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Abstract
Background: The flowering process in plants proceeds through the induction of an inflorescence meristem triggered 
by several pathways. Many of the genes associated with both the flowering process and floral architecture encode 
transcription factors of the MADS domain family. Gerbera, a member of the sunflower family, Asteraceae, bears 
compressed inflorescence heads (capitula) with three different flower types characterized by differences in both 
sexuality and floral symmetry. To understand how such a complex inflorescence structure is achieved at the molecular 
level, we have characterized the array of Gerbera MADS box genes. The high number of SQUAMOSA-like genes in 
Gerbera compared to other model species raised the question as to whether they may relate to Gerbera's complex 
inflorescence structure and whether or not a homeotic A function is present.

Results: In this paper we describe six Gerbera genes related to the SQUAMOSA/APETALA1/FRUITFULL genes of 
snapdragon and Arabidopsis. Based on phylogenetic analysis of the entire gene lineage, our data indicates that 
GSQUA1 and GSQUA3 are members of the SQUA/AP1 clade, while GSQUA2, GSQUA4, GSQUA5 and GSQUA6 are co-
orthologs of the Arabidopsis FUL gene. GSQUA1/GSQUA3 and GSQUA4/GSQUA5/GSQUA6, respectively, represent several 
gene duplication events unknown in the model systems that may be specific to either Gerbera or Asteraceae. GSQUA 
genes showed specific expression profiles. GSQUA1, GSQUA2, and GSQUA5 were inflorescence abundant, while 
GSQUA3, GSQUA4, and GSQUA6 expression was also detected in vegetative organs. Overexpression of GSQUA2 in 
Gerbera led to accelerated flowering, dwarfism and vegetative abnormalities, all new and specific phenomena 
observed in transgenic Gerbera plants with modified MADS box gene expression.

Conclusions: Based on expression patterns, none of the Gerbera SQUA-like genes are likely to control flower organ 
identity in the sense of the floral A function. However, our data shows that the FUL-like gene GSQUA2 plays a vital role in 
meristem transition. The roles of other GSQUA-genes in Gerbera floral development are intriguing, but require still 
further study.

Background
Arabidopsis thaliana has been the principal model plant
for molecular developmental studies of flowers for two
decades. Several traits of Arabidopsis contribute to its
attractiveness as a model system. However, not all phe-
nomena in angiosperm flower development are present
in Arabidopsis, and some processes are in fact specific to
Arabidopsis or its close relatives (reviewed in [1]). Thus,
extrapolating floral developmental paradigms from Ara-

bidopsis to other flowering plants is not always straight-
forward [1-3]. To obtain a broader understanding of floral
development, studies on species representing a broad
taxonomic distribution are necessary. Our research inter-
est has focused on floral development in Gerbera hybr-
ida, a model species of the sunflower family (Asteraceae).
Gerbera inflorescences consist of hundreds of flowers,
which can be divided into three different types based on
their size, sex, and position in the inflorescence. We have
previously shown that many basic principles of floral
development apply to Gerbera [4], but that in addition,
Gerbera has special features of its own [5,6]. For example,
the B and C functions of the ABC model of flower devel-
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opment [7] are applicable to Gerbera, but the A function
has remained elusive.

Based on the ABC model, A function genes are
involved in determining sepal and petal identity by
repressing C function in whorls one and two [7]. Arabi-
dopsis has two A class genes APETALA1 and APETALA2
(AP1, AP2) [8-12]. AP1 is a MADS box gene, as are the
majority of the ABC function genes [12], while AP2 is a
member of the AP2/ERF ethylene response family. Both
AP1 and AP2 act as A function genes, but they also have
several other functions (reviewed in [1]). AP1 has been
shown to fulfil a dual function in specifying Arabidopsis
sepal and petal identity as well as affecting floral mer-
istem development [9,13]. AP1 acts closely together and
partially redundantly with other inflorescence architec-
ture genes, CAULIFLOWER (CAL) and FRUITFULL
(FUL) [14]. Despite attempts to establish similar func-
tions for related genes in other plant species, success has
been limited. For example, the Antirrhinum SQUAMOSA
(SQUA) gene plays a role in inflorescence meristem
development but does not affect floral organ identity [15].
A similar function has been shown for the related gene
Antirrhinum DEFH28, which is not involved in determi-
nation of sepal and petal identity [16]. Several plant spe-
cies appear to have genes closely related to AP1, but
apparently none have similar functions in specifying
sepal and petal identity [17-22]. The pea (Pisum sativum)
gene PEAM4 seems to be the closest to AP1 in function
and has been suggested to be a functional homologue of
AP1 [23] based on similar expression pattern and floral
phenotype. However, several authors [1,24-26] have been
inclined to suggest that the entire concept of an A func-
tion might be specific to Arabidopsis and perhaps other
Brassicaceae.

In addition to previously characterized Gerbera MADS
box genes [4-6], we have recently identified several Ger-
bera genes similar to AP1, FUL [9,11] and SQUA [15].
AP1 and SQUA are often described as A function genes,
but only AP1 has characteristics of a homeotic selector
gene. AP1 and SQUA do, however, play strong roles in
defining floral meristem identity, together with the genes
LEAFY in Arabidopsis and FLORICAULA in snapdragon
[27,28].

Here, we analyze the expression and phylogenetic posi-
tion of six Gerbera genes, Gerbera SQUAMOSA-LIKE1-6
(GSQUA1-6), which are closely related to AP1, SQUA,
and FUL. Our data indicate that none of the GSQUA
genes are, by themselves, likely to play a role in defining
floral organ identity in the sense of the A function of the
floral ABC model [7]. However, GSQUA2 does function
as a strong positive regulator of meristem transition in
Gerbera. Overexpression of GSQUA2 in transgenic Ger-
bera results in an early flowering dwarf phenotype, which
displays abnormal vegetative architecture.

Results
Isolation and phylogenetic analysis of the Gerbera hybrida 
GSQUA genes
GSQUA1 was isolated earlier by low stringency screening
of an inflorescence cDNA library using a spruce MADS
box gene probe, and was so named based of its sequence
similarity to SQUA of Antirrhinum [4,15]. PCR amplifica-
tion using a degenerate MADS-box specific primer
yielded three additional partial sequences of Gerbera
SQUA-like genes: GQUA2, GSQUA3, and GSQUA4. Two
more SQUA-like genes, GSQUA5 and GSQUA6, were
identified from a Gerbera EST collection [29]. Full length
cDNA sequences were recovered using 5' and 3' RACE
for all GSQUA genes except for GSQUA4.

In Arabidopsis, the A function/meristem-identity gene
AP1 and the fruit function/meristem-identity gene FUL
share a high degree of sequence similarity despite their
partially different functions [9,11,14]. The C termini of
plant MADS domain proteins are variable, but within
closely related groups, conserved protein motifs can be
recognized. Both AP1- and FUL-like proteins are charac-
terized by such motifs, the euAP1-motif for the former,
and the paleoAP1- or FUL-motif for the latter [2,30].
Alignment of the predicted amino acid sequence of
GSQUA2 with similar sequences from other plant species
showed that GSQUA2 contains a protein motif similar
but not identical to the paleoAP1/FUL-motif. The same
motif was also recognizable in GSQUA4, GSQUA5 and
GSQUA6. In contrast, GSQUA3 possessed a euAP1-
motif (CFPS) that is divergent from the consensus motif
(CaaX) [2,30], while still containing several conserved
amino acids (Figure 1). In the previously isolated
GSQUA1 protein [4] a euAP1-motif was not evident, but
phylogenetic analysis (Additional files 1 and 2) neverthe-
less suggested a close relationship between GSQUA1 and

Figure 1 Alignment of C-terminal ends of AP1-like proteins. Ger-
bera GSQUA proteins were aligned with closely related proteins from 
Arabidopsis (AP1, P35631; FUL, Q38876; CAL, Q39081), snapdragon 
(SQUA, Q38742; DEFH28, Q941M9, AmFUL, Q7XBN7), chrysanthemum 
(CDM111, Q84LD6), and sunflower (HAM75, Q8RVR0; HAM92, Q84LC0). 
The paleoAP1/FUL protein motif is shown in blue [2,30]. EuAP1-like 
proteins contain both an acidic domain (shown in dark red), which has 
been shown to have transcriptional activity in yeast [86], and a farnesy-
lation motif (shown in red italics) at their C termini [35]. The whole do-
main marked red represents the euAP1 motif according to [30].

GSQUA5  FSAYIS-IGC--------GEGGDGAVAEMEKQAQP-STSMPPWMLQHMNQ-- 
GSQUA6  LGMLN-------------NRDAYGEVEEYTRQAQLLSTVMPPWIVRHMTE-- 
GSQUA4  LGTFDIGDGY--------QERDYGEIEEMPRQGQP-LTVMPHWMLQYMNK-- 
FUL     YCVTSSRDGF--------VERVGGENGGASSLTEP-NSLLPAWMLRPTTTNE 
AmFUL   AGAPQSLSSLSLSEICQGQRDNNGEVEGSRNQNQSSNKILPPWML------- 
DEFH28  VPCLPISGGF--------QQTVRVEEGGDRTRIADSRSHIPPWLLQHVNQ-- 
GSQUA2  IGSGSFEGG----------GAVREEEYSTQAHPISG-TMMPPWLFHHIYQ-- 
 
 
AP1     QPSPFLNMGGLYQED--------DPMAMR-NDLELTLEPVYNCNLGCFAA-- 
CAL     QTSPFLNMGGLYQGE--------DQTAMRRNNLDLTLEPIYNY-LGCYAA-- 
CDM111  PPPG-LNMGGNYNQS---GGGAGERADGMTNELDLSLQ--YSCHMRCFPS-- 
HAM75   PPPA-LNMGGDYNHG---GGGSSEGADGRTNELDLSLQPIYSCHMRCFPS-- 
HAM92   PHPA-LNIGGDYNQATTSAASGGEGADGRTSQLDLSLQPIYSHHLRCFPS-- 
GSQUA3  PPPT-MNIGGTYNQD---GGGGVEAVEGRSNELDLSLQPIYSCHLRCFPS-- 
GSQUA1  PPHSSLNIG------------------------------------------- 
SQUA    PQFPCINVGNTYEGE--------GANEDRRNELDLTLDSLYSCHLGCFAA-- 
 

paleoAP1/
FUL-like

euAP1-like
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GSQUA3. The deduced Gerbera GSQUA amino acid
sequence alignments and the corresponding protein
motifs are shown in Figure 1.

Phylogenetic analysis suggested that GSQUA1 and
GSQUA3 are close paralogs, together co-orthologous to
AP1 (and SQUA). Similarly, GSQUA4, GSQUA5 and
GSQUA6 are co-orthologs of FUL, and GSQUA2 is phy-
logenetically close to the snapdragon gene DEFH28.
Although interrationships among the AP1/SQUA,
DEFH28, and FUL clades are not well supported in the
phylogenetic analysis, the conserved C terminal motifs
suggest that GSQUA2/DEFH28/AmFUL are FUL-like.
The full maximum likelihood tree, based on our
sequences added to the alignment of [2], is shown in
Additional file 2. An alignment of GSQUA DNA
sequences is shown in Additional file 1.

RNA gel blots and in situ hybridization of GSQUA genes
Figure 2 summarizes the expression patterns of
GSQUA2-6 at RNA gel blot level. Based on previous stud-
ies, GSQUA1 expression was in the young inflorescence,
scape and bracts [4]. In addition to GSQUA1, the expres-
sion of GSQUA2, and GSQUA5 was restricted to floral
tissues and no expression was detected in vegetative
organs. Interestingly, GSQUA3, GSQUA4 and GSQUA6
also showed expression in leaves, in addition to expres-
sion in floral and inflorescence-derived organs. None of

the studied GSQUA genes were expressed in Gerbera
roots. At the level of single (ray) flowers at relatively late
developmental stages, GSQUA2 and GSQUA3 tran-
scripts were most abundant in whorls one and two, while
GSQUA4, GSQUA5, and GSQUA6 were expressed in all
floral whorls (Figure 2). Different developmental stages of
Gerbera ray flower petals (see [31]) were screened by
RNA gel blot hybridization to ascertain whether expres-
sion levels of GSQUA genes varied over time. The expres-
sion levels of GSQUA3 and GSQUA5 did not vary during
ray flower petal development, whereas the expression of
GSQUA4 was barely detected during ray flower petal
development, and both GSQUA2 and GSQUA6 showed
differential expression. GSQUA2 expression was stronger
during early stages (1,2,3) and faded noticeably toward
later developmental stages (4,5,6,7,8,9,10,11). GSQUA6
expression displayed a pattern opposite to that of
GSQUA2; its expression grew stronger toward later
developmental stages (8,9,10,11) (Additional file 3).

To localize GSQUA expression during the early stages
of inflorescence development, a more detailed RNA in
situ hybridization analysis of young, developing Gerbera
inflorescences (diameter 6-17 mm) was performed (Fig-
ure 3). In general, GSQUA genes studied here showed a
wide range of expression patterns. In fact, the vasculature
of the capitulum receptacle was the only common loca-
tion where all of the GSQUA genes were expressed. In
contrast to other GSQUA genes, GSQUA1 was entirely
restricted to the vasculature of the capitulum receptacle
and petals [4].While GSQUA2 and GSQUA5 were found
to be expressed in all parts of the inflorescence, GSQUA3
and GSQUA6 displayed a slightly narrower expression
pattern at the inflorescence level. GSQUA4 was
expressed only in the reproductive organs in addition to
the vasculature (Figure 3a, b, ). Figure 3b shows examples
of developing individual ray flowers, while the summary
in Figure 3a is based on larger number of in situ hybrid-
izations. GSQUA2 expression was also seen in the recep-
tacle between the emerging individual flowers
(inflorescence size 6 mm, visible also in inflorescence size
14 mm) and petal expression was localized to the adaxial
surfaces (Figure 3b). The location of emerging flowers in
the developing inflorescence was marked by strong
GSQUA2 expression even before clear anatomical differ-
entiation was visible at the center of the capitulum (inflo-
rescence diameter 6 mm) (Figure 3c).

Phenotypic changes in GSQUA2 overexpression lines
For functional analysis, we were only able to obtain clear
and consistent phenotypes by overexpressing GSQUA2.
Transformation of Gerbera with GSQUA2 under the 35S
promoter yielded five lines strongly overexpressing
GSQUA2 and one line with weaker overexpression, which
correlated with milder phenotypic changes (Additional

Figure 2 Expression of GSQUA genes in various Gerbera tissues. R, 
roots; LB, leaf blade; LP, leaf petiole; SC, scape; B, bracts; RE, receptacle; 
PB, pappus bristles; P, petals; S, stamen; C, carpel; O, ovary; YI, young in-
florescence (6-16 mm in diameter).
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file 4). Compared to the non-transformed Gerbera culti-
var 'Terra Regina', all strong overexpression lines showed
altered vegetative growth very early in development. The
posture of the plants was upright, with leaves curving
adaxially. The normal growth habit that leads to a tight
rosette-like arrangement of leaves in Gerbera [32] was
loosened, with the segments/vegetative axis of the stem
strongly elongated. Inflorescences started to form after
only two months in the greenhouse whereas the wild type
cultivar 'Terra Regina' typically reaches the flowering
stage after 6 months (Figure 4). Root formation of the
overexpression plants was poor. The plants were suscep-
tible to molds in greenhouse conditions and they typically
died after forming only a few inflorescences. Transfor-
mants grown in more controlled and contamination-free
growth chamber conditions survived for longer periods
of time. The general appearance of overexpression lines
of GSQUA2 was unstable due to their aberrant architec-
ture, and they required support to remain upright. One
milder phenotype was also observed (TR3). This line was
not as dramatically dwarfed, but was clearly smaller and
more delicate in structure, both vegetatively and inflores-
cence-wise, as compared to non-transgenic plants. RNA
gel blot analysis showed strong expression for GSQUA2
in the inflorescence, but overexpression in leaves was
weaker compared to overexpression lines showing the
dwarfed phenotype (Additional file 4).

The number of flowers in the inflorescence of GSQUA2
overexpression lines was reduced compared to wild type.
Non-transformed Gerbera 'Terra Regina' inflorescences,
grown side by side with the transformants in the green-
house, contained on average about 900 individual flow-

Figure 3 RNA in situ expression analysis of GSQUA genes. (a, b) De-
veloping Gerbera inflorescence (diameter 9-17 mm). Results for 
GSQUA1 were previously published in [4]. Generally, many GSQUA 
genes are widely expressed during inflorescence development. Ex-
pression in vasculature of the receptacle in addition to floral organs is 
a common feature. Both GSQUA2 and GSQUA5 are expressed in all floral 
organs while especially GSQUA4 has more specific expression pattern. 
(c) The expression of GSQUA2 starts early and marks the location of 
emerging individual flowers in the developing young inflorescence 
(diameter 6 mm).

a

GSQUA1  +       - +       - - - -

GSQUA2 +       +       +       +      +       +      +

GSQUA3 +       - +       +      +       +      +

GSQUA4 +      - - +      +       - +

GSQUA5 +      +       +       +      +       +      +  

GSQUA6 +      +       +        - +       +      -

b

GSQUA2 GSQUA3 GSQUA4

GSQUA5 GGLO1GSQUA6

c

GSQUA2

Figure 4 Transgenic Gerbera overexpressing GSQUA2. (a) Gerbera 
overexpressing GSQUA2 displays dwarf phenotype and flowers early. 
Wild type cultivar 'Terra Regina' on the left side. Scale bar, 20 cm. (b) 
Normal Gerbera growth habit is sympodial, the leaves forming a ro-
sette-like structure consisting of tightly packed sympodial units. (c) In 
plants overexpressing GSQUA2, vegetative axes between sympodial 
units are strongly elongated compared to the wild type plant. Exam-
ples of sympodial units are framed in yellow squares.

Ca b c
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ers. The GSQUA2 overexpression lines produced on
average only 420 flowers in their inflorescences (Table 1).

Inspection of GSQUA2 overexpression lines with stere-
omicroscopy or scanning electron microscopy showed no
homeotic changes in floral organs of any flower type (data
not shown). However, petals of all flower types were
shorter compared to the wild type petals, which is con-
gruent with dwarfism and the overall smaller size of the
inflorescence. Additionally, inflorescence color differed
from wild type in being paler. Despite three transgenic
lines producing antisense RNA for GSQUA2, no silencing
of the endogenous GSQUA2 was observed.

Discussion
The GSQUA subfamily of MADS box genes contains at least 
six members in Gerbera
In addition to the previously published Gerbera SQUA-
like genes, GSQUA1 [4], GSQUA5 and GSQUA6 [29], we
isolated three new sequences, GSQUA2, GSQUA3 and
GSQUA4. The number of GSQUA genes is large com-
pared to most other plant species and it is tempting to
relate this diversity to the complex structure of the Ger-
bera inflorescence [33]. Arabidopsis AP1 and FUL, which
function in sepal and petal, fruit, and meristem develop-
ment [9,11,14], are closely related to GSQUAs at the
sequence level. The relationship of the two Arabidopsis
proteins has been further analyzed by [2] and [30], and
they described conserved C-terminal protein motifs
(euAP and paleoAP/FUL) in a number of AP1- and FUL
like sequences. Identification of these motifs facilitates
the classification of related proteins, since phylogenetic
analysis of AP1- and FUL-like sequences is not always
unambiguous. The paleoAP1/FUL-like protein sequences
have a hydrophobic motif (L/MPPWML), which is not
found in euAP1-like sequences. EuAP1-like sequences in
turn have two conserved motifs, a transcription activa-
tion domain RRNaLaLT/NLa (where 'a' stands for an
acidic amino acid [2]) and a farnesylation signal CaaX
(where C is Cys, 'a' is an aliphatic amino acid, and X is
Cys, Met, Ser, Ala, or Glu [34]) that terminates the pro-
tein. A farnesylation motif generally directs proteins to a
membrane [34], but the role of farnesylation in plant pro-
teins might be more diverse [35-37]. In the case of tran-
scription factors, this function could be part of post-

transcriptional regulation, or necessary for protein com-
plex formation [36]. AP1 has been shown to be farnesy-
lated in planta, but membrane localization was not
observed [36]. Not all euAP1-like proteins possess this
farnesylation signal, however, and thus it may not be an
essential part of the protein function [1,23].

Based on the presence of conserved C terminal protein
motifs, GSQUA3 can be classified as belonging to the
euAP1-like proteins, while GSQUA2, GSQUA4,
GSQUA5 and GSQUA6 harbor a paleoAP1/FUL-like
protein motif at the C terminus of their amino acid
sequence (Figure 1). GSQUA1 does not possess a recog-
nizable protein motif of either type at its C terminal end,
but phylogenetic analysis places it close to GSQUA3 (Fig-
ure 2). In fact, the GSQUA1 sequence terminates 16
amino acids before the expected euAP1 protein motif.
Furthermore, the GSQUA3 protein sequence contains
the transcriptional activation domain RSNELDLSL, but
no strong transcriptional activation was seen in yeast
assays [38]. The motif differs slightly from the consensus
motif RRNaLaLT/NLa [2], the second arginine being
replaced by serine in GSQUA3 and threonine or asparag-
ine being substituted for serine. The functional relevance
of these changes is not clear. Despite the close sequence
similarity in the C terminal domain of GSQUA3 to
related proteins such as AP1 and SQUA [9,11,15], the
farnesylation domain of GSQUA3 (CFPS) differs from the
most common version of the motif, CFAA/T [35], which
is found in many plant SQUA-like proteins [2]. EuAP1-
protein motifs similar to Gerbera GSQUA3 are also pres-
ent in related protein sequences of other species in Aster-
aceae, including sunflower (Helianthus annuus) and
Chrysanthemum (Dendrathema grandiflorum) (HAM75,
HAM92, CDM111) [21,39]. Still, these Asteraceae spe-
cific variants are within the definition of the farnesylation
motif CaaX [35]. The current definition of the consensus
motif is possibly too narrow, and as more plant species
are studied in detail, the farnesylation consensus motif
may require redefinition.

A detailed phylogenetic analysis of GSQUA2, GSQUA3,
GSQUA4, GSQUA5 and GSQUA6 produced results in
line with the relationships suggested by analysis of C ter-
minal protein motifs. The maximum likelihood tree sug-
gests that GSQUA2 may be orthologous to the

Table 1: The number of individual flowers in wild type Gerbera 'Terra Regina' inflorescence vs. GSQUA2 overexpression 
lines

Inflorescence Number of flowers/inflorescence Average

wt 'Terra Regina' 882, 830, 965, 1001, 859 907,4

CaMV 35S :: GSQUA2 534, 457, 535, 371, 202 419,8*

* Significant at P < 0.001 (t-test)
Inflorescences upregulated for GSQUA2 contain less than 50% of flowers of wild type Gerbera.
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snapdragon gene DEFH28, which is involved in the regu-
lation of floral meristem identity and fruit development
[16]. Both of these DEFH28 functions are similar to FUL
of Arabidopsis, and the authors concluded that DEFH28
most likely represents the ortholog of FUL. However, this
interpretation was later challenged by [2] based on the
discovery of AmFUL, which, according to phylogenetic
and protein motif analysis more likely represents the
snapdragon gene orthologous to FUL. Unfortunately,
AmFUL has not been further characterized. GSQUA2
does share the early flowering function of DEFH28, how-
ever. A potential role of GSQUA2 in fruit development
was not studied in this work.

Previous and recent studies on FUL-like genes further
distinguish two groups [1,2,40]. FUL and AmFUL belong
to the euFUL group [41,2], while AGL79 and DEFH28
belong to euFULII group [16,40]. Based on the phyloge-
netic analysis GSQUA4, GSQUA5, and GSQUA6 genes
are closer to the euFUL group, while GSQUA2 belongs to
the euFULII group.

GSQUA1 [4] and GSQUA3 appear to be recent paral-
ogs and are co-orthologous to SQUA of snapdragon [15].
Similarly, GSQUA4, GSQUA5 and GSQUA6 are
coorthologous to FUL of Arabidopsis [14,41].

The expression patterns for GSQUA genes do not support a 
homeotic A function
All GSQUA genes, despite being closely related, exhibit
different expression patterns at the vegetative and floral
organ levels. However, none of the GSQUA genes investi-
gated share the expression pattern of Arabidopsis AP1 or
snapdragon SQUA in the sense that they would be partic-
ularly abundant in floral whorls 1 and 2 (sepals and pet-
als) in early stages of development. In general, at earlier
developmental stages, expression domains of GSQUAs
are widespread at the inflorescence level, with the excep-
tion of GSQUA4, which is expressed in reproductive
organs and in the vasculature of the capitulum receptacle
(Figure 3a, b). Only later in floral development GSQUA2
and GSQUA3 are weakly expressed in sepals and petals
(Figure 2). The expression in vasculature is common
among all GSQUA genes studied here. Expression in vas-
culature is also known for FUL [41] and AmFUL [2], but
vascular expression is not a uniform trait for euAP1-,
euFUL- or euFULII-like genes. This expression pattern
may reflect a function in developing vascular bundles, but
the phenomenon has not been extensively discussed pre-
viously and its functional significance for GSQUA genes
remains unclear.

The broad expression pattern of GSQUA2 during early
stages of ray flower development resembles what has
been previously reported for FUL and other FUL-like
genes, and contrasts with the expression of AP1, which is
confined to the first two whorls [10]. FUL-like genes are

commonly expressed in the carpel [21,42-45], meristems
[13,41] and vegetative tissues, including bracts
[18,21,43,46]. Expression has also been observed in the
inflorescence [18,19,21,47,48], floral meristems [19,49],
stamens [17,45], and perianth organs [17,42,43,45]. For
some species, expression has been visible in all floral
whorls [45,50]. The expression pattern for Arabidopsis
FUL is biphasic, which is in accordance with its early (flo-
ral meristem identity) and late (silique development)
functions in reproductive development [14,41].

The functional role of FUL in fruit development was
first detected in Arabidopsis mutant lines lacking FUL
expression. Gerbera does not bear a fruit similar to Ara-
bidopsis; its ovary position is inferior as opposed to supe-
rior in Arabidopsis and the fruits (achenes) are
indehiscent. Thus the late function for GSQUA2 might
be entirely different (like DEFH28 in snapdragon; [16]) or
lacking completely. The most dramatic phenotypic effects
in 35S::FUL lines are cell type changes in valve margins
and the outer replum, which lead to developmental fail-
ure of the dehiscence zone and eventually to indehiscent
fruit [14]. Interestingly, GSQUA2 expresses strongly in
ovary inner walls and the ovule (Figure 3), so despite the
fact that no homeotic changes in GSQUA2 overexpres-
sion lines were visible in ovaries and ovules at the rela-
tively late developmental stage 8, a role for GSQUA2 in
Gerbera fruit development, possibly at the level of cell
differentiation, cannot be ruled out.

GSQUA2 is involved in meristem transition
Among the several related GSQUA genes of Gerbera,
only GSQUA2 lent itself to further functional character-
ization based on transgenic Gerbera lines overexpressing
the gene. Several transgenic lines both for GSQUA3 and
GSQUA5 were generated and analyzed for overexpres-
sion and downregulation, but no consistent floral pheno-
types were observed. Both genes, GSQUA2 and FUL,
seem to share the same function of meristem identity
determination in early floral development, but the inflo-
rescence abundance of GSQUA2 expression distinguishes
it from FUL, as FUL is expressed also in vegetative parts
of Arabidopsis [13]. However, when GSQUA2 is ectopi-
cally expressed throughout Gerbera tissues, dramatic
vegetative changes such as dwarfism and vegetative axis
elongation appear. Gerbera growth habit is sympodial
with very short, leafy lateral shoots forming the sympo-
dia. Typically, the sympodial rhizome forms 7-24 leaves
before the first inflorescence is formed by the apical mer-
istem. Two inflorescences are formed per one vegetative
shoot, the second inflorescence being formed in the axil
of the uppermost leaf primordium. The vegetative axis
continues to develop in the axil of the second leaf primor-
dium. The fully-formed axis grows 2-8 leaves before
forming a terminal inflorescence, a lateral inflorescence,
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and again a vegetative shoot, the growth cycle being itera-
tive [32]. The vegetative axis between lateral shoots is
very short and the lateral shoots form a tightly packed
entity. However, in plants overexpressing GSQUA2, the
vegetative axis between lateral shoots is strongly elon-
gated compared to wild type Gerberas (Figure 4). The
poor root formation of the overexpression lines may be to
ectopic expression of GSQUA2 under the 35S promoter,
which interferes with the normal root development and is
thus not necessarily informative of the gene's normal
function.

Overexpression lines of GSQUA2 flower substantially
earlier than wild type plants, which suggests this gene to
be involved in floral meristem transition. The strong
localized expression of GSQUA2 in emerging flower pri-
mordia at the early stages of flower development also
supports this hypothesis (Figure 3c). Despite of the strong
expression in overexpression lines, only minor morpho-
logical changes, such as reduced petal size and color, were
detected at the level of individual flowers. At the inflores-
cence level, however, a considerably reduced number of
flowers was observed, since the overexpression lines for
GSQUA2 contained only half the number of flowers in
their inflorescences as non-transgenic Gerbera. A similar
phenomenon was reported with birch BpMADS4 overex-
pression lines [51], and may relate to accelerated develop-
ment, including accelerated consumption of the
inflorescence meristem.

In wheat and ryegrass, the AP1-like MADS-box gene
VRN1 is expressed in vegetative tissues and has been sug-
gested to control the transition to flowering [52,53].
Based on the vegetative expression pattern, GSQUA3,
GSQUA4 and GSQUA6 are Gerbera candidates for this
kind of function, but at least for GSQUA3 we have data
that its ectopic expression does not cause early flowering.

In Arabidopsis, accelerated flowering is regularly
observed when different MADS-box genes are overex-
pressed, including those not directly related to flowering
time [54-63]. In Gerbera, all overexpression lines with
MADS box genes other than GSQUA2 have retained
their normal vegetative size and flowering time, although
many have displayed homeotic or meristem identity
changes in the inflorescences [4-6].

GSQUA proteins interact with other Gerbera MADS domain 
proteins
AP1/SQUA-like MADS domain proteins have been sug-
gested to function as mediators of higher order complex
formation, acting as 'bridge proteins' and facilitating the
formation of protein quartets [64,65]. However, based on
pairwise assays [38], GSQUA proteins seem unlikely to
function as interaction mediators in Gerbera, since their
interaction capacity appears to be limited [38]. This fea-
ture distinguishes all GSQUA proteins from the closely

related Petunia protein FBP29. FBP29 is capable of inter-
acting with several MADS domain proteins of different
functional classes [43]. Moreover, other FUL-like pro-
teins from Petunia, PFG and FBP26, show more extensive
interaction capacity than the studied GSQUA proteins
[42,43]. Also Arabidopsis FUL was shown to be active in
multiple protein-protein interactions [66]. GSQUA2 was
found to interact with three other Gerbera MADS
domain proteins in a screen of fourteen proteins, whereas
GSQUA1 and GSQUA3 proteins interacted with only two
other proteins, all partners being members of the SEP-
like GRCD family of Gerbera proteins. GSQUA5
remained inactive in pairwise assay showing no interac-
tion with any tested Gerbera proteins. The most interest-
ing GSQUA2 specific partner is GRCD2, a pleiotropically
active Gerbera SEP-like protein with functions in carpel
identity, meristem identity and inflorescence determi-
nacy [6]. Interestingly, when GSQUA2 and GRCD2 were
combined in yeast, a strong autoactivation function
emerged - separately, neither of the proteins show tran-
scriptional activation. This function of the GSQUA2/
GRCD2 dimer could reflect its importance in Gerbera
floral development. Both GSQUA2 and GRCD2 are co-
expressed in young inflorescences and their expression
patterns are overlapping [6], rendering the interaction
feasible also in planta.

When assaying for higher order complex formation,
GSQUA proteins showed greater activity. Together with
the Gerbera B function dimer GGLO1/GDEF2, and when
combined with a Gerbera SEP-like GRCD protein and
with a C function GAGA protein, all GSQUA proteins
showed activity [38]. While GSQUA proteins did not
interact with each other in the pairwise assays, addition
of a GRCD protein made some complexes with two
GSQUA proteins stable in yeast.

Even as interaction of GSQUAs with E function pro-
teins (GRCD4 and GRCD5, pairwise) or with B function
proteins (GGLO1/GDEF2, threesome) can be seen as
consistent with a homeotic A function for GSQUAs,
interaction with C function proteins (GAGA1 and
GAGA2, threesome with GRCDs) is not. In Arabidopsis,
expression of AP1 (with homeotic A function) is excluded
in cells where the C-function gene AGAMOUS (AG) is
expressed [67]. AP1 alone does not repress the C function
in whorls one and two, but rather acts together with the
non-MADS proteins LEUNIG and SEUSS [68,69] in a
complex including other MADS domain proteins, AGL24
and SVP [68]. However the AG gene has functions
beyond the floral homeotic one in Arabidopsis. AG is
known to control the meristematic state of flower pri-
mordia and to downregulate the meristem organizing
gene WUSCHEL together with unknown factors [70,71]
which in Petunia are MADS domain proteins [72].
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It is tempting to relate the large number of SQUA-like
genes in Gerbera to the complex structure of the inflores-
cence in Asteraceae. At least some interactions for
homologous Chrysanthemum MADS domain proteins
are similar to the Gerbera proteins. CDM41, which is
closely related to GSQUA proteins, interacts with Chry-
santhemum CDM44, which is homologous to SEP3 of
Arabidopsis [21]. This interaction is similar to GSQUAs'
interaction with GRCD4 and GRCD5. In yeast three-
hybrid assay, CDM41 combined with the Chrysanthe-
mum B protein heterodimer (CDM86 and CDM115), and
the complex was active, as are Gerbera complexes with a
GSQUA protein and the B protein dimer. Sunflower
(Helianthus annuus) also contains several genes closely
related to AP1 and FUL [39]. Obviously duplication of
this lineage of genes has also taken place in sunflower.
Perhaps gene duplication and divergence in the SQUA/
AP1/FUL gene lineage has participated, together with the
unique diversity in TCP family transcription factors [73]
to help shape the complex Asteraceae inflorescence.

Conclusions
Gerbera has an array of SQUA-like genes, which can be
classified either as euAP1-like, or as FUL-like [2,30].
However, none of these genes appear to act as an A func-
tion gene in the sense of the classical ABC model [7].
Based on these results, Gerbera can be added to the
growing list of plant species that lack the A function com-
parable to Arabidopsis. GSQUA2 is intimately involved in
the regulation of meristem transition in Gerbera as over-
expression of GSQUA2 led to accelerated flowering. The
role of GSQUA1, GSQUA3, GSQUA4, GSQUA5, and
GSQUA6 in the floral development of Gerbera requires
further study. The complex inflorescence structure and
the high number of Gerbera GSQUA-like genes lead to a
temptation to associate these two phenomena, but verify-
ing this hypothesis requires more research.

Methods
Identification of Gerbera GSQUA genes
GSQUA2, GSQUA3 and GSQUA4 were identified using
reverse transcription PCR with inflorescence mRNA as a
template. The 5' primer E0364 (GCG GAG CTC GAG
TTA AGA GRA TAG ARA ACA , where R = A/G) was
designed based on previously published alignment of the
MADS domain from several plant species, including Ger-
bera [4,74]. The 5' end of the primer contained two
restriction enzyme recognition sites (for SacI and XhoI)
to aid cloning. For the 3' end, an anchored oligo-d(T)
primer (G ACC ACG CGT ATC GAT GTC GAC TTT
TTT TTT TTT TTT TV, V = G/C/A) (Boehringer Man-
nheim 5'/3' RACE kit 1734792) was used. This primer
contained three restriction enzyme cut sites (MluI, ClaI,
SalI) at its 5' end. The cDNA was synthesized from Ger-

bera inflorescence mRNA (pooled RNA sample, inflores-
cence sizes 10-13 mm in diameter) (Boehringer
Mannheim kit 1483188). Taq DNA polymerase (Pro-
mega), 50 pmols of both primers and Gerbera inflores-
cence cDNA were used in a standard PCR reaction with
30 cycles. In an agarose gel, the result of the PCR showed
several clear-cut bands of DNA. Four bands (estimated
sizes 820 bp, 780 bp, 700 bp, and 550 bp) were isolated
from the gel, ligated into the pBluescriptII SK + vector
and sequenced. The largest fragment contained nearly
full length sequences for GSQUA2, GSQUA3 and
GSQUA4. GSQUA5 and GSQUA6 were identified in the
Gerbera EST collection previously described [29].
GSQUA5 was recovered as a full-length cDNA from the
EST collection, but GSQUA6 was about 100 nucleotides
short at the 5' end of the gene.

Isolation of full length sequences
Amplification with the E0364 primer left MADS box
genes short of sequences encoding the amino acids in the
N terminus of the protein. The missing sequences were
amplified by the 5' RACE method [75] (5'/3' RACE kit,
Boehringer Mannheim, cat. no. 1734792). Gene specific
5' RACE primers were designed from the intervening
region between the MADS and the K boxes to ensure suf-
ficient specificity. New cDNA was synthesized from Ger-
bera inflorescence mRNA (pooled RNA sample,
inflorescence sizes 10-13 mm) (Boehringer Mannheim
kit cat. no. 1483188). For each reaction, a band of approx-
imate size of 500 bp was isolated from an agarose gel and
ligated into the pGEM-T Easy vector (Promega). The
missing 3' sequences of GSQUA3 and GSQUA4 were
amplified using the same RACE kit. Finally, each full-
length cDNA sequence was reamplified using gene spe-
cific 5' and 3' primers, ligated into the vector pBluescrip-
tII SK + and verified by sequencing. Full-length
sequences were obtained by 5' and 3' RACE methods for
all GSQUA genes, except for GSQUA4, which lacks
nucleotides encoding presumably about eight N terminal
amino acids.

Phylogeny reconstruction
For phylogenetic positioning of the GSQUA nucleotide
sequences, we added them to the large data set used in
[2]. The original data was kindly transmitted by A. Litt,
and sequence abbreviations used by [2] apply to the pres-
ent tree as well. The new alignment including Gerbera
SQUA-like genes was made by hand, using the inferred
amino acid sequences as a guide. The original GSQUA1
sequence in the [2] data matrix was deleted to avoid dou-
ble representation. Phylogenetic analysis on the nucle-
otide data was performed using the maximum likelihood
method, via the PHYML program [76], web interface
[77]. 100 bootstrap resampling replicates were done to
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estimate support for the clades [78]. The options used
with the PHYML web interface were the HKY molecular
evolutionary model [79], transition/transversion ratio
preset to 4, estimated proportion of invariant sites =
0.065, empirical nucleotide frequencies [f(A) = 0.32198,
f(C) = 0.21318, f(G) = 0.24109, f(T) = 0.22375], 4 substitu-
tion rate categories, estimated gamma distribution
parameter = 1.095, starting tree constructed using BIONJ
[80], tree topology optimization using NNI and SPR tree
rearrangement algorithms to search tree space, and
branch length and rate parameter optimization.

RNA gel blots
RNAs from different plant organs and from different
stages of petal development (stages 1-11, see [31]) were
isolated using Trizol (Invitrogen, cat. no. 11596-018) and
quantified by spectrophotometer. Equal amounts (10 μg)
of RNA were run in a 0.8% agarose gel as described by
[31]. The rRNA bands were visualized by EtBr staining to
record even loading of the gel. The RNA was blotted on
Hybond-N membrane (Amersham Biosciences) and
hybridized in the UltraHyb hybridization buffer
(Ambion). For GSQUA2, a gene specific probe (260 or
320 bp) from the 3' UTR was used. The probe was labeled
with [ 32P] dCTP and hybridized at + 42°C for 16 h. The
membranes were washed with 1 x SSC, 0.1% SDS at +
42°C for 20 minutes. Subsequent washes were performed
at + 65°C in the same buffer for 15 minutes, 1-2 times
depending on the desired level of final activity. Films were
exposed at -80°C. For GSQUA3, GSQUA5, and GSQUA6,
full length probes (889 bp, 948 bp, and 812 bp) were used
in hybridization due to unspecific hybridization patterns
produced with shorter 3' probes. For GSQUA4, a longer
probe of 450 bp was used due to problems with specific-
ity. For RNA blots hybridized with longer probes, more
stringent washing conditions with 0.2 x SSC, 0.1% SDS at
+ 65°C were applied, leading to increased specificity
judged by simpler band patterns.

In situ hybridization
In situ hybridization analysis was performed as described
in [81] and [82]. GSQUA2, GSQUA3, GSQUA4, GSQUA5
and GSQUA6 gene specific antisense probes (250 bp, 385
bp, 300 bp, 187 bp and 235 bp from the 3' UTR) were pre-
pared and quantitated using the DIG RNA labeling kit
(Boehringer Mannheim cat. no. 11175025910) according
to the manufacturer's instructions. Paraffin sections (10
μm thick) were mounted in 50% glycerol after hybridiza-
tion. A 217 bp fragment of Gerbera GGLO1 from the 3'
UTR [4] was used as a sense control in in situ hybridiza-
tion.

Plant material and transformation
Gerbera hybrida var. 'Terra Regina' was obtained from the
commercial producer Terra Nigra, De Kwakel, the Neth-
erlands. In the greenhouse, day length followed the natu-
ral day length during the summer season and was set to
ten hours during the winter - day length is, however, not
critical for Gerbera growth and flowering. The tempera-
ture was +16... + 18°C during nighttime and + 18... + 20°C
during daytime. The plants were drip-irrigated and fertil-
ized with NPK fertilizer (Kukka-Superex NPK 11-3-26,
Kekkilä, Finland). The relative humidity was set for 65%.
In growth chambers, temperatures were + 18°C at night
and + 20°C during day, and the day length was set to 10
hours. For functional analysis, the full length GSQUA
sequences were cloned under the CaMV 35S promoter in
both sense and antisense orientation as described in [83].
Gerbera transformation was performed using an
Agrobacterium-mediated gene transfer method as previ-
ously described [84,85].
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