTS

o CP-4 is the main PCBP4 variant expressed in MCF7,
RKO and H1299 cells

The PCBP4 gene encodes four known transcripts:
MCGI10, MCG10a, aCP-4 and oCP-4a. MCGI10 and
MCGI10a variants use a start ATG codon located in
exon 3b and encode proteins with two KH domains
(Figure 1A). aCP-4 and aCP-4a variants lack exon 3b
due to alternative splicing and utilize an upstream
start ATG to encode proteins with three KH domains
(Figure 1A). In addition, MCGI10a, aCP-4 and aCP-4a
lack exon 4b due to alternative splicing, which results in
a deletion of 55 amino acids in the first KH domain
(MCGl10a) or second KH domain (aCP-4 and aCP-4a).
To determine which PCBP4 variant is mainly expressed in
MCF7 cells, RT-PCR was performed to amplify exon 3
(Figure 1B, lane 1) and exon 4 (Figure 1B, lane 2). Here,
we found that a major PCR product corresponding to
aCP-4 was detected upon amplification of exons 3 and
4. Similarly, aCP-4 was the main PCBP4 variant
detected in RKO and p53-deficient H1299 cells (data not
shown). In view of this, this study will focus on three KH
domains-containing aCP-4 protein. As aCP-4 is the major
variant of the PCBP4 gene, we will name it PCBP4 from
here on.
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Figure 1. oCP-4 is the main PCBP4 variant expressed in MCF7, RKO and H1299 cells. (A) Schematic representation of PCBP4 transcripts. Exons
are shown as numbered boxes. Locations of two alternative splice sites are indicated by lines. MCG10a does not contain exon 4b. aCP-4 does not
contain exons 3b and 4b. Primers used for RT-PCR experiments are shown. (B) aCP-4 is the main isoform expressed in MCF7 cells. Levels of
MCG10, MCG10a and aCP-4 transcripts were analyzed by RT-PCR using primers 355F and 885R (left), 769F and 1222R (right). Positions of
expected PCR products for MCG10, MCG10a and aCP-4 are indicated by arrows.

PCBP4 regulates the induction of p21 by DNA damage
in a p53-independent manner

To examine a potential role for PCBP4 in the p53
pathway, we generated MCF7 cell lines in which
C-terminally HA-tagged PCBP4 is inducibly expressed
under the control of a tetracycline-regulated promoter.
Next, parental MCF7-pTR-7 and MCF7-PCBP4-HA-2
cell lines were pretreated with tetracycline for 2 days,
followed by treatment with DNA damage agent
camptothecin (CPT) for 12 or 24h (Figure 2). In
parental MCF7 cells, camptothecin treatment stabilized
endogenous p53, which resulted in induction of p53
targets p21 and MDM2 after 12 or 24h (Figure 2A,
compare lane 1 with lanes 3 and 5). Importantly, we
showed that tetracycline had no effect on p53 stabilization
and induction of p21 or MDM2 by camptothecin
(Figure 2A, compare lanes 1, 3 and 5 with lanes 2, 4 and
6, respectively). In MCF7-PCBP4-HA-2 cells, HA-tagged
PCBP4 was detected upon tetracycline treatment for 2
days (Figure 2A, compare lanes 7, 9 and 11 with lanes 8,
10 and 12, respectively). In addition, camptothecin treat-
ment stabilized endogenous p53, which led to induction
of p21 and MDM2. Here, we found that PCBP4 had
no significant effect on p53 stabilization 12h after
camptothecin treatment (Figure 2A, compare lanes
9 and 10). However, PCBP4 slightly enhanced p53 stabil-
ization 24h after camptothecin treatment (Figure 2A,
compare lanes 11 and 12). Interestingly, we showed that
PCBP4 markedly inhibited p21 induction in cells treated
with camptothecin for 12 or 24h (Figure 2A, compare
lanes 9 and 11 with lanes 10 and 12, respectively). By
contrast, PCBP4 had no effect on MDM?2 induction
by camptothecin. To verify that the regulation of p21 by
PCBP4 is not cell-type specific, we generated RKO cell

lines in which C-terminally HA-tagged PCBP4 can be
inducibly expressed (Supplementary Figure S1). Next,
parental RKO-pTR-13 and RKO-PCBP4-HA-2 cell lines
were pretreated with tetracycline for 2 days, followed by
treatment with camptothecin for 3, 6 or 12h. We found
that, similar to that in MCF7 cells, PCBP4 decreased p21
levels induced in RKO cells treated with camptothecin for
6 or 12h (Supplementary Figure S1). Taken together,
these results suggest that PCBP4 modulates the induction
of p21 by DNA damage.

To determine whether the regulation of p21 by PCBP4
is dependent on p53, we generated pS53-null H1299
cell lines in which HA-tagged PCBP4 can be inducibly
expressed. Next, parental H1299-pTR-8 and H1299-
PCBP4-HA-6 cell lines were pretreated with tetracycline
for 2 days, followed by treatment with camptothecin for
6 or 12h (Figure 2B). In parental HI1299 cells,
camptothecin treatment led to a slight increase in p21 at
6 or 12h (Figure 2B, compare lanes 1 with lanes 3 and 5).
In addition, tetracycline had no effect on p21 induction by
camptothecin. In H1299-PCBP4-HA-6 cells, HA-tagged
PCBP4 was detected upon tetracycline treatment for
2 days (Figure 2B, compare lanes 7, 9 and 11 with lanes
8, 10 and 12, respectively). Most importantly, we found
that PCBP4 inhibited p2l1 induction in p53-null cells
treated with camptothecin for 6 or 12h (Figure 2B,
compare lanes 9 and 11 with lanes 10 and 12, respectively).
This suggests that PCBP4 regulates p2l levels in a
p53-independent manner.

Deficiency in PCBP4 enhances the induction of p21 by
DNA damage

To assess whether a lack of PCBP4 expression has any
effect on p21 levels, we generated MCF?7 cell lines in
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Figure 2. PCBP4 regulates the induction of p21 by DNA damage in a pS3-independent manner. (A) PCBP4 inhibits p21 induction by DNA damage.
Cell extracts were prepared from MCF7-pTR-7 and MCF7-PCBP4-HA-2 cells uninduced (-) or induced (+) to express PCBP4 for 2 days, and then
untreated or treated with 200nM CPT for 12 or 24 h. Levels of HA-tagged PCBP4, p53, p21, MDM2 and GAPDH were detected by Western blot
analysis. (B) PCBP4 regulates stress-induced p21 levels in a p53-independent manner. Cell extracts were prepared from HI1299-pTR-8 and
H1299-PCBP4-HA-6 cells uninduced (—) or induced (+) to express PCBP4 for 2 days, and then untreated or treated with 200nM CPT for 6 or

12h. The data are representative of two independent experiments.

which endogenous PCBP4 can be inducibly knocked
down. In a representative PCBP4-KD cell line,
MCF7-PCBP4-KD-26, we showed that induction of
PCBP4 shRNA for 3 days elicited a significant decrease
in PCBP4 levels (Figure 3A, compare lanes 1 and 2). Next,
MCF7-PCBP4-KD-26 cells uninduced or induced to
express PCBP4 shRNA for 3 days were treated with
camptothecin for 3, 6 or 12h. We showed that p53 was
stabilized after treatment with camptothecin, which
resulted in PCBP4 and p2l inductions 6 or 12h
post-treatment (Figure 3A, compare lanes 1 with lanes 5
and 7). Furthermore, we found that induction of p21 by
DNA damage was further enhanced upon PCBP4

knockdown 6 or 12h post-treatment with camptothecin
(Figure 3A, compare lanes 5 and 7 with lanes 6 and 8,
respectively). Taken together, our data suggest that
PCBP4 modulates p21 induction in response to stress
signals.

To verify that the effect of PCBP4 on p21 expression is
not cell-type specific, we generated RKO cell lines in which
endogenous PCBP4 can be inducibly knocked down by
the tetracycline-inducible shRNA expression system. In a
representative PCBP4-KD cell line, RKO-PCBP4-KD-1,
we showed that induction of PCBP4 shRNA for 3 days
elicited a significant decrease in PCBP4 levels (Figure 3B,
compare lanes 1 and 2). Next, RKO-PCBP4-KD-1 cells
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Figure 3. Deficiency in PCBP4 increases basal and DNA

damage-induced p21 levels. (A) Knockdown of PCBP4 enhances p2l
induction upon DNA damage. Cell extracts were prepared from
MCF7-PCBP4-KD-26 uninduced () or induced (+) to express
PCBP4 shRNA for 3 days, and then untreated or treated with
200nM CPT for 3, 6 or 12h. Levels of PCBP4, p53, p2l and
GAPDH were detected by Western blot analysis. (B) Cell extracts
were prepared from RKO-PCBP4-KD-1 uninduced (-) or induced (+)
to express PCBP4 shRNA for 3 days, and then untreated or treated
with 200nM CPT for 3, 6, 12 or 24h. The data are representative of
two independent experiments. (C) Deficiency in PCBP4 increases basal
p21 expression. Cell extracts were prepared from PCBP4"", PCBP4"/~
and PCBP4~/~ MEFs. Levels of PCBP4, p21 and actin were detected
by Western blot analysis.

uninduced or induced to express PCBP4 shRNA
were treated with camptothecin for 3, 6, 12 or 24h. We
showed that camptothecin stabilized endogenous
p53, which resulted in induction of PCBP4 and p21
(Figure 3B, compare lanes 1 with lanes 3, 5, 7 and 9).
Similarly, we found that PCBP4 knockdown enhanced
p21 induction following camptothecin treatment for 6,
12 or 24h (Figure 3B, compare lanes 5, 7 and 9 with
lanes 6, 8 and 10, respectively).

To determine whether PCBP4 regulates basal p21 ex-
pression in a ?hysiologically relevant condition, we
created PCBP4"/" mice and intercrossed those mice to
obtain primary mouse embryonic fibroblasts (MEFs) of
three genotypes: wild-type, PCBP4™~ and PCBP4~/".
Next, Western blot analyses were performed
(Figure 3C). We showed that PCBP4 protein levels were
reduced by 50% in PCBP4"~ MEFs and were not detect-
able in PCBP4~/~ MEFs (Figure 3C, compare lane 1 with
lanes 2 and 3). Importantly, basal p21 protein levels were
increased in PCBP4"~ MEFs and increased further in
PCBP4~/~ MEFs (Figure 3C, compare lane 1 with lanes
2 and 3).

PCBP4 regulates p21 mRNA level and stability

To assess how PCBP4 regulates p21 expression, we
examined whether the decrease in p21 protein by PCBP4
is correlated with a decrease in p21 transcript. To this end,
quantitative RT-PCR was performed on MCF7 cells that
were uninduced or induced to express PCBP4 for 2 days,
followed by treatment with camptothecin for 6 or 12h
(Figure 4A). In uninduced cells, we showed that
camptothecin treatment led to an increase in p21 mRNA
levels by 4-fold and 5.5-fold after 6 and 12 h, respectively
(Figure 4A). Interestingly, we found that PCBP4 markedly
reduced basal p21 transcript levels by 20%. Furthermore,
PCBP4 decreased the induction of p21 upon camptothecin
treatment by 17% and 25% after 6 and 12 h, respectively
(Figure 4A). To exclude potential cell-type specific effects,
p21 transcript levels were examined in RKO cells. We
found that, similar to MCF7 cells, PCBP4 reduced p21
transcript levels by 15% in untreated and camptothecin-
treated cells (Figure 4B).

To examine whether a lack of PCBP4 expression has
any effect on p21 mRNA levels, quantitative RT-PCR
was performed on MCF7 cells uninduced or induced to
express PCBP4 shRNA for 3 days, followed by treatment
with camptothecin for 6 or 12h. Here, we found that
p21 transcript levels were increased by 70% in PCBP4-
deficient cells (Figure 4C). In addition, PCBP4
knockdown increased p2l1 induction after 6 and 12h
camptothecin treatment by 30% and 50%, respectively
(Figure 4C). To further confirm the above findings,
similar experiments were performed in RKO cells. We
found that, similar to MCF7 cells, a deficiency in
PCBP4 led to a 20% increase in p21 mRNA levels in un-
treated and camptothecin-treated cells (Figure 4D).

To determine whether the increase in p21 protein upon
PCBP4 knockout is correlated with an increase in p21
transcript, we performed quantitative RT-PCR on
wild-type, PCBP4"/~ and PCBP4~/~ MEFs (Figure 4E).
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triplicate samples was plotted and the relative half-life of p21 transcript was calculated. *, P <0.05.

We showed that p21 mRNA levels were increased by 25% To further examine the mechanism through which
in PCBP4"/~ and PCBP4~/~ MEFs compared to wild-type PCBP4 regulates p2l, quantitative RT-PCR was per-
MEFs. Taken together, our data suggest that PCBP4 formed to measure p21 mRNA half-life in RKO cells
modulates p21 expression at the mRNA level in normal that were uninduced or induced to express PCBP4 for
and DNA damage conditions. 2 days, followed by treatment with transcriptional
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inhibitor actinomycin D for 0, 1, 2, 3, 4 or 5h (Figure 4F).
In uninduced RKO cells, we found that p21 mRNA levels
were gradually decreased upon actinomycin D treatment.
The relative p21 mRNA half-life was calculated to be
2.7h. Notably, in PCBP4-expressing RKO cells, p2l
mRNA levels were rapidly decreased upon actinomycin
D treatment (Figure 4F). As a result, the relative p21
mRNA half-life (2.1h) was reduced by 20%. To verify
that this effect is not cell-type specific, we examined
whether PCBP4 regulates p21 mRNA half-life in MCF7
cells. Quantitative RT-PCR was performed in MCF7 cells
uninduced or induced to express PCBP4 for 2 days, and
then treated with actinomycin D for various times
(Supplemenary Figure S2). In uninduced MCF7 cells, we
found that the relative p21 mRNA half-life was 4.1h.
Notably, in PCBP4-expressing MCF7 cells, p21 mRNA
levels were decreased faster upon actinomycin D treat-
ment and the resulting relative p21 mRNA half-life
(3.4h) was reduced by 17%. Therefore, we uncovered
that PCBP4 plays a role in the regulation of p21 mRNA
stability.

PCBP4 binds to the 3'-UTR of p21 transcript

The post-transcriptional regulation of p21 is commonly
mediated through RBPs binding to p21 3-UTR. To
assess whether PCBP4 binds to p21 3-UTR in vivo,
RIP assays were performed on RKO cells uninduced
or induced to express HA-tagged PCBP4 for 24h
(Figure 5A). Importantly, we found that p21 transcripts
were detected upon PCBP4 induction in PCBP4 but not
IgG immunocomplexes (Figure SA, p21 panel, compare
lanes 4 and 6). As a control, GAPDH transcripts were
not detected upon PCBP4 induction (Figure S5A,
GAPDH panel, compare lanes 4 and 6).

Next, to determine whether PCBP4 regulates p21
mRNA stability through the 3-UTR, we performed
luciferase assays on parental, PCBP4-expressing or
RNPCl-expressing MCF7 cells uninduced or induced to
express PCBP4 or RNPCI for 2 days, followed by trans-
fection with a pGL3 reporter vector that contains p2l
3-UTR (nucleotides 571-2121) (34). Here, we showed
that tetracycline had no effect on luciferase activity
(Figure 5B). In contrast, PCBP4 markedly reduced
luciferase activity by 25%. As a control, known p21 regu-
lator RNPCI increased luciferase activity by 50%. Taken
together, these findings suggest that the binding of PCBP4
to p21 3’-UTR in vivo regulates p21 mRNA stability.

To further decipher the region in p21 3’-UTR that is
bound by PCBP4, REMSA was performed using 50, 100
or 200nM HA-tagged PCBP4 protein and a radiolabeled
full-length p21 3-UTR RNA probe (nucleotides
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621-2120, GenBank accession number NM_000389) as
described in Figure SC. Here, we found that there was a
strong binding of PCBP4 to full-length p21 3-UTR
(Figure 5D, compare lane 1 with lanes 2-4). Next, to
verify the specificity of PCBP4 binding to p21 3-UTR, a
supershift assay was performed by adding anti-HA
antibody to the reaction mixture (Figure 5E). Indeed, we
showed that anti-HA antibody recognized HA-tagged
PCBP4 protein in the PCBP4-RNA complex, which led
to a supershift of the complex on the gel (Figure SE,
compare lanes 2 and 3). The specificity of PCBP4
binding to p21 3’-UTR was further confirmed by a com-
petition assay in which unlabeled p21 3’-UTR probe (cold
probe) was added to the reaction mixture (Supplementary
Figure S3). We found that the binding of PCBP4 to
radiolabeled p21 3-UTR probe was reduced in the
presence of cold probe (Supplementary Figure S3,
compare lanes 2 and 3).

To identify the region in p21 3’-UTR bound by PCBP4,
three p21 RNA probes (A, B and C) were made as
described in Figure 5C. Probe A (nucleotides 621-850)
contains ARE elements for binding of RRM-containing
RBPs, such as HuD, HuR and RNPCI, and a potential
poly(C)-rich element for PCBP1 binding (31,37). Probe B
(nucleotides 851-1090) contains several poly(C)-rich
elements for PCBP1 and PCBP2 binding (38). Probe C
(nucleotides 1091-2120) also has several poly(C)-rich
elements. Next, REMSAs were performed and showed
that PCBP4 bound strongly to regions B and C but not
to region A (Figure 5F, compare lane 2 with lanes 4, 6 and
8). To confirm the specificity of PCBP4 binding to regions
B and C, competition assays were performed (Figure 5G
and H). Here, we showed that the binding of PCBP4 to
radiolabeled probe B was inhibited by unlabeled probe B
or C, but not probe A (Figure 5G, compare lane 2 with
lanes 3-5). Similarly, the binding of PCBP4 to
radiolabeled probe C was inhibited by unlabeled probe
C or B, but not probe A (Figure 5H, compare lane 2
with lanes 3-5). Taken together, these results imply that
PCBP4 specifically binds to two poly(C)-rich regions in
the 3’-UTR of p21 transcript to regulate its stability.

DISCUSSION

RBPs are increasingly recognized for their importance in
many steps of RNA metabolism and as key regulators of
gene expression. In view of this, alterations in RBPs are
implicated in many human diseases ranging from fragile X
syndrome to cancer (45). In this study, we showed that
poly(C)-binding protein PCBP4 plays a role in the regula-
tion of cyclin-dependent kinase inhibitor p21. Indeed, we

Figure 5. Continued

activity & SD of triplicate samples was plotted. The data are representative of two independent experiments. (C) Schematic representation of p21
3-UTR along with the location of AU-rich elements, C-rich elements and RNA probes used for REMSAs. (D) PCBP4 binds to p21 3-UTR.
REMSA was performed by mixing >?P-labeled full-length p21 3-UTR with recombinant GST or various amounts of GST-PCBP4-HA proteins.
RPC, RNA-protein complexes. (E) Supershift assay was performed by adding 3 pug of anti-HA antibody to a reaction mixture containing full-length
p21 3-UTR and GST-PCBP4-HA. (F) PCBP4 binds to two regions in p21 3-UTR. REMSA was performed using *?P-labeled p21 full-length, A, B
or C probes. (G) Competition assay was done by adding an excess amount of unlabeled p21 probe (B, A or C) to compete the binding of PCBP4 to
radiolabeled p21 probe B. (H) Competition assay was performed by adding an excess amount of unlabeled p21 probe (C, A or B) to compete the

binding of PCBP4 to radiolabeled p21 probe C.
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Figure 6. A model for the role of p21 regulation by PCBP4 in the p53
tumor suppressor pathway.

found that the basal level of p21 was decreased by
overexpressed PCBP4 but increased by knockdown or
knockout of PCBP4 (Figure 4). Consistent with this, it
was recently reported that PCBP1 and PCBP2 also
regulate p2l (38). These findings uncover p2l as a
common RNA target regulated by the PCBP family.
However, in response to various stimuli, only PCBP4
and p21 were found to be induced in a pS53-dependent
manner (5,26). p2l is the major p53 mediator of G,
arrest, whereas PCBP4 induces G, arrest and apoptosis
(5,22). Unexpectedly, we showed here that PCBP4 de-
creases p21 levels induced by DNA damage. To reconcile
these findings, we hypothesize that PCBP4 may have a
unique function in the p53 pathway through controlling
p21-mediated G, arrest and facilitating G, arrest and/or
apoptosis depending on the type or level of cellular stress
(Figure 6). Interestingly, we found that p53 activation
mediates a rapid p2l induction and a more gradual
PCBP4 induction in response to DNA damage (data not
shown). In view of this, prolonged stress signals can po-
tentially mediate a sustained PCBP4 induction and ultim-
ately switch the cellular response from G, arrest to G,
arrest and apoptosis. Similarly, studies have revealed
that low or high doses of cellular stress, such as UV ir-
radiation, can produce specific dynamics of p53 activation
to ultimately implement G, arrest or G, arrest release and
apoptosis (46,47). In addition, it is expected that PCBP4
regulates additional RNA targets, especially cell-cycle
related targets.

p21 expression is tightly controlled at transcriptional
and post-transcriptional levels (29). The major regulator
of p21 gene expression is tumor suppressor pS53 (26). Here,
we provided evidence that PCBP4 modulates p21 expres-
sion in a p53-independent manner. In addition, PCBP4

had no major effect on levels of p53 and MDM2.
Finally, we showed that PCBP4 binds to p21 3’-UTR, a
known site for post-transcriptional control by RBPs
(31,32). Interestingly, PCBP4 can bind in two regions con-
taining several poly(C)-rich sequences in p21 3’-UTR.
Notably, the region between nt 851 and 1090 was
recently found to contain PCBP1 and PCBP2 binding
sites (38). Interestingly, the region between nt 1091 and
2120 was reported as a binding site for Musashi-1, a
RRM-containing RBP involved in the regulation of p21
translation (48). Therefore, it is likely that the binding sites
for PCBP1, PCBP2 and PCBP4 are the same or clustered
between nt 851 and 1090 of p21 3’-UTR. In view of this, it
is possible that p21 mRNA stability is coordinately
regulated by the PCBP family, which merits further inves-
tigation. Of note, PCBP family members were reported to
regulate the translation of mRNA targets, such as c-myc
and 15-lipoxygenase. Therefore, it remains possible that
PCBP4 binds p21 3'-UTR to regulate p21 mRNA stability
as well as p21 translation.

Interestingly, p21 3’-UTR contains a region from nt
621 to 850 with several AU-rich elements recognized by
RRM-containing RBPs (37). From this and previous
studies, we conclude that p21 3’-UTR is composed of
two domains for p2l post-transcriptional regulation, a
first domain mainly bound by RRM-containing RBPs
for p21 mRNA stabilization/destabilization and a
second domain primarily bound by KH-containing
RBPs for p21 mRNA destabilization. Future studies will
likely reveal some interesting crosstalks between the PCBP
family and other RBPs, such as HuR and RNPCI, essen-
tial for appropriate p21 expression at normal and stress
conditions.
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