Table 1.
Cultivar No. | Cultivar name | Erucic acid content of seeds (%) | Origin | Positions of nucleotides and amino acid polymorphisms | |||||
---|---|---|---|---|---|---|---|---|---|
B. rapa | 591a | 735 | 898 | 968 | 1020 | 1265 | |||
P197=b | A245= | R300= | T323I | K340= | F422= | ||||
1 | Kunshan maquedan | 48.58 | China | G | C | C | C | G | T |
2 | Sanyue huang | 49.76 | China | G | C | C | C | G | T |
3 | Hanzhong aiyoucai | 45.70 | China | G | C | C | C | G | T |
4 | Xinxian huangyoucai | 52.02 | China | G | C | C | C | G | T |
5 | 7801_1 | 51.26 | China | G | C | C | C | G | T |
6 | Jumbuck | 1.93 | Australia | A | T | C | T | A | T |
7 | Hja 96337 | 0.90 | Finland | A | T | A | T | G | C |
B. oleracea | 489c | 542 | 1079 | 1422 | 1458 | ||||
Q163= | T181K | F360S | S474= | Y486= | |||||
1 | ChunFeng | 40.75 | China | A | A | T | A | C | |
2 | Zhonggan11 | 45.90 | China | A | A | T | G | C | |
3 | Xiaguang Oleracea | 43.27 | China | G | C | C | G | T | |
4 | Zhengchun Oleracea | 47.63 | China | A | A | T | A | C | |
5 | Jingfeng2 | 48.20 | China | A | C | T | G | Y | |
6 | Xinfeng | 41.40 | China | A | A | Y | G | Y | |
7 | Zaofeng | 51.52 | China | A | A | Y | A | Y | |
8 | Improved | ||||||||
Niuxin Oleracea | 42.07 | China | A | A | T | A | C | ||
9 | Hanchun3 | 41.39 | China | G | A | T | G | C |
a591 indicates the position 63 bp from the base 'A' in the start codon of B. rapa FAE1. P197=b indicates amino acid diversity due to this nucleotide polymorphism. c489 indicates the position 63 bp from the base 'A' in the start codon of B. oleracea FAE1. Three haplotypes of FAE1 can be inferred among these seven B. rapa accessions. Accessions Nos. 1-5 are B. rapa haplotype 1; accession No. 6 is B. rapa haplotype 2 and accession No. 7 is B. rapa haplotype 3. Seven haplotypes of FAE1 can be inferred among these nine B. oleracea accessions. Accessions Nos. 1, 4 and 8 are B. oleracea haplotype 1; Accessions No. 2, 3, 5, 6, 7 and 9 are B. oleracea haplotypes 2 to 7, respectively.