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Zinc is released from glutamatergic (zincergic) neuron terminals in the hippocampus, followed by the increase in Zn2+

concentration in the intracellular (cytosol) compartment, as well as that in the extracellular compartment. The increase in Zn2+

concentration in the intracellular compartment during synaptic excitation is mainly due to Zn2+ influx through calcium-permeable
channels and serves as Zn2+ signaling as well as the case in the extracellular compartment. Synaptic Zn2+ homeostasis is important
for glutamate signaling and altered under numerous pathological processes such as Alzheimer’s disease. Synaptic Zn2+ homeostasis
might be altered in old age, and this alteration might be involved in the pathogenesis and progression of Alzheimer’s disease; Zinc
may play as a key-mediating factor in the pathophysiology of Alzheimer’s disease. This paper summarizes the role of Zn2+ signaling
in glutamate excitotoxicity, which is involved in Alzheimer’s disease, to understand the significance of synaptic Zn2+ homeostasis
in the pathophysiology of Alzheimer’s disease.

1. Introduction

Over 300 proteins require zinc for their functions in microor-
ganisms, plants, and animals. Zinc powerfully influences cell
division and differentiation [1]. Zinc is essential for brain
growth and its function [2, 3]. Zinc concentration in the
adult brain reaches approximately 200 μM [4]. Extracellular
zinc concentration in the adult brain is estimated to be less
than 1 μM [5]. Zinc concentration in the cerebrospinal fluid
(CSF) is approximately 0.15 μM [6], while that in the plasma
is approximately 15 μM. Zinc transport from the plasma
to the cerebrospinal fluid is strictly regulated by the brain-
barrier system, that is, the blood-CSF barrier. The blood-CSF
barrier, in addition to the blood-brain barrier, is involved
in zinc homeostasis in the brain [7, 8]. Zinc is relatively
concentrated in the hippocampus and amygdala [9, 10]. The
biological half-life of zinc is relatively long in theses two areas
(hippocampus, 28 days; amygdala, 42 days). Zinc homeosta-
sis in the brain is closely associated with neurological diseases
including Alzheimer’s disease [11–13] and may be spatiotem-
porally altered in their pathogenesis and progression.

Approximately 90% of the total brain zinc exists as zinc
metalloproteins. The rest mainly exists in the presynaptic
vesicles and is histochemically reactive as revealed by Timm’s
sulfide-silver staining method [14]. Histochemically reactive
zinc is released along with neuronal activity; there is a large
number of evidence on zincergic neurons that sequester
zinc in the presynaptic vesicles and release it in a calcium-
and impulse-dependent manner [15–18]. In the rat brain,
Timm’s stain is hardly observed just after the birth, and
its intensity increases with brain development [19, 20],
indicating that histochemically reactive zinc is involved in
not only brain growth but also brain function. However,
impairment of spatial learning, memory, or sensorimotor
functions is not observed in zinc transporter-3-null mice,
which lack the histochemically reactive zinc in synaptic
vesicles [21]. Zinc transporter-3 is involved to zinc transport
into synaptic vesicles. Therefore, physiological significance
of histochemically reactive zinc in neuronal activity is still
poorly understood.

The hippocampus plays an important role in learning,
memory, and recognition of novelty [22]. The hippocampus
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receives major input from the entorhinal cortex via the
perforant pathway, the dentate granule cells project to the
CA3 pyramidal cells via the mossy fibers, and the CA3
pyramidal cells project to the CA1 pyramidal cells via the
Schaffer collaterals. The three pathways are glutamatergic
(zincergic), and terminals of them are stained by Timm’s
method [23]. Zinc concentration in the presynaptic vesi-
cles is the highest in the giant boutons of hippocampal
mossy fibers. All giant boutons of mossy fibers contain
zinc in the presynaptic vesicles, while approximately 45%
of Schaffer collateral/commissural pathway is zinc-positive
[24]. It has been reported that histochemically reactive
zinc serves as an endogenous neuromodulator of several
important receptors including the α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (AMPA)/kainate receptor,
N-methyl-D-aspartate (NMDA) receptors, and γ-amino
butyric acid (GABA) receptors [25, 26]. The zinc may par-
ticipate in synaptic plasticity such as long-term potentiation
(LTP) and long-term depression (LTD) that is believed as the
mechanism of learning and memory [27–29].

The exact chemical form of histochemically reactive zinc
is unknown. The zinc released in the extracellular space
is estimated to serve in free form (Zn2+) [30]. The basal
Zn2+ concentrations are extremely low in both the extra-
cellular (∼10−8 M) and intracellular (cytosol) (<10−9 M)
compartments [31, 32]. Zn2+ concentration increases in
both compartments by excitation of zincergic neurons [33]
and serves for signaling [34, 35]. However, the extracellu-
lar and intracellular concentrations of Zn2+ reached after
synaptic excitation are obscure. Other organelles such as
the mitochondria and the endoplasmic reticulum including
the cytoplasm may participate in the increase in cytosolic
Zn2+ [36–38]. The mechanisms on Zn2+ homeostasis in both
compartments remain to be clarified [39, 40].

Zn2+ signaling is required for brain function, while
alteration of Zn2+ homeostasis may modify glutamate exci-
totoxicity, which is involved in Alzheimer’s disease. This
paper summarizes the role of Zn2+ signaling in glutamate
excitotoxicity to understand the significance of zinc as a
key-mediating factor in the pathophysiology of Alzheimer’s
disease.

2. Modulation of Glutamate Signaling by Zinc

ZnAF-2 is a membrane-impermeable zinc indicator and has
a low Kd value of 2.7 nM for zinc, and its fluorescence is
minimally changed in the presence of calcium, magnesium,
cadmium, nickel, or other heavy metals [41]. ZnAF-
2 DA, a diacetylated form of ZnAF-2, is taken up by
cells and hydrolyzed to ZnAF-2, which cannot permeate
the cell membrane. These two indicators make possible
an observation of Zn2+ dynamics in extracellular and
intracellular compartments. Zn2+ released from zincergic
neuron terminals is immediately retaken up by the same
terminals during tetanic stimulation and also taken up into
postsynaptic neurons [33, 35]. Calcium cannels such as
calcium-permeable AMPA/kainate receptors are involved
in Zn2+ influx during synaptic excitation [5, 31, 33, 35, 42]
(Figure 1). Because kainate receptors are abundantly

expressed in mossy fibers, they might be involved in zinc
influx into mossy fiber terminals [43].

Quinta-Ferreira and Matias [44, 45] report that Ca2+

influx into mossy fibers by tetanic stimulation is inhibited
by endogenous zinc. In the CA3 and CA1, furthermore,
Zn2+ released from zincergic neuron terminals suppresses the
increase in Ca2+ influx into the presynaptic terminals after
tetanic stimulation, followed by negative modulation of the
presynaptic activity (exocytosis) (Figure 2) [33, 35]. In an
experiment using synaptosomal fraction from rat hippocam-
pal CA3, Zn2+ inhibits glutamate release via activation of
presynaptic ATP-dependent potassium (KATP) channels [46].
Zn2+ released from zincergic neuron terminals may serve
for negative feedback mechanisms against glutamate release
in both the extracellular and intracellular compartments
(Figure 2).

3. Crosstalk of Zn2+ Signaling to Ca2+ Signaling
in Glutamate Excitotoxicity

In both the extracellular and the intracellular compartments,
it is possible that zinc signaling plays a neuroprotective role
against glutamate-induced excitotoxicity [46, 47]. Activation
of presynaptic kainate receptors is involved in the release
of zinc and glutamate from mossy fibers [48, 49], and
astrocytes also release glutamate [50]. Loss of astrocyte
glutamate homeostasis is a prerequisite for the excitotoxic
cascade, a phenomenon that is becoming recognized in
an increasing number of neurological disorders [51]. The
significance of zinc release in excess excitation of mossy fibers
is examined by regional delivery of glutamate (1 mM) to
the stratum lucidum, in which mossy fibers exist. Zn2+ may
negatively modulate Ca2+ mobilization in CA3 pyramidal
cells under the delivery [52]. Intracellular Ca2+ mobilization
via group I metabotropic glutamate receptor activation can
be also negatively modulated by Zn2+ signaling in CA3
pyramidal cells [34]. These findings suggest that Zn2+can
protectively act on glutamate excitotoxicity via crosstalk to
Ca2+ signaling.

In contrast, excess of intracellular Zn2+ is potentially
neurotoxic as well as excess of intracellular Ca2+ [53–60]
(Figure 2). The origin of the toxic zinc is a matter of debate
and seems to be not only the extracellular compartment
but also the intracellular compartment [61]. The exact
borderline of intracellular Zn2+ level between physiological
regulation and pathological effects remains poorly defined as
discussed later. Côté et al. [62] report that the neurotoxic and
neuroprotective actions of Zn2+ depend on its concentration
and that this dual action is cell type specific. Lavoie et al. [63]
report that intracellular zinc chelator influences hippocam-
pal neuronal excitability in rats. Furthermore, chelation of
endogenous zinc by CaEDTA causes a significant increase in
ischemic cell death in hippocampal slice cultures [46]. In an
in vivo microdialysis experiment, the increase in extracellular
glutamate concentration induced with high 100 mM KCl was
significantly enhanced in the presence of 1 mM CaEDTA in
both the control and zinc-deficient rats [64]. These findings
indicate that Zn2+ released from zincergic neurons may
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Figure 1: Changes in zinc signals in the extracellular and intracellular compartments in the hippocampal CA1 during tetanic stimulation.
(a) Hippocampal illustration and CA1 image with ZnAF-2. (b) High-frequency stimulation (HSF, 200 Hz, 1 s) was delivered to the Schaffer
collaterals in hippocampal slices stained with ZnAF-2 or ZnAF-2DA. The circle (around 10 μm in diameter) shown in Figure 1(a) is a
representative example of the region of interest. The data represents the changed rate (%) in fluorescent signals to the basal fluorescent
signal before the stimulation, which is expressed as 100%. The red bar indicates the period of electrical stimulation. (c) Tetanic stimulation
(200 Hz, 1 s) was delivered to the Schaffer collaterals in hippocampal slices immersed in ACSF (control), 1 mM CaEDTA in ACSF, or 10 μM
CNQX in ACSF. The data represents the changed rate (%) in fluorescent signal during tetanic stimulation to the basal fluorescent signal
before the stimulation, which is expressed as 100%. ∗∗∗P < .001, versus the basal level before the stimulation; ##P < .01, ###P < .001, versus
the control (stimulated in ACSF). This data is cited from the paper published by Journal of Neuroscience Research, 2007 [35].

reduce glutamate release under pathological condition and
protect hippocampal cells from the excitotoxicity (Figure 2).

4. Dietary Zinc Deficiency and
Glutamate Excitotoxicity

Extracellular glutamate concentration is estimated to be
around 2 μM in the brain, while glutamate concentration
in the synaptic vesicles is markedly high (∼100 mM) [65].
Excessive activation of glutamate receptors by excess of
extracellular glutamate leads to a number of deleterious
consequences, including impairment of calcium buffering,
generation of free radicals, activation of the mitochon-
drial permeability transition, and secondary excitotoxicity
[66, 67]. Glutamate excitotoxicity, a final common pathway
for neuronal death, is observed in numerous pathological

processes such as stroke/ischemia, temporal lobe epilepsy,
Alzheimer’s disease, and amyotrophic lateral sclerosis [68–
70]. The hippocampus is susceptible to glutamate excito-
toxicity, is enriched with glucocorticoid receptors [71], and
is a major target of glucocorticoids. Glucocorticoids may
potentiate glutamate excitotoxicity, followed by the increase
in neuronal death [72].

Dietary zinc deficiency readily decreases serum zinc level
in mice and rats, while it increases serum corticosterone
level through the increased hypothalamic-pituitary-adrenal
(HPA) axis activity [73]. Brain zinc concentration is hardly
decreased by zinc deficiency, while both histochemically
reactive zinc and extracellular zinc in the brain are sus-
ceptible to chronic zinc deficiency [64, 74–76] (Figure 3).
Excitability of zincergic neurons is potentially changed in
cooperation with corticosterone under zinc deficiency [27].
Thus, the increased secretion of corticosterone might be
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Figure 2: Zn2+ signaling and glutamate excitotoxicity. Zinc released
from zincergic neuron terminals is immediately taken up into
presynaptic and postsynaptic neurons through calcium-permeable
channels (CaC and GluR). In presynaptic neurons, zinc negatively
modulates exocytosis. The negative modulation by zinc may
protectively serve for postsynaptic neurons under pathological
conditions that are linked with glutamate excitotoxicity.
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Figure 3: Histochemically reactive zinc level and its relation to
the pathogenesis of Alzheimer’s disease. Zinc deficiency can reduce
histochemically reactive zinc levels, which are estimated to be
susceptible to aging. Zinc deficiency, as well as aging, seems to be
a risk factor for Alzheimer’s disease.

associated with the decrease in histochemically reactive zinc
and extracellular zinc under zinc deficiency. The increase in
extracellular glutamate induced by 100 mM KCl is poten-
tiated under zinc deficiency [64, 76]. Kainate and NMDA-
induced seizures are potentiated in young mice and rats after
4-week zinc deprivation, which decreases histochemically
reactive zinc [74, 77], and hippocampal cell death, which
is induced by treatment with kainate, is increased under
zinc deficiency [78]. These findings suggest that endogenous
zinc, especially histochemically reactive zinc, has a protective
action against glutamate excitotoxicity. The neurological
symptoms associated with glutamate excitotoxicity may be
aggravated by zinc deficiency.

Neuritic plaques, a pathological hallmark of Alzheimer’s
disease, are composed of β-amyloid that is precipitated
by zinc released from zincergic neurons [79–81]. Gluta-
mate excitotoxicity is associated with pathophysiology of
Alzheimer’s disease [67]. Glutamatergic signaling is com-
promised by β-amyloid-induced modulation of synaptic
glutamate receptors in specific brain regions, paralleling early
cognitive deficits [82]. Dietary zinc deficiency significantly
increases total plaque volume in APP/PS1 mice, a transgenic

mouse model of Alzheimer’s disease, suggesting that zinc
deficiency is a risk factor for Alzheimer’s disease [83].
Interestingly, no obvious changes in histochemically reactive
zinc levels are observed in zinc-deficient APP/PS1 mice.
It is possible that the HPA axis activity in APP/PS1 mice
is potentiated by zinc deficiency, like the case of normal
mice and rats. Serum glucocorticoids are associated with the
clearance of amyloid-beta peptide [84]. Thus, it seems to be
important to study the participation of glucocorticoids in the
β-amyloid plaque formation and degradation.

5. Zinc Homeostasis and Glutamate
Excitotoxicity in Old Age

Zinc concentration in the brain remains constant in aged
animals [85] and humans [4], whereas serum zinc level is
significantly lower in aged animals than in young animals
[86] and decreases with age in humans [87]. Histochemically
reactive zinc levels are also lower in aged animals than
in adult animals [88, 89]. Zinc transporter-3 expression,
which is correlated with histochemically reactive zinc levels,
is decreased with aging [90]. Thus, it is possible that
histochemically reactive zinc levels are reduced in normal
aging in humans [12, 90] (Figure 3). On the other hand,
serum glucocorticoid concentration is significantly higher in
aged animals [91]. The selective increase in the nocturnal
levels of cortisol is observed in aged humans [92]. The
increase in serum glucocorticoid level elicits some common
changes in both aging and zinc deficiency. In addition to
the decrease in serum zinc, the increase in the basal levels
of intracellular Ca2+ and modification of Ca2+ signaling
is observed in both aged [93, 94] and zinc-deficient [73,
77, 95] animals. It is likely that glucocorticoids influence
the dynamics of both zinc signal and calcium signal and
that the increased glucocorticoid secretion is associated
with dysfunctions in zinc deficiency and aging that may
increase the risk of diseases [28]. Aged animals and human
might be more susceptible to glutamate excitotoxicity that is
potentiated in zinc-deficient animals.

Insulin-degrading enzyme is a candidate protease in the
clearance of amyloid-beta peptide from the brain and its
levels are decreased in Alzheimer’s disease. Insulin-degrading
enzyme activity is known to be inhibited by glucocorticoid.
Serum cortisol is associated with the clearance of amyloid-
beta peptide [81] and the progression in subjects with
Alzheimer-type dementia [96, 97]. Correlations have been
reported between increases in HPA system activity and
dementia severity or hippocampal volume loss in individuals
with probable Alzheimer’s disease [96]. On the other hand,
serum zinc is decreased in progression of Alzheimer’s
disease [98]. Because zinc participates in amyloid-beta
plaque deposition [79–81, 99], this metal may play as a
key-mediating factor in the pathophysiology of Alzheimer’s
disease [100, 101]. Adlard et al. [90] report that cognitive
loss is observed in 6-month-old zinc transporter-3-null
mice, but not in 3-month-old zinc transporter-3-null mice.
Cognitive impairment is age-dependent in zinc transporter-
3-null mice, suggesting that long-term lack of synaptic zinc
is implicated in the pathology leading to Alzheimer’s disease
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(Figure 3). Because zinc transporter-3 expression is reduced
in the brain with Alzheimer’s disease [90], it is possible that
histochemical reactive zinc level is reduced in progression of
Alzheimer’s disease and that this reduction participates in
its pathophysiology. In contrast, histochemically reactive zinc
levels are not significantly changed in zinc-deficient APP/PS1
mice as described above [83]. Cognitive loss is potentially
observed prior to the decrease in histochemically reactive
zinc in zinc-deficient rats [102]. Judging from these data, it
is likely that the increase in HPA axis activity participates
in the pathogenesis and progression of Alzheimer’s disease
(Figure 3). This increase might be associated with the
decrease in histochemically reactive zinc levels.

The basal (resting) level of histochemical reactive
zinc/Zn2+ is estimated to be pico- to nanomolar in the
cytosolic compartment (8.1 < − log [Zn2+]“free” < 10) [103–
105]. The synaptic vesicles serve as a large pool of histo-
chemical reactive zinc in zincergic neurons. Other organelles
such as the mitochondria and the endoplasmic reticulum
might generally serve as the pool of histochemical reactive
zinc in neurons and glia cells [36, 106]. Metallothioneins
are also pools of Zn2+ [37, 38, 107]. On the other hand,
extracellular zinc concentration after tetanic stimulation is
estimated to range between 10 and 100 μM, because the
low-affinity site (IC50 ≈ 20μM at −40 mV) of NMDA
receptors is bound by zinc as an NMDA receptor blocker
[108]. Hippocampal LTP is multifunctionally modulated
in the presence of 5 μM ZnCl2 [43, 109–111], suggesting
that the concentration of endogenous zinc reaches very low
micromolar concentrations in the extracellular compartment
during the LTP induction. Judging from this estimation, it is
possible that zinc signal transiently increases to more than
100 times of the basal level in the cytosolic compartment.
Zn2+ might potentially reach submicromolar concentrations
(− log [Zn2+]“free” < 6) under pathological conditions [105].

In conclusion, the analysis on the relationship between
Zn2+ dynamics and glutamatergic (zincergic) neuron activity
in the brain in process of aging may be useful to find out
the strategy to prevent neurodegenerative disorders such as
Alzheimer’s disease [112].
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